首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Sexual reproduction requires coordinated contributions from both sexes to proceed efficiently. However, the reproductive strategies that the sexes adopt often have the potential to give rise to sexual conflict because they can result in divergent, sex-specific costs and benefits. These conflicts can occur at many levels, from molecular to behavioral. Here, we consider sexual conflict mediated through the actions of seminal fluid proteins. These proteins provide many excellent examples in which to trace the operation of sexual conflict from molecules through to behavior. Seminal fluid proteins are made by males and provided to females during mating. As agents that can modulate egg production at several steps, as well as reproductive behavior, sperm “management,” and female feeding, activity, and longevity, the actions of seminal proteins are prime targets for sexual conflict. We review these actions in the context of sexual conflict. We discuss genomic signatures in seminal protein (and related) genes that are consistent with current or previous sexual conflict. Finally, we note promising areas for future study and highlight real-world practical situations that will benefit from understanding the nature of sexual conflicts mediated by seminal proteins.Both sexes benefit from successful reproduction, but the different reproductive strategies adopted by males and females may result in differential costs and benefits. This can result in sexual conflict before, during, and after mating. Conflict in the more familiar form of competition can also occur between females and between males, with the latter situation including interejaculate competition. Of the many “weapons” in these conflicts and competitions, this article focuses on the seminal fluid proteins (SFPs) that are made by males and transferred to females during mating. These proteins represent a crucial interface of functional activity between male and female. Transfer of SFPs can affect physiology and, in some animals, the behavior and life span of mated females (reviewed in Chapman 2001; Gillott 2003; Poiani 2006; Avila et al. 2011; Rodríguez-Martínez et al. 2011). Because SFPs have important effects on the most intimate of interactions between the sexes, they are prime candidates to become subject to sexually antagonistic selection (Arnqvist and Rowe 2005). With increasing knowledge of the functions of SFPs, their roles in inter- and intrasexual conflict and their evolutionary responses to conflict are becoming ever more apparent. Here, we explore the roles, evolution, and significance of these male-derived players in sexual conflict. We refer the reader to previous reviews for much of the detailed functional information on SFPs (e.g., Chapman 2001; Gillott 2003; Kubli 2003; Arnqvist and Rowe 2005; Poiani 2006; Sirot et al. 2009; Avila et al. 2011; Rodríguez-Martínez et al. 2011) and focus here instead on selected examples, drawn largely from the study of insects.  相似文献   

2.
Sexual cannibalism is a well-known example for sexual conflict and has many facets that determine the costs and benefits for the cannibal and the victim. Here, I focus on species in which sexual cannibalism is a general component of a mating system in which males invest maximally in mating with a single (monogyny) or two (bigyny) females. Sexual cannibalism can be a male strategy to maximize paternity and a female strategy to prevent paternity monopolization by any or a particular male. Considerable variation exists between species (1) in the potential of males to monopolize females, and (2) in the success of females in preventing monopolization by males. This opens up exciting future possibilities to investigate sexually antagonistic coevolution in a largely unstudied mating system.Sexual cannibalism, the killing and consumption of potential or actual mating partners in a mating context, has been termed a “pinnacle of sexual conflict” because of the dramatic ending of the act for one mating partner, mostly the male (Elgar and Schneider 2004). This contradiction of traditional sex roles may be one reason why the phenomenon of sexual cannibalism has intrigued naturalists for a long time. In the context of sexual conflict, sexually cannibalistic behavior of females is a harmful trait, and antagonistic traits are expected to evolve in males, which can be considered the reverse of most other examples in which females respond to male harm (see Perry and Rowe 2014). I will discuss potential antagonistic traits to sexual cannibalism in males but will also show that the above view is too simplistic when it comes to spider mating systems characterized by very low male mating rates.It is important to note that there are different kinds of sexual cannibalism based on very different evolutionary scenarios (Elgar and Schneider 2004; Prenter et al. 2006; Wilder et al. 2009). The most extreme divide exists between cannibalism before sperm transfer, which can only benefit the cannibal, and sexual cannibalism during or after sperm transfer (from here on termed postinsemination sexual cannibalism), which can benefit the cannibal and the victim (Elgar and Schneider 2004). Despite a longer history of research on preinsemination sexual cannibalism, the evolutionary causes and consequences of postinsemination sexual cannibalism are generally less debated.There are reports (often anecdotal) on the occurrence of sexual cannibalism from diverse invertebrate taxa (Elgar 1992) and it may well occur in all predatory invertebrates that are potentially cannibalistic (Polis 1981). It is beyond the scope of this brief review to list and evaluate all reported occurrences. Rather, I will start with a brief account of the generally discussed causes and consequences of sexual cannibalism and will then concentrate on the conflicting interests of the sexes regarding postinsemination sexual cannibalism in mating systems that are characterized by very low male mating rates.Studies that investigate sexual cannibalism experimentally are mostly concerned with (1) nutritional aspects, (2) the importance of sexual size dimorphism and sexual selection, and, increasingly, (3) behavioral syndromes. The aggressive spillover hypothesis suggests that preinsemination sexual cannibalism is part of a behavioral syndrome in which aggression against mating partners spills over from a foraging context (Arnqvist and Henriksson 1997). There is mixed support for this idea in the few species that have been looked at. In several spider species, females consistently differ in their aggressiveness and these differences affect sexual cannibalism (for a recent debate about the evidence for this hypothesis, see Johnson 2013; Kralj-Fišer et al. 2013b; Pruitt and Keiser 2013).A majority of studies have taken a unilateral view and have been concerned with the “motivation” of the cannibal; because sexual cannibalism generally occurs in predators, hunger is a well-supported motivation (Wilder et al. 2009). Many predators are food-limited, and, assuming a trade-off between foraging and mating, the balance may tilt toward foraging under particular circumstances (modeled by Newman and Elgar 1991). Food and mate availability will influence the costs and benefits of sexual cannibalism for females and have been one focus of a recent review on sexual cannibalism (Wilder et al. 2009).In all predatory and cannibalistic animals, mating partners impose selection on each other’s abilities to avoid or resist aggression. This selection pressure is asymmetrical if one sex is physically dominant. Indeed, the