共查询到20条相似文献,搜索用时 15 毫秒
1.
Sylvain Roque Marie Cerciat Isabelle Gaugué Liliana Mora Aurélie G. Floch Miklos de Zamaroczy Valérie Heurgué-Hamard Stephanie Kervestin 《RNA (New York, N.Y.)》2015,21(1):124-134
Eukaryotic release factor 3 (eRF3) is implicated in translation termination and also interacts with the poly(A)-binding protein (PABP, Pab1 in yeast), a major player in mRNA metabolism. Despite conservation of this interaction, its precise function remains elusive. First, we showed experimentally that yeast eRF3 does not contain any obvious consensus PAM2 (PABP-interacting motif 2). Thus, in yeast this association is different from the well described interaction between the metazoan factors. To gain insight into the exact function of this interaction, we then analyzed the phenotypes resulting from deleting the respective binding domains. Deletion of the Pab1 interaction domain on eRF3 did not affect general mRNA stability or nonsense-mediated mRNA decay (NMD) pathway and induced a decrease in translational readthrough. Furthermore, combined deletions of the respective interacting domains on eRF3 and on Pab1 were viable, did not affect Pab1 function in mRNA stability and harbored an antisuppression phenotype. Our results show that in Saccharomyces cerevisiae the role of the Pab1 C-terminal domain in mRNA stability is independent of eRF3 and the association of these two factors negatively regulates translation termination. 相似文献
2.
Kaiser C Dobrikova EY Bradrick SS Shveygert M Herbert JT Gromeier M 《RNA (New York, N.Y.)》2008,14(10):2170-2182
Protein synthesis is tightly controlled by assembly of an intricate ribonucleoprotein complex at the m7GTP-cap on eukaryotic mRNAs. Ensuing linear scanning of the 5′ untranslated region (UTR) is believed to transfer the preinitiation complex to the initiation codon. Eukaryotic mRNAs are characterized by significant 5′ UTR heterogeneity, raising the possibility of differential control of translation initiation rate at individual mRNAs. Curiously, many mRNAs with unconventional, highly structured 5′ UTRs encode proteins with central biological roles in growth control, metabolism, or stress response. The 5′ UTRs of such mRNAs may influence protein synthesis rate in multiple ways, but most significantly they have been implicated in mediating alternative means of translation initiation. Cap-independent initiation bypasses strict control over the formation of initiation intermediates at the m7GTP cap. However, the molecular mechanisms that favor alternative means of ribosome recruitment are not understood. Here we provide evidence that eukaryotic initiation factor (eIF) 4G controls cap-independent translation initiation at the c-myc and vascular endothelial growth factor (VEGF) 5′ UTRs in vivo. Cap-independent translation was investigated in tetracycline-inducible cell lines expressing either full-length eIF4G or a C-terminal fragment (Ct) lacking interaction with eIF4E and poly(A) binding protein. Expression of Ct, but not intact eIF4G, potently stimulated cap-independent initiation at the c-myc/VEGF 5′ UTRs. In vitro RNA-binding assays suggest that stimulation of cap-independent translation initiation by Ct is due to direct association with the c-myc/VEGF 5′ UTR, enabling 43S preinitiation complex recruitment. Our work demonstrates that variant translation initiation factors enable unconventional translation initiation at mRNA subsets with distinct structural features. 相似文献
3.
mRNA surveillance pathways selectively clear defective mRNAs from the cell. As such, these pathways serve as important modifiers of genetic disorders. Nonsense-mediated decay (NMD), the most intensively studied surveillance pathway, recognizes mRNAs with premature termination codons (PTCs). In mammalian systems the location of a PTC more than 50 nucleotides 5' to the terminal exon-exon junction is a critical determinant of NMD. However, mRNAs with nonsense codons that fulfill this requirement but are located very early in the open reading frame can effectively evade NMD. The unexpected resistance of such mRNAs with AUG-proximal PTCs to accelerated decay suggests that important determinants of NMD remain to be identified. Here, we report that an NMD-sensitive mRNA can be stabilized by artificially tethering the cytoplasmic poly(A) binding protein 1, PABPC1, at a PTC-proximal position. Remarkably, the data further suggest that NMD of an mRNA with an AUG-proximal PTC can also be repressed by PABPC1, which might be brought into proximity with the PTC during cap-dependent translation and 43S scanning. These results reveal a novel parameter of NMD in mammalian cells that can account for the stability of mRNAs with AUG-proximal PTCs. These findings serve to expand current mechanistic models of NMD and mRNA translation. 相似文献
4.
The position of mRNA on 40S ribosomal subunits in eukaryotic initiation complexes was determined by UV crosslinking using mRNAs containing uniquely positioned 4-thiouridines. Crosslinking of mRNA positions (+)11 to ribosomal protein (rp) rpS2(S5p) and rpS3(S3p), and (+)9-(+)11 and (+)8-(+)9 to h18 and h34 of 18S rRNA, respectively, indicated that mRNA enters the mRNA-binding channel through the same layers of rRNA and proteins as in prokaryotes. Upstream of the P-site, the proximity of positions (-)3/(-)4 to rpS5(S7p) and h23b, (-)6/(-)7 to rpS14(S11p), and (-)8-(-)11 to the 3'-terminus of 18S rRNA (mRNA/rRNA elements forming the bacterial Shine-Dalgarno duplex) also resembles elements of the bacterial mRNA path. In addition to these striking parallels, differences between mRNA paths included the proximity in eukaryotic initiation complexes of positions (+)7/(+)8 to the central region of h28, (+)4/(+)5 to rpS15(S19p), and (-)6 and (-)7/(-)10 to eukaryote-specific rpS26 and rpS28, respectively. Moreover, we previously determined that eukaryotic initiation factor2alpha (eIF2alpha) contacts position (-)3, and now report that eIF3 interacts with positions (-)8-(-)17, forming an extension of the mRNA-binding channel that likely contributes to unique aspects of eukaryotic initiation. 相似文献
5.
The infection of baby hamster kidney (BHK) cells by Sindbis virus gives rise to a drastic inhibition of cellular translation, while under these conditions the synthesis of viral structural proteins directed by the subgenomic 26S mRNA takes place efficiently. Here, the requirement for intact initiation factor eIF4G for the translation of this subgenomic mRNA has been examined. To this end, SV replicons that contain the protease of human immunodeficiency virus type 1 (HIV-1) or the poliovirus 2A(pro) replacing the sequences of SV glycoproteins have been constructed. BHK cells electroporated with the different RNAs synthesize protein C and the corresponding protease at late times. Notably, the proteolysis of eIF4G by both proteases has little effect on the translation of the 26S mRNA. In addition, recombinant viable SVs were engineered that encode HIV-1 PR or poliovirus 2A protease under the control of a duplicated late promoter. Viral protein synthesis at late times of infection by the recombinant viruses is slightly affected in BHK cells that contain proteolysed eIF4G. The translatability of SV genomic 49S mRNA was assayed in BHK cells infected with a recombinant virus that synthesizes luciferase and transfected with a replicon that expresses poliovirus 2Apro. Under conditions where eIF4G has been hydrolysed significantly the translation of genomic SV RNA was deeply inhibited. These findings indicate a different requirement for intact eIF4G in the translation of genomic and subgenomic SV mRNAs. Finally, the translation of the reporter gene that encodes green fluorescent protein, placed under the control of a second duplicate late promoter, is also resistant to the cleavage of eIF4G. In conclusion, despite the presence of a cap structure in the 5' end of the subgenomic SV mRNA, intact eIF4G is not necessary for its translation. 相似文献
6.
The eukaryotic mRNA 3′ poly(A) tail and the 5′ cap cooperate to synergistically enhance translation. This interaction is mediated by a ribonucleoprotein network that contains, at a minimum, the poly(A) binding protein (PABP), the cap-binding protein eIF4E, and a scaffolding protein, eIF4G. eIF4G, in turn, contains binding sites for eIF4A and eIF3, a 40S ribosome-associated initiation factor. The combined cooperative interactions within this “closed loop” mRNA among other effects enhance the affinity of eIF4E for the 5′ cap, by lowering its dissociation rate and, ultimately, facilitate the formation of 48S and 80S ribosome initiation complexes. The PABP-poly(A) interaction also stimulates initiation driven by picornavirus’ internal ribosomal entry sites (IRESs), a process that requires eIF4G but not eIF4E. PABP, therefore, should be considered a canonical initiation factor, integral to the formation of the initiation complex. Poly(A)-mediated translation is subjected to regulation by the PABP-interacting proteins Paip1 and Paip2. Paip1 acts as a translational enhancer. In contrast, Paip2 strongly inhibits translation by promoting dissociation of PABP from poly(A) and by competing with eIF4G for binding to PABP. Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 4, pp. 684–693. The article is published in the original. 相似文献
7.
The interaction between eukaryotic translation initiation factor 4G (eIF4G) and the poly(A)-binding protein (PABP) facilitates translational initiation of polyadenylated mRNAs. It was shown recently that the expression of an eIF4GI mutant defective in PABP binding in Xenopus oocytes reduces polyadenylated mRNA translation and dramatically inhibits progesterone-induced oocyte maturation. These results strongly suggest that the eIF4G-PABP interaction plays a critical role in the translational control of maternal mRNAs during oocyte maturation. In the present work, we employed another strategy to interfere eIF4G-PABP interaction in Xenopus oocytes. The amino-terminal part of eIF4GI containing the PABP-binding site (4GNt-M1) was expressed in Xenopus oocytes. 4GNt-M1 could bind to PABP in oocytes, which suggests that 4GNt-M1 may evict PABP from the endogenous eIF4G. The expression of 4GNt-M1 resulted in reduction of polyadenylated mRNA translation. Furthermore, 4GNt-M1 inhibited progesterone-induced oocyte maturation. In contrast, 4GNt-M2, in which the PABP-binding sequences were mutated to abolish the PABP-binding activity, could not inhibit polyadenylated mRNA translation or oocyte maturation. These results further support the idea that the eIF4G-PABP interaction is critical for translational regulation of maternal mRNAs in oocytes. 相似文献
8.
Translational silencing of ceruloplasmin requires the essential elements of mRNA circularization: poly(A) tail, poly(A)-binding protein, and eukaryotic translation initiation factor 4G 总被引:1,自引:0,他引:1
下载免费PDF全文

Mazumder B Seshadri V Imataka H Sonenberg N Fox PL 《Molecular and cellular biology》2001,21(19):6440-6449
9.
Göke A Göke R Knolle A Trusheim H Schmidt H Wilmen A Carmody R Göke B Chen YH 《Biochemical and biophysical research communications》2002,297(1):78-82
To elucidate the molecular mechanisms of cell death, we have cloned a new gene, designated death-upregulated gene (DUG), from rat insulinoma cells. DUG is constitutively expressed at very low levels in normal cells but is dramatically upregulated in apoptotic cells following serum/glucose starvation or death receptor ligation by Fas ligand. The DUG mRNA is present in two splicing forms: a long form that encodes a protein of 469 amino acids and a short form that gives rise to a polypeptide of 432 amino acids. The predicted DUG protein sequence contains two putative nuclear localization signals and multiple phosphorylation sites for protein kinases and two conserved MA3 domains. Importantly, DUG is homologous to eukaryotic translation initiation factor (eIF) 4G and binds to eIF4A presumably through MA3 domains. Upon transfection, DUG inhibits both intrinsic and extrinsic pathways of apoptosis. Thus, DUG is a novel homologue of eIF4G that regulates apoptosis. 相似文献
10.
Masanori Osawa Nao Hosoda Tamiji Nakanishi Naoyuki Uchida Tomomi Kimura Shunsuke Imai Asako Machiyama Toshiaki Katada Shin-ichi Hoshino Ichio Shimada 《RNA (New York, N.Y.)》2012,18(11):1957-1967
Eukaryotic releasing factor GSPT/eRF3 mediates translation termination-coupled mRNA decay via interaction with a cytosolic poly(A)-binding protein (PABPC1). A region of eRF3 containing two overlapping PAM2 (PABPC1-interacting motif 2) motifs is assumed to bind to the PABC domain of PABPC1, on the poly(A) tail of mRNA. PAM2 motifs are also found in the major deadenylases Caf1–Ccr4 and Pan2–Pan3, whose activities are enhanced upon PABPC1 binding to these motifs. Their deadenylase activities are regulated by eRF3, in which two overlapping PAM2 motifs competitively prevent interaction with PABPC1. However, it is unclear how these overlapping motifs recognize PABC and regulate deadenylase activity in a translation termination-coupled manner. We used a dominant-negative approach to demonstrate that the N-terminal PAM2 motif is critical for eRF3 binding to PABPC1 and that both motifs are required for function. Isothermal titration calorimetry (ITC) and NMR analyses revealed that the interaction is in equilibrium between the two PAM2–PABC complexes, where only one of the two overlapping PAM2 motifs is PABC-bound and the other is PABC-unbound and partially accessible to the other PABC. Based on these results, we proposed a biological role for the overlapping PAM2 motifs in the regulation of deadenylase accessibility to PABPC1 at the 3′ end of poly(A). 相似文献
11.
Wheat eukaryotic initiation factor 4B organizes assembly of RNA and eIFiso4G, eIF4A, and poly(A)-binding protein 总被引:2,自引:0,他引:2
The eukaryotic translation initiation factor (eIF) 4B promotes the RNA-dependent ATP hydrolysis activity and ATP-dependent RNA helicase activity of eIF4A and eIF4F during translation initiation. Although this function is conserved among plants, animals, and yeast, eIF4B is one of the least conserved of initiation factors at the sequence level. To gain insight into its functional conservation, the organization of the functional domains of eIF4B from wheat has been investigated. Plant eIF4B contains three RNA binding domains, one more than reported for mammalian or yeast eIF4B, and each domain exhibits a preference for purine-rich RNA. In addition to a conserved RNA recognition motif and a C-terminal RNA binding domain, wheat eIF4B contains a novel N-terminal RNA binding domain that requires a short, lysine-rich containing sequence. Both the lysine-rich motif and an adjacent, C-proximal motif are conserved with an N-proximal sequence in human and yeast eIF4B. The C-proximal motif within the N-terminal RNA binding domain in wheat eIF4B is required for interaction with eIFiso4G, an interaction not reported for other eIF4B proteins. Moreover, each RNA binding domain requires dimerization for binding activity. Two binding sites for the poly(A)-binding protein were mapped to a region within each of two conserved 41-amino acid repeat domains on either side of the C-terminal RNA binding domain. eIF4A bound to an adjacent region within each repeat, supporting a central role for these conserved eIF4B domains in facilitating interaction with other components of the translational machinery. These results support the notion that eIF4B functions by organizing multiple components of the translation initiation machinery and RNA. 相似文献
12.
Hongjie Pan 《Experimental cell research》2010,316(17):2825-2832
Translation of the small G protein RhoA in neurons is regulated by the eukaryotic translation initiation factor eIF4E. Here we show that this translation factor also regulates RhoA expression and activity in breast cancer cells. The introduction of eIF4E into breast tumor cells increased RhoA protein levels, while expression of an eIF4E siRNA reduced RhoA expression. Previous studies indicate that the axon repulsion factor Semaphorin3A (Sema3A) stimulates the eIF4E-dependent translation of RhoA in neurons, and breast tumor cells support autocrine Sema3A signaling. Accordingly, we next examined if autocrine Sema3A signaling drives eIF4E-dependent RhoA translation in breast cancer cells. The incubation of breast tumor cells with recombinant Sema3A rapidly increased eIF4E activity, RhoA protein levels, and RhoA activity. This Sema3A activity was blocked in tumor cells expressing an shRNA-specific for the Sema3A receptor, Neuropilin-1 (NP-1), as well as in cells incubated with an eIF4E inhibitor. Importantly, RhoA protein levels were reduced in Sema3A shRNA-expressing compared to control shRNA-expressing breast tumor cells, demonstrating that autocrine Sema3A increases RhoA expression in breast cancer. Considering that Sema3A suppresses axon extension by stimulating RhoA translation, we next examined if the Sema3A/RhoA axis impacts breast tumor cell migration. The incubation of control breast tumor cells, but not RhoA shRNA-expressing cells, with rSema3A significantly reduced their migration. Collectively, these studies indicate that Sema3A impedes breast tumor cell migration in part by stimulating RhoA. These findings identify common signaling pathways that regulate the navigation of neurons and breast cancer cells, thus suggesting novel targets for suppressing breast tumor cell migration. 相似文献
13.
E. V. Ivanova E. Z. Alkalaeva B. Birdsall P. M. Kolosov V. I. Polshakov L. L. Kisselev 《Molecular Biology》2008,42(6):939-948
Translation termination in eukaryotes is governed by the interaction of two, class 1 and class 2, polypeptide chain release factors with the ribosome. The middle (M) domain of the class 1 factor eRF1 contains the strictly conserved GGQ motif and is involved in hydrolysis of the peptidyl-tRNA ester bond in the peptidyl transferase center of the large ribosome subunit. Heteronuclear NMR spectroscopy was used to map the interaction interface of the M domain of human eRF1 with eukaryotic ribosomes. The protein was found to specifically interact with the 60S subunit, since no interaction was detected with the 40S subunit. The amino acid residues forming the interface mostly belong to long helix α1 of the M domain. Some residues adjacent to α1 and belonging to strand β5 and short helices α2 and α3 are also involved in the protein-ribosome contact. The functionally inactive G183A mutant interacted with the ribosome far more weakly as compared with the wild-type eRF1. The interaction interfaces of the two proteins were nonidentical. It was concluded that long helix α1 is functionally important and that the conformational flexibility of the GGQ loop is essential for the tight protein-ribosome contact. 相似文献
14.
Potyvirus RNA contains at the 5' end a covalently linked virus-encoded protein VPg, which is required for virus infectivity. This role has been attributed to VPg interaction with the eukaryotic translation initiation factor eIF4E, a cap-binding protein. We characterized the dissociation constants for the interaction of the potato virus Y VPg with different plant eIF4Es and its isoforms and mapped the eIF(iso)4E attachment region on VPg. VPg/eIF4E interaction results in the inhibition of cell-free protein synthesis, and we show that it stems from the liberation of the cap moiety from the complex with eIF4E. Since VPg does not attach the cap, it appears that VPg induces changes in the eIF4E structure, diminishing its affinity to the cap. We show here that the initiation complex scaffold protein eIF(iso)4G increases VPg interaction with eIF(iso)4E. These data together suggest similar cap and VPg interactions with eIF4E and characterize VPg as a novel eIF4E-binding protein, which inhibits host protein synthesis at a very early stage of the initiation complex formation through the inhibition of cap attachment to the initiation factor eIF4E. 相似文献
15.
Bushell M Wood W Carpenter G Pain VM Morley SJ Clemens MJ 《The Journal of biological chemistry》2001,276(26):23922-23928
Eukaryotic initiation factor (eIF) 4B interacts with several components of the initiation pathway and is targeted for cleavage during apoptosis. In a cell-free system, cleavage of eIF4B by caspase-3 coincides with a general inhibition of protein synthetic activity. Affinity chromatography demonstrates that mammalian eIF4B interacts with the poly(A)-binding protein and that a region consisting of the N-terminal 80 amino acids of eIF4B is both necessary and sufficient for such binding. This interaction is lost when eIF4B is cleaved by caspase-3, which removes the N-terminal 45 amino acids. Similarly, the association of eIF4B with the poly(A)-binding protein in vivo is reduced when cells are induced to undergo apoptosis. Cleavage of the poly(A)-binding protein itself, using human rhinovirus 3C protease, also eliminates the interaction with eIF4B. Thus, disruption of the association between mammalian eIF4B and the poly(A)-binding protein can occur during both apoptosis and picornaviral infection and is likely to contribute to the inhibition of translation observed under these conditions. 相似文献
16.
17.
Vincent Leroux Lapointe Matthias Trost Pierre Thibault Catherine Bangeranye Serafin Piñol‐Roma Katherine L B Borden 《The EMBO journal》2009,28(8):1087-1098
The eukaryotic translation initiation factor 4E (eIF4E) controls gene expression through its effects on mRNA export and cap‐dependent translation, both of which contribute to its oncogenic potential. In contrast to its translation function, the mRNA export function of eIF4E is poorly understood. Using an RNP isolation/mass spectrometry approach, we identified candidate cofactors of eIF4E mRNA export including LRPPRC. This protein associates with mRNAs containing the eIF4E‐sensitivity element (4E‐SE), and its overexpression alters the nuclear export of several eIF4E‐sensitive mRNAs. LRPPRC‐mediated alteration of eIF4E's mRNA export function requires the integrity of its eIF4E‐binding site and it coincides with the subcellular re‐distribution of eIF4E. The eIF4E export RNP is distinct in composition from the bulk mRNA export pathway, in that eIF4E‐ and eIF4E‐sensitive mRNAs do not associate with general mRNA export factors such as TAP/NXF1 or REF/Aly. Our data indicate that mRNA export pathways have evolved for specific mRNAs enabling the differential regulation of biochemical pathways by modulating the expression of groups of genes at the level of their export. 相似文献
18.
The poly(A)-binding protein (PABP) interacts with the eukaryotic initiation factor (eIF) 4G (or eIFiso4G), the large subunit of eIF4F (or eIFiso4F) to promote translation initiation. In plants, PABP also interacts with eIF4B, a factor that assists eIF4F function. PABP is a phosphoprotein, although the function of its phosphorylation has not been previously investigated. In this study, we have purified the phosphorylated and hypophosphorylated isoforms of PABP from wheat to examine whether its phosphorylation state affects its binding to poly(A) RNA and its interaction with eIF4G, eIFiso4G, or eIF4B. Phosphorylated PABP exhibited cooperative binding to poly(A) RNA even under non-stoichiometric binding conditions, whereas multiple molecules of hypophosphorylated PABP bound to poly(A) RNA only after free poly(A) RNA was no longer available. Together, phosphorylated and hypophosphorylated PABP exhibited synergistic binding. eIF4B interacted with PABP in a phosphorylation state-specific manner; native eIF4B increased the RNA binding activity specifically of phosphorylated PABP and was greater than 14-fold more effective than was recombinant eIF4B, whereas eIF4F promoted the cooperative binding of hypophosphorylated PABP. These data suggest that the phosphorylation state of PABP specifies the type of binding to poly(A) RNA and its interaction with its partner proteins. 相似文献
19.
Seyoung Ahn Jinyoung KimJungwook Hwang 《Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms》2013,1829(10):1047-1055
Nonsense-mediated mRNA decay (NMD) is the best-characterized mRNA surveillance mechanism that degrades a premature-termination codon (PTC)-containing mRNA. During mammalian NMD, SMG1 and UPF1, key proteins in NMD, join at a PTC and form an SMG1–UPF1–eRF1–eRF3 (SURF) complex by binding UPF1 to eRF3 after PTC-recognition by the translating ribosome. Subsequently, UPF1 is phosphorylated after UPF1–SMG1 moves onto the downstream exon junction complex (EJC). However, the cellular events that induce UPF1 and SMG1 complex formation and increase NMD efficiency before PTC recognition remain unclear. Here, we show that telomere-maintenance 2 (TEL2) phosphorylation by casein-kinase 2 (CK2) increases SMG1 stability, which increases UPF1 phosphorylation and, ultimately, augments NMD. Inhibition of CK2 activity or downregulation of TEL2 impairs NMD. Intriguingly, loss of TEL2 phosphorylation reduces UPF1-bound PTC-containing mRNA and the formation of the SMG1–UPF1 complex. Thus, our results identify a new function of CK2-mediated TEL2 phosphorylation in a mammalian NMD. 相似文献
20.
Previous observations of association of mRNAs and ribosomes with subcellular structures highlight the importance of localised translation. However, little is known regarding associations between eukaryotic translation initiation factors and cellular structures within the cytoplasm of normally growing cells. We have used detergent-based cellular fractionation coupled with immunofluorescence microscopy to investigate the subcellular localisation in NIH3T3 fibroblasts of the initiation factors involved in recruitment of mRNA for translation, focussing on eIF4E, the mRNA cap-binding protein, the scaffold protein eIF4GI and poly(A) binding protein (PABP). We find that these proteins exist mainly in a soluble cytosolic pool, with only a subfraction tightly associated with cellular structures. However, this "associated" fraction was enriched in active "eIF4F" complexes (eIF4E.eIF4G.eIF4A.PABP). Immunofluorescence analysis reveals both a diffuse and a perinuclear distribution of eIF4G, with the perinuclear staining pattern similar to that of the endoplasmic reticulum. eIF4E also shows both a diffuse staining pattern and a tighter perinuclear stain, partly coincident with vimentin intermediate filaments. All three proteins localise to the lamellipodia of migrating cells in close proximity to ribosomes, microtubules, microfilaments and focal adhesions, with eIF4G and eIF4E at the periphery showing a similar staining pattern to the focal adhesion protein vinculin. 相似文献