differences in size between females and males often determine the frequency of sexual cannibalism, perhaps because the potential to resist a cannibalistic attack is size-dependent (Elgar 1992; Wilder and Rypstra 2008). Usually, males are the victims and females are the cannibals. Yet, reversed sexual cannibalism has also been reported and appears to be associated with the reversed pattern in sexual size dimorphism. Examples are the water spider, Arygoneta aquatica (Schutz and Taborsky 2005, 2011) and role-reversed wolf spiders (Aisenberg et al. 2011). In the gnaphosid spider, Micaria sociabilis, large, young males cannibalize old and relatively smaller females (Sentenska and Pekar 2013). These examples further support the notion that the relative size differences of a mating pair play a part in determining the likelihood of sexual cannibalism. Patterns can be found both on a between-species comparative scale and on a within-species scale (Wilder and Rypstra 2008; Wilder et al. 2009), and they are also reported as an underlying pattern in cannibalism outside a mating context (Bleakley et al. 2013). Furthermore, there is anecdotal evidence for the same pattern in hermaphrodites (e.g., Goto and Yoshida 1985; Michiels et al. 2003), which may constitute a particularly interesting case to study, as the power asymmetries are less obviously related to the male or female role.In asymmetric encounters, the costs and risks of aggressive behavior toward potential mating partners are low for the dominant partner. Toward smaller males, females could use aggressiveness as a means of partner choice. Indeed, many studies suggest that sexual selection in addition to gaining a meal may be the adaptive value of sexual cannibalism (Prenter et al. 2006). From the female perspective, aggressive behavior directed toward males may serve as a general screening of partner quality, a mechanism often described as indirect mate choice (Elgar and Nash 1988; Prenter et al. 2006; Kralj-Fišer et al. 2012). A screening method implies that females attack every male, and suitors that cannot withstand and persist an attack will be killed and consumed; alternatively, females may differentiate between males and attack and consume only those males that do not meet certain quality criteria (reviewed in Prenter et al. 2006). The latter has been found in wolf spiders (Wilgers and Hebets 2012). The latter mechanism of direct choice is more complex than the indirect one as it requires perception and assessment of quality cues, and large enough benefits of choosiness are expected to match the costs. Mate rejection via sexual cannibalism is considered a particularly extreme case of sexual conflict mostly because rejection can lead to death. Although this may be true for the individual male that loses all future reproductive success, frequencies of preinsemination sexual cannibalism might be rather low (Kralj-Fišer et al. 2013b). Please note that in almost every species, a certain proportion of individuals will be excluded from the mating market and will have no mating success. The claim that prevention of mating success via sexual cannibalism results in more intense sexual conflict than exclusion from mating with less drastic measures has, to my knowledge, never been tested. Because of the scarcity of data on natural frequencies of preinsemination cannibalism, a meta-analysis would not reveal a realistic picture at this stage. Hence, to date, it is not feasible to compare the relative strength of selection imposed by a cannibalistic mate choice strategy against a strategy with less drastic consequences of mate rejection. More studies are needed to unravel the exact nature of sexual selection under the threat of ending as a meal. Below, I will briefly sketch possible responses to selection imposed by sexually cannibalistic females before or during insemination.  相似文献   

3.
Evolutionary conflicts of interest arise whenever genetically different individuals interact and their routes to fitness maximization differ. Sexual selection favors traits that increase an individual’s competitiveness to acquire mates and fertilizations. Sexual conflict occurs if an individual of sex A’s relative fitness would increase if it had a “tool” that could alter what an individual of sex B does (including the parental genes transferred), at a cost to B’s fitness. This definition clarifies several issues: Conflict is very common and, although it extends outside traits under sexual selection, sexual selection is a ready source of sexual conflict. Sexual conflict and sexual selection should not be presented as alternative explanations for trait evolution. Conflict is closely linked to the concept of a lag load, which is context-dependent and sex-specific. This makes it possible to ask if one sex can “win.” We expect higher population fitness if females win.Many published studies ask if sexual selection or sexual conflict drives the evolution of key reproductive traits (e.g., mate choice). Here we argue that this is an inappropriate question. By analogy, G. Evelyn Hutchinson (1965) coined the phrase “the ecological theatre and the evolutionary play” to capture how factors that influence the birth, death, and reproduction of individuals (studied by ecologists) determine which individuals reproduce, and “sets the stage” for the selective forces that drive evolutionary trajectories (studied by evolutionary biologists). The more modern concept of “eco-evolutionary feedback” (Schoener 2011) emphasizes that selection changes the character of the actors over time, altering their ecological interactions. No one would sensibly ask whether one or the other shapes the natural world, when obviously both interact to determine the outcome.So why have sexual conflict and sexual selection sometimes been elevated to alternate explanations? This approach is often associated with an assumption that sexual conflict affects traits under direct selection, favoring traits that alter the likelihood of a potential mate agreeing or refusing to mate because it affects the bearer’s immediate reproductive output, whereas “traditional” sexual selection is assumed to favor traits that are under indirect selection because they increase offspring fitness. These “traditional” models are sometimes described as “mutualistic” (e.g., Pizzari and Snook 2003; Rice et al. 2006), although this term appears to be used only when contrasting them with sexual conflict models. The investigators of the original models never describe them as “mutualistic,” which is hardly surprising given that some males are rejected by females.In this review, we first define sexual conflict and sexual selection. We then describe how the notion of a “lag load” can reveal which sex currently has greater “power” in a sexual conflict over a specific resource. Next, we discuss why sexual conflict and sexual selection are sometimes implicitly (or explicitly) presented as alternative explanations for sexual traits (usually female mate choice/resistance). To illustrate the problems with the assumptions made to take this stance, we present a “toy model” of snake mating behavior based on a study by Shine et al. (2005). We show that empirical predictions about the mating behavior that will be observed if females seek to minimize direct cost of mating or to obtain indirect genetic benefits were overly simplistic. This allows us to make the wider point that whom a female is willing to mate with and how often she mates are often related questions. Finally, we discuss the effect of sexual conflict on population fitness.  相似文献   

4.
Parental care is an immensely variable social behavior, and sexual conflict offers a powerful paradigm to understand this diversity. Conflict over care (usually considered as a type of postzygotic sexual conflict) is common, because the evolutionary interests of male and female parents are rarely identical. I investigate how sexual conflict over care may facilitate the emergence and maintenance of diverse parenting strategies and argue that researchers should combine two fundamental concepts in social behavior to understand care patterns: cooperation and conflict. Behavioral evidence of conflict over care is well established, studies have estimated specific fitness implications of conflict for males or females, and experiments have investigated specific components of conflict. However, studies are long overdue to reveal the full implications of conflict for both males and females. Manipulating (or harming) the opposite sex seems less common in postzygotic conflicts than in prezygotic conflicts because by manipulating, coercing, or harming the opposite sex, the reproductive interest of the actor is also reduced. Parental care is a complex trait, although few studies have yet considered the implications of multidimensionality for parental conflict. Future research in parental conflict will benefit from understanding the behavioral interactions between male and female parents (e.g., negotiation, learning, and coercion), the genetic and neurogenomic bases of parental behavior, and the influence of social environment on parental strategies. Empirical studies are needed to put sexual conflict in a population context and reveal feedback between mate choice, pair bonds and parenting strategies, and their demographic consequences for the population such as mortalities and sex ratios. Taken together, sexual conflict offers a fascinating avenue for understanding the causes and consequences of parenting behavior, sex roles, and breeding system evolution.Sexual conflict over care is a type of evolutionary conflict that emerges from the different interests of males and females in regard to parental care (Trivers 1972; Clutton-Brock 1991; Chapman et al. 2003; Arnqvist and Rowe 2005). The conflict arises when the young benefit from the effort of either parent, but each parent pays only the cost of its own effort, so that each parent would have higher fitness if the other parent provides more care (Houston et al. 2005; Lessells 2006; Klug et al. 2012). Conflict refers to the way selection acts on the two sexes that have different optimum values in parental provisioning; between the two optima, sexually antagonistic selection operates (Lessells 2012). Sexual conflict over care can be seen as tug-of-war, because each parent is tempted to pull out of care leaving the other parent to provide more care for the young (Székely et al. 1996; Arnqvist and Rowe 2005; Lessells 2012).Sexual conflict over care seems to be the rule rather than the exception. The conflict may be resolved by one or both parents failing to adopt the optimal parenting for their mate and nonetheless remaining in conflict, or by both parents adopting the optima that suit their mate (i.e., exhibit the maximum provisioning possible). Examples of the latter conflict resolution (whereby the conflict is completely wiped out) are exceedingly rare and seem to be limited to three scenarios. First, conflict over care is not expected in obligate monogamy by both males and females so that the lifetime reproductive successes of both parents are identical. This may occur in semelparous organisms (i.e., both the male and the female put their resources into a single breeding event) or in iteroparous organisms with lifelong exclusive monogamy. Second, males and females might be genetically identical, so even though one or both sexes are polygamous, polygamy would benefit the same genome whether it is in the male or the female phenotype. Third, parental care is cost-free and thus parents provide maximum level of care (P Smiseth, pers. comm.). However, few, if any, organisms fit these restrictive assumptions, and thus conflict-free parenting seems exceedingly rare in nature: (1) some level of polygamy (by males, females, or both sexes) appears to be widespread; (2) the reproduction by genetically identical individuals (clones) as separate sexes (males and females) seems unlikely although not impossible if sex is determined environmentally; and (3) care provisioning, as far as we are aware, does have costs that discourage parents from providing their absolute maxima for a given batch of offspring.Parents may have conflicting interest over caring or deserting the young, the amount of care provided for each young, the number of simultaneous mates, the size and sex ratio of their brood, and the synchronization of birth for a clutch or litter of young (Westneat and Sargent 1996; Houston et al. 2005; Klug et al. 2012; Lessells 2012). Conflict between parents over care is usually labeled as a postzygotic conflict although resources had been already allocated into the gametes before fertilization as part of parental provisioning (Clutton-Brock 1991); other examples of postzygotic conflicts include infanticide and genomic imprinting (Chapman et al. 2003; Tregenza et al. 2006; Lessells 2012; see Palombit 2014).Studies of conflict over care are fascinating for at least four major reasons. First, parental care is diverse. There is great variation both between and within species in the types of care provided, duration of care, and the sex of the care-providing parent (Wilson 1975; Clutton-Brock 1991; McGraw et al. 2010; Royle et al. 2012), and sexual conflict is thought to be one of the main drivers of this diversity. Second, parental care is one of the core themes in breeding systems and sex role evolution, and it is increasingly evident that parental care can only be understood by dissecting the entangled relationships between ecological and life-history settings, and the variety of mating and parenting behavior (Székely et al. 2000; Webb et al. 2002; Wedell et al. 2006; Jennions and Kokko 2010; Klug et al. 2012). Third, parental care was (and is) one of the test beds of evolutionary game theory. Numerous models have been developed to understand how parents interact with each other and with their offspring (Trivers 1972; Maynard Smith 1977; Houston and Davies 1985; Balshine-Earn and Earn 1998; McNamara et al. 1999, 2000; Webb et al. 1999; Johnstone and Hinde 2006; Johnstone et al. 2014). Parental care research is one field in which empiricists are extensively testing the predictions of evolutionary game theoretic models in both the laboratory and wild populations (Székely et al. 1996; Balshine-Earn and Earn 1998; Harrison et al. 2009; Klug et al. 2012; Lessells 2012; van Dijk et al. 2012), although the congruence between theoretical and empirical work is not as tight as often assumed (Houston et al. 2013). Finally, parental care—wherever it occurs—is often a major component of fitness, because whether the offspring are cared for or abandoned has a large impact on their survival, maturation, and reproduction (Smiseth et al. 2012). Therefore, parental care (or the lack of it) may have an impact on population productivity and population growth and influences the resilience of populations to various threats (Bessa-Gomes et al. 2004; Veran and Beissinger 2009; Blumstein 2010). Thus, understanding the behavioral interactions between parents and the fitness implications of these interactions is highly relevant for population dynamics and biodiversity conservation (Alonzo and Sheldon 2010; Blumstein 2010).Sexual conflict over care has been reviewed recently (van Dijk and Székely 2008; Lessells 2012; Houston et al. 2013). Here, I focus on three issues that have not been extensively covered by previous reviews: (1) why sexual conflict over care occurs in some environments, whereas in others parental cooperation appears to dominate; (2) how can one detect sexual conflict over care; and (3) what are the implications of sexual conflict over care for macroevolution. I view causes and implications of parental care primarily from empirical perspectives; there are excellent reviews on the rich theoretical literature (Lessells 2006, 2012; Klug et al. 2012; Houston et al. 2013). My intention is not to be comprehensive; instead, I use selected examples to illustrate salient features of conflict over care. I focus on ecological and evolutionary aspects; for a discussion of the genetic and neuroendocrine bases of parental care, see Adkins-Regan (2005), McGraw et al. (2010), and Champagne and Curley (2012). I prefer to use the term “parental care” instead of “parental investment,” because the latter, as admitted by Trivers (1985), is extremely difficult to estimate empirically and thus may have a limited use in empirical studies (Mock and Parker 1997; McGraw et al. 2010). The term “parental investment” can be deceptive, if used without directly demonstrating the full costs of care. The term “parental care” is less restrictive, because it refers to any form of parental behavior that appears to increase the fitness of an offspring and is likely to have evolved for this function (Clutton-Brock 1991; Smiseth et al. 2012). In this review, I focus on families in the narrow sense (i.e., two parents and their offspring), although in numerous organisms the families are more extensive and may include several generations of offspring living together and/or unrelated individuals that assist the parents rearing the young.  相似文献   

5.
The discovery that extrapair copulation (EPC) and extrapair paternity (EPP) are common in birds led to a paradigm shift in our understanding of the evolution of mating systems. The prevalence of extrapair matings in pair-bonded species sets the stage for sexual conflict, and a recent focus has been to consider how this conflict can shape variation in extrapair mating rates. Here, we invert the causal arrow and consider the consequences of extrapair matings for sexual conflict. Extrapair matings shift sexual conflict from a simple two-player (male vs. female) game to a game with three or more players, the nature of which we illustrate with simple diagrams that highlight the net costs and benefits of extrapair matings to each player. This approach helps identify the sorts of traits that might be under selection because of sexual conflict. Whether EPP is driven primarily by the extrapair male or the within-pair female profoundly influences which players are in conflict, but the overall pattern of conflict varies little among different mating systems. Different aspects of conflict are manifest at different stages of the breeding cycle and can be profitably considered as distinct episodes of selection caused by conflict. This perspective is illuminating both because conflict between specific players can change across episodes and because the traits that evolve to mediate conflict likely differ between episodes. Although EPP clearly leads to sexual conflict, we suggest that the link between sexual conflict and multiple paternity might be usefully understood by examining how deviations from lifetime sexual monogamy influence sexual conflict.The development of genetic tools for determining parentage fundamentally altered our understanding of animal mating systems (Jeffreys et al. 1985; Avise 1996; Reynolds 1996) and provided invaluable insights into the consequences and causes of females mating with more than one male. Particularly for the study of birds, these methods revealed that social pair bonds often fail to match the actual patterns of copulations that produced offspring (Gowaty and Karlin 1984; Birkhead and Møller 1992; Reynolds 1996; Petrie and Kempenaers 1998), revolutionizing the study of avian mating systems. Extensive research and two recent reviews point out the progress we have made in this field and show how little we still understand extrapair behavior (Griffith et al. 2002; Westneat and Stewart 2003).In the 1960s, David Lack compiled what was then known about mating systems in birds and concluded that >90% of species were monogamous, a pattern that provided an early framework for the development of mating system theory (Lack 1968; Orians 1969; Emlen and Oring 1977). When it was later discovered that sexual mating patterns did not match the social mating systems that Lack described, the field was turned on its head (Westneat et al. 1990; Avise 1996; Reynolds 1996; Zeh and Zeh 2001). In extreme cases, the mismatch between the social and sexual mating systems is nothing short of spectacular; in fairywrens (Malurus species) that are socially monogamous, cooperatively breeding species with helpers, the extrapair paternity (EPP) rate can exceed 75% of all offspring and 95% of all broods (Mulder et al. 1994). In socially monogamous birds, in general, the rate of EPP is typically on the order of 10% of offspring and 20% of broods (Griffith et al. 2002), but variation among species, and even populations within species, is extensive (Arnold and Owens 2002; Griffith et al. 2002). The occurrence of EPP has profound consequences for the evolution of social behavior, both because it alters the scope for the action of sexual selection (Webster et al. 1995; Sheldon and Ellegren 1999) and because it results in males often providing parental care to offspring they have not sired (Davies et al. 1992; Westneat and Sherman 1993).Even in taxa with mating systems other than social monogamy, or in which there is no obvious pair bond, the ability to determine parentage genetically was revolutionary, allowing precise estimates of male reproductive success when females mate multiply. That focus on multiple mating also catalyzed an interest in sexual selection from the female’s perspective, whereas previous attention had been strongly biased toward males and male traits. More specifically, it raised the questions as to why females would pursue and benefit from matings outside the social pair bond (Westneat et al. 1990; Petrie and Kempenaers 1998), and why a female would benefit from mating with more than one male for a given clutch or litter. This new focus on females brought attention to the issue of polyandry more generally (Jennions and Petrie 2000; Simmons 2005; Parker and Birkhead 2013; Pizzari and Wedell 2013).Recently, the assumption that females control mating patterns, and thus that polyandry and EPP can be universally understood from the perspective of fitness benefits to females, has been questioned (Westneat and Stewart 2003). Focusing specifically on EPP, Westneat and Stewart (2003) suggested that, in some taxa, EPP could be driven entirely by benefits to the extrapair-seeking male. They also suggested that many aspects of EPP can be profitably explored from the perspective of sexual conflict, as had Petrie and Kempenaers (1998) before them. Previous interest in the relation between EPP and sexual conflict in birds was focused particularly on trying to explain the incidence and frequency of EPP within and among species. Westneat and Stewart (2003) recognized that that link was indirect. Instead, they suggested that sexual conflict theory might help us to identify traits that could arise from conflict and that those traits might inform the search for a general explanation of the huge variation in EPP rates both among and within bird species.Sexual conflict, the conflicting fitness interests of males and females during mating (Parker 1979; Rice 1998; Arnqvist and Rowe 2005), can lead to antagonistic coevolution between the traits expressed in males and those expressed in females, traits that in some way influence mating outcomes. Traits in males and females are ultimately the drivers of conflict, and, reciprocally, conflict fuels further trait evolution. Sexual conflict theory is useful because it can potentially explain the evolution and maintenance of traits that are otherwise difficult to understand (Arnqvist and Rowe 2005). Thus, studies often examine the factors and traits that underlie different aspects of sexual conflict, as well as the types of morphological and behavioral traits that result from selection caused by the sexual conflict itself.In this article, we build on the foundation provided by Westneat and Stewart (2003). They proposed that sexual conflict can help to explain variation in the occurrence of EPP among species and populations (Westneat and Stewart 2003). Here, we invert the focus and seek to understand the consequences that EPP can have for sexual conflict and the relation between EPP and other drivers of sexual conflict. Thus, we examine the players involved in the sexual conflict generated by EPP and the costs and benefits that underpin the conflicts among the different players. We point out that different conflicts are involved in the different stages of a single bout of reproduction, and we suggest that these represent sequential periods of conflict, each of which is a different episode of selection generated from that conflict. We then place these patterns of conflict into a broader context by contrasting how different patterns of fidelity and infidelity (including EPP) during a lifetime of mating can influence sexual conflict. Our review focuses on birds as examples, both because they have been extensively studied with respect to EPP and because they have been the subjects of most of our own research. Our goal, however, is to provide a framework for understanding trait evolution under the influence of sexual conflict caused by females mating multiply in any animal species.  相似文献   

6.
At the end of the last century, sexual conflict was identified as a powerful engine of speciation, potentially even more important than ecological selection. Earlier work that followed—experimental, comparative, and mathematical—provided strong initial support for this assertion. However, as the field matures, both the power of sexual conflict and constraints on the evolution of reproductive isolation as driven by sexual conflict are becoming better understood. From theoretical studies, we now know that speciation is only one of several possible evolutionary outcomes of sexual conflict. In line with these predictions, both experimental evolution studies and comparative analyses of fertilization proteins and of species richness show that sexual conflict leads to, or is associated with, reproductive isolation and speciation in some cases but not in others. Increased genetic variation (especially in females) without reproductive isolation is an underappreciated consequence of sexually antagonistic selection.By the end of 1990s, studies of sexual conflict and sexually antagonistic coevolution moved to the forefront of experimental and theoretical research in evolutionary biology (Rice and Holland 1997; Holland and Rice 1998; Rice 1998). Although the potential evolutionary importance of sexual conflict was anticipated and articulated from a theoretical point of view by Geoff Parker 20 years earlier (Parker 1979), the explosive interest in this topic was a result of groundbreaking experimental work with Drosophila melanogaster by Bill Rice (1993, 1996), which directly showed high potential for sexually antagonistic coevolution.Sexual conflict is a special case of intragenomic conflict (Rice and Holland 1997; Rice 1998; Crespi and Nosil 2013). Sexual conflict occurs if the interests of the sexes with regard to certain aspects of reproduction differ (Parker 1979; Arnqvist and Rowe 2005). Ultimately, sexual conflict arises because of the differences in the roles played by the sexes in the process of reproduction, which in turn lead to the differences between the sexes in the costs and benefits of mating and reproduction (Bateman 1948; Trivers 1972; Parker 1979). Sexual conflict can occur over mating rate (Rice and Holland 1997; Holland and Rice 1998; Rice 1998), offspring size (Haig 2000), parental care (Smith and Härdling 2000; Barta et al. 2002), the use of sperm (Ball and Parker 2003), epigenetic control of development (Rice et al. 2012), etc.Sexual conflict can occur through two genetic routes (Chapman and Partridge 1996; Parker and Partridge 1998). Within-locus conflict occurs when the locus controls a trait expressed in both sexes and the optimum trait values differ between the sexes. As a result, optimizing the trait value in one sex will lead to a fitness reduction in the other sex. Within-locus conflict can be resolved via a number of mechanisms, including the evolution of sex linkage, sex-specific expression of genes, gene duplication, and condition dependence (Bonduriansky and Chenoweth 2009; van Doorn 2009). Between-locus conflict occurs when there are two different (sets of) traits each expressed in one sex only but affecting the fitness of both sexes in opposite directions. In this case, adaptive changes in a trait of one sex cause deleterious fitness consequences for the other sex, which can be negated by the evolution in a trait of the other sex, which in turn will cause deleterious fitness consequences for the first sex. For example, males can evolve adaptations increasing their mating rate, which would be detrimental for females who would then evolve some counteradaptations to decrease the mating rate (Rice 1996).One particularly exciting idea that has emerged from studies of sexual conflict and sexually antagonistic coevolution is that sexual conflict can be an important “engine of speciation” (Rice 1996, 1998; Howard et al. 1998; Parker and Partridge 1998). In standard modern perspective, speciation is a result of genetic divergence between populations accompanied by the evolution of reproductive isolation (Howard and Berlocher 1998; Schluter 2000; Coyne and Orr 2004; Dieckmann et al. 2004; Gavrilets 2004). Genetic divergence can be driven by a variety of evolutionary factors, including mutation, random genetic drift, and natural, sexual, and social selection. Reproductive isolation can follow from a variety of mechanisms, resulting in incompatibilities (including genetic, developmental, morphological, ecological, and behavioral) of males and females from diverging populations or in a reduced fitness of their offspring. As was argued by Rice (1998), Parker and Partridge (1998), and others (e.g., Howard et al. 1998), sexual conflict can contribute to these processes in a number of ways.Below, I briefly summarize several, mostly verbal, theories of biological diversification caused by sexual conflict and then move to discussing some of the more concrete mathematical models and empirical data and patterns.  相似文献   

7.
One of the earliest recognized forms of sexual conflict was infanticide by males, which imposes serious costs on female reproductive success. Here I review two bodies of evidence addressing coevolved strategies of males and females. The original sexual selection hypothesis arguing that infanticide improves male mating success by accelerating the return of females to fertilizable condition has been generally supported in some taxa—notably, some primates, carnivores, rodents, and cetaceans—but not in other taxa. One result of recent research has been to implicate other selective benefits of infanticide by males in various taxa from insects to birds to mammals, such as acquisition of breeding status or improvement of the female breeding condition. In some cases, however, the adaptive significance of male infanticide remains obscure. The second body of data I review is arguably the most important result of recent research: clarifying the possible female counterstrategies to infanticide. These potential counterstrategies span diverse biological systems, ranging from sexual behavior (e.g., polyandrous mating), to physiology (e.g., the Bruce effect), to individual behavior (e.g., maternal aggression), to social strategies (e.g., association with coalitionary defenders of either sex). Although much remains to be studied, these current data provide compelling evidence of sexually antagonistic coevolution surrounding the phenomenon of infanticide.At its most elemental level, infanticide is the killing of a newborn individual by a conspecific. With the growing appreciation of its biological significance, however, infanticide came to be defined more broadly as any “behavior that makes a direct and significant contribution to the immediate death of an embryo or newly hatched or born member of the performer’s own species” (Mock 1984, p. 4) or “any form of lethal curtailment of parental investment in offspring brought about by conspecifics” (Hrdy and Hausfater 1984, p. xv). These definitions highlight the heterogeneous and variable nature of the phenomenon, which can be perpetrated by either sex, by parents or other kin, by individuals unrelated to the victim, in a wide variety of social and mating systems, under a range of seasonal or aseasonal breeding regimes, and across diverse taxa straddling vertebrates and invertebrates.One adaptive form of infanticide—the killing of infants by unrelated males—is arguably the archetype of sexual conflict. In 450 BCE, Herodotus not only documented the behavior among Egyptian cats, but explained it as a male “trick” to obtain sexual access to females otherwise preoccupied with maternal duties (Delibes et al. 2012). Among the myriad ideas inaugurating sociobiology in the 1970s, the hypothesis that infanticide is a male strategy that improves reproductive success at the expense of female fitness (Hrdy 1974) constituted one of the first demonstrations of the “battle of the sexes” theory developed by Williams (1966) and Trivers (1972). Partly because of the controversy surrounding the appearance of this hypothesis (Rees 2009), however, subsequent research focused more on male strategy than on the other party in this sexual dialectic, the female. Thus, field and laboratory research has helped to establish its many forms and conditional occurrence, describe its distribution across taxa, and clarify its adaptive significance, but it is only relatively recently that female counterstrategies have become the subjects of rigorous study, even though their potential importance was grasped early on (Hrdy 1979).In this article, I review selected aspects of this body of data and analysis. My focus is on nonparental male infanticide targeting dependent young—in mammals, nursing individuals—as opposed to older, weaned offspring, the killing of which is variably rendered “juvenilicide,” “pedicide,” or “filicide” (e.g., Agoramoorthy and Mohnot 1988; Palombit 2014, in press).  相似文献   

8.
Strict maternal transmission creates an “asymmetric sieve” favoring the spread of mutations in organelle genomes that increase female fitness, but diminish male fitness. This phenomenon, called “Mother''s Curse,” can be viewed as an asymmetrical case of intralocus sexual conflict. The evolutionary logic of Mother''s Curse applies to each member of the offspring microbiome, the community of maternally provisioned microbes, believed to number in the hundreds, if not thousands, of species for host vertebrates, including humans. Taken together, these observations pose a compelling evolutionary paradox: How has maternal transmission of an offspring microbiome become a near universal characteristic of the animal kingdom when the genome of each member of that community poses a potential evolutionary threat to the fitness of host males? I review features that limit or reverse Mother''s Curse and contribute to resolving this paradox. I suggest that the evolution of vertical symbiont transmission requires conditions that mitigate the evolutionary threat to host males.The genomes of mitochondria, chloroplasts, and many symbiotic microbes are transmitted maternally by host females to their offspring. Maternal transmission can be transovariole (intracellular, within the egg) or contagious, during gestation, birth, or feeding (Sonneborn 1950; Smith and Dunn 1991; Gillham 1994; O’Neill et al. 1997). Vertically transmitted (VT) symbiont lineages tend to be genetically homogeneous within hosts (Birky et al. 1983, 1989; Funk et al. 2000). Maternal uniparental transmission creates an “asymmetric sieve” wherein mutations advantageous for females, but harmful for males, can spread through a population (Cosmides and Tooby 1981; Frank and Hurst 1996; Zeh and Zeh 2005; Burt and Trivers 2006). Such mutations spread because deleterious male-specific fitness effects do not affect the response to natural selection of the maternally transmitted entities. This adaptive process favoring the transmitting sex is called Mother''s Curse (MC) (Gemmell et al. 2004) and it has been referred to as an irreconcilable instance of intralocus conflict: “… exclusively maternal transmission of cytoplasmic genes (e.g., in mitochondria) can result in suboptimal mitochondrial function in males … a form of [intralocus sexual conflict] that apparently cannot be resolved, because selection on mitochondria in males cannot produce a response” (Bonduriansky and Chenoweth 2009, p. 285).Mitochondria are ubiquitous in animals and despite the indisputable evolutionary logic of MC (Frank and Hurst 1996) there are no reported cases of sperm-killing or son-killing mitochondria (Burt and Trivers 2006). Moreover, many species of animals possess an offspring microbiome, a community of microbes transmitted uniparentally from mother to offspring at some point in development, whether prefertilization, postfertilization, or postnatal (Funkhouser and Bordenstein 2013). In some vertebrates, including humans, this community is believed to number in the hundreds of species (Funkhouser and Bordenstein 2013). Prolonged periods of maternal care, as in mammals and birds, as well as kin-structured sociality, afford many opportunities for maternal provisioning of microbes to developing offspring. The social insects, in particular, show obligate mutualisms with a microbiome that confers important nutritional benefits for its host (Baumann 2005; Engel and Moran 2013), the termites being a classic example (Ikeda-Ohtsubo and Brune 2009).Together, the evolutionary logic of MC and the widespread existence of maternally transmitted hereditary symbioses pose a paradox for evolutionary biology. The maternally provisioned microbiome (MC) consists of tens to hundreds of genomes affording ample opportunity, along with mitochondrial and organelle genomes, for the occurrence of mutations that benefit females while harming host males. Assembling a VT community as a host nutritional or defensive adaptation requires evading MC not once, but from a continuous siege over evolutionary time. This is the Mother''s Curse–microbiome (MC–MB) paradox. It conceptually affiliated with the “paradox of mutualism,” the persistence of interspecific mutualisms despite the advantages of cheating by one or the other member of the mutualism (Heath and Stinchcombe 2014). Symbiont “cheating” on only half the members of a host species, the males, might offer marginal benefits relative to wholesale cheating on both host sexes. Nevertheless, the MC–MB paradox deserves research attention.In this review, I discuss inbreeding, kin selection, compensatory evolution, and defensive advantages against more virulent pathogens (or predators and herbivores) as means for resolving the MC–MB paradox. First, I review the simple population genetics of MC. I discuss how host inbreeding and kin selection (Unckless and Herren 2009; Wade and Brandvain 2009), alone or in concert, allow for a response to selection on male fertility and viability fitness effects of maternally transmitted genomes. As a result, inbreeding and kin selection can limit or prevent the spread of mutations in a hereditary symbiosis (Cowles 1915) that are harmful to males. I will show that, for both inbreeding and kin selection, there exist conditions that “favor the spread of maternally transmitted mutations harmful to females”; a situation that is the reverse of MC. However, many outbreeding, asocial species harbor maternally provisioned microbiomes and these solutions cannot be applied to them.I also consider the evolution of compensatory nuclear mutations that mitigate or eliminate the harm to males of organelles or symbionts, spreading via MC dynamics. However, I find that the relative rate of compensatory evolution is only 1/4 the rate of evolution of male-harming symbionts. Thus, an evolutionary rescue of host males via compensatory host nuclear mutations requires that there be fourfold or more opportunities for compensation offered by a larger host nuclear genome. The larger the number of species in a host microbiome, the more difficult it is to entertain host nuclear compensatory mutations as a resolution of the MC–MB paradox.Next, I consider the situation in which a deleterious, VT symbiont harms its host but prevents host infection by a more severely deleterious contagiously transmitted pathogen (Lively et al. 2005; see also Clay 1988). This is a case in which absolute harm to a host by a maternally provisioned symbiont becomes a “relative” fitness advantage. This is a scenario that may be common in hosts with speciose microbial communities, especially if each microbial species increases host resistance or outright immunity to infectious, virulent pathogens.Finally, I discuss models of symbiont domestication and capture via the evolution of vertical transmission from an ancestral state of horizontal transmission (Drown et al. 2013). I show that the evolution of vertical transmission requires conditions that tend to restrict the capacity for male harming by symbionts. Each of these scenarios significantly expands the range of evolutionary possibilities permitted for the coevolution of host–symbiont assemblages, especially those microbial communities that are maternally, uniparentally transmitted across host generations. Unfortunately, current data do not permit discriminating among these various evolutionary responses to MC, so none can be definitively considered a resolution of the MC–MB paradox.  相似文献   

9.
The potential for sexual conflict to influence the evolution of life span and aging has been recognized for more than a decade, and recent work also suggests that variation in life span and aging can influence sexually antagonistic coevolution. However, empirical exploration of these ideas is only beginning. Here, we provide an overview of the ideas and evidence linking inter- and intralocus sexual conflicts with life span and aging. We aim to clarify the conceptual basis of this research program, examine the current state of knowledge, and suggest key questions for further investigation.Sexual conflict arises because the sexes maximize their fitness via different, and often mutually incompatible, strategies, and its signature has been detected across a wide range of morphological, physiological, behavioral, and life-history traits in many species. A number of investigators have suggested that sexual conflict could play an important role in the evolution of two particularly interesting life-history traits: life span and aging (Svensson and Sheldon 1998; Promislow 2003; Bonduriansky et al. 2008; Maklakov and Lummaa 2013). Sexual conflict can affect life span and aging rate at both proximate (within-generation) and ultimate (evolutionary) scales. Sexually antagonistic behavioral or physiological interactions that increase mortality rate in one or both sexes (interlocus sexual conflict) could drive the evolution of faster life histories. Moreover, sex-specific optimization of reproductive strategies may often result in sex differences in life span and aging rates, and sexually antagonistic selection on shared genetic architecture can displace one or both sexes from their sex-specific optima for these traits (intralocus sexual conflict). Conversely, a change in life histories because of environmental fluctuations could affect the degree of sexual conflict in a population and influence sexual coevolution. Although evidence for sexual conflict is rapidly accumulating, our understanding of its relationship to life span and aging remains rudimentary. In this review, we provide a critical review of recent literature and highlight areas that require further investigation.  相似文献   

10.
11.
Sexual reproduction is a nearly universal feature of eukaryotic organisms. Given its ubiquity and shared core features, sex is thought to have arisen once in the last common ancestor to all eukaryotes. Using the perspectives of molecular genetics and cell biology, we consider documented and hypothetical scenarios for the instantiation and evolution of meiosis, fertilization, sex determination, uniparental inheritance of organelle genomes, and speciation.The transition from prokaryote to protoeukaryote to the last eukaryotic common ancestor (LECA) entailed conservation, modification, and reconfiguration of preexisting genetic circuits via mutation, horizontal gene transfer (HGT), endosymbiosis, and selection, as detailed in previous articles of this collection. During the course of this evolutionary trajectory, the LECA became sexual, reassorting and recombining chromosomes in a process that entails regulated fusions of haploid gametes and diploid → haploid reductions via meiosis. That the LECA was sexual is no longer a matter of speculation/debate as evidence of sex, and of genes exclusively involved in meiosis, has been found in all of the major eukaryotic radiations (Brawley and Johnson 1992; Ramesh et al. 2005; Kobiyama et al. 2007; Malik et al. 2008; Phadke and Zufall 2009; Fritz-Laylin et al. 2010; Lahr et al. 2011; Peacock et al. 2011; Vanstechelman et al. 2013).We propose that the transition to a sexual LECA entailed four innovations: (1) alternation of ploidy via cell–cell fusion and meiosis; (2) mating-type regulation of cell–cell fusion via differentiation of complementary haploid gametes (isogametic and then anisogametic), a prelude to species-isolation mechanisms; (3) mating-type-regulated coupling of the diploid/meiotic state to the formation of adaptive diploid resting spores; and (4) mating-type-regulated transmission of organelle genomes. Our working assumption is that the protoeukaryote → LECA era featured numerous sexual experiments, most of which failed but some of which were incorporated, integrated, and modified. Therefore, this list is not intended to suggest a sequence of events; rather, the four innovations most likely coevolved in a parallel and disjointed fashion.Once these core sexual-cycle themes were in place, the evolution of eukaryotic sex has featured countless prezygotic and postzygotic variations, the outcome being the segregation of panmictic populations into distinct species with distinctive adaptations.For additional reviews on the evolution of sex, the interested reader is referred to Goodenough (1985), Dacks and Roger (1999), Schurko et al. (2009), Wilkins and Holliday (2009), Gross and Bhattacharya (2010), Lee et al. (2010), Perrin (2012), and Calo et al. (2013).  相似文献   

12.
Sex chromosome drivers are selfish elements that subvert Mendel''s first law of segregation and therefore are overrepresented among the products of meiosis. The sex-biased progeny produced then fuels an extended genetic conflict between the driver and the rest of the genome. Many examples of sex chromosome drive are known, but the occurrence of this phenomenon is probably largely underestimated because of the difficulty to detect it. Remarkably, nearly all sex chromosome drivers are found in two clades, Rodentia and Diptera. Although very little is known about the molecular and cellular mechanisms of drive, epigenetic processes such as chromatin regulation could be involved in many instances. Yet, its evolutionary consequences are far-reaching, from the evolution of mating systems and sex determination to the emergence of new species.Meiotic drivers are selfish genetic elements that subvert Mendelian segregation during gametogenesis for their own benefit. They are passed on to most, if not all, of the functional gametes produced by heterozygotes. Therefore, drivers can increase in frequency and invade populations even if they reduce individual fitness, which is usually the case. The drivers are typically expressed in one sex, of which fertility is impaired. This also has deleterious consequences for the opposite sex and is expected to promote adaptations to counteract drive through sexual selection and sexual conflict. Furthermore, sex-linked meiotic drivers expressed in the heterogametic sex typically lead to biased offspring sex ratios, which represents an additional cost and can exacerbate the sexual conflict.Morgan et al. (1925) were the first to observe sex-biased offspring, which turned out to be caused by a sex-linked meiotic driver. Unfortunately, the Drosophila affinis strain was lost before any conclusive study could be performed. Later, Gershenson (1928) found that the offspring of some Drosophila obscura males were female biased. He showed that these males carried an X-linked genetic element (hereafter “sex ratio” or SR) responsible for the sex-ratio distortion, and showed that the SR did not affect the viability of the male offspring but acted as a gametic killer of Y-bearing sperm. Gamete killing or disabling is observed in males; in females, meiotic drive is usually a result of centromere competition for access to the egg.In its original definition (from Gershenson''s work and others), the term meiotic drive applies to the consequences of the mechanics of the meiotic divisions (Sandler and Novitski 1957). Here, under the term “sex chromosome drive,” we will include more broadly any case of preferential transmission that results directly or indirectly from an event that took place before, during, or after meiosis. Sex chromosome drive is different from sex-ratio adjustment, in which the favored chromosome is not the actor of its drive (West and Sheldon 2002). As emphasized by Sandler and Novitski (1957), it is also different from selection in the haploid phase as a consequence of the gamete''s intrinsic fitness.Only a few dozen cases of sex chromosome drive have been described, mainly in Drosophila and other Diptera (reviewed in Jaenike 2001; Burt and Trivers 2006). One possible explanation for the rarity of reported cases is that a biased sex ratio is not evolutionarily stable. Fisher (1930) predicted that natural selection will favor a 1:1 sex ratio, and that any deviation will be counterselected. This means that variants with counteracting effects can be selected at unlinked loci. Consistent with this prediction, autosomal drive suppressors and resistant Y chromosomes have been found in several Drosophila species (De Carvalho and Klaczko, 1994; Carvalho et al. 1997; Cazemajor et al. 1997). Three different cryptic X-linked SR systems have been described in the same species (Drosophila simulans: Paris, Winters, and Durham systems), showing that they can evolve repeatedly and be completely neutralized in the wild, remaining undetectable unless appropriate genetic crosses are performed (Merçot et al. 1995; Tao et al. 2001, 2007a). D. simulans also teaches us that the time window leading up to neutralization can be very narrow (Bastide et al. 2013). However, variants that enhance distortion can be selected if they are linked to the distorter. Inversions should prevent recombination with nondriving X chromosomes and keep together the loci that interact to induce drive, as found in D. pseudoobscura (Wu and Beckenbach 1983). These examples illustrate the extended genetic conflict that can result from the evolution of sex chromosome drive.Among the known cases of sex chromosome drive, X chromosome drive is much more common than Y chromosome drive. This may be because Y-linked drivers are always expressed, at each generation, unlike X-linked drivers. All else being equal, Y chromosome drive spreads faster and leads to a higher risk of extinction owing to the lack of females (Hamilton 1967). Furthermore, when the sex chromosomes are well differentiated, the Y chromosome usually has many fewer genes, which may provide fewer opportunities for a driver to evolve. On the other hand, heteromorphic sex chromosomes are expected to facilitate the evolution of meiotic drive. Indeed, the more divergent the sex chromosomes are, the less they recombine, reducing the risk of producing a suicide chromosome that carries both the driver and a sensitive allele at the target locus (Charlesworth and Hartl 1978; Frank 1991; Hurst and Pomiankowski 1991).  相似文献   

13.
Intralocus sexual conflict and intragenomic conflict both affect sex chromosome evolution and can in extreme cases even cause the complete turnover of sex chromosomes. Additionally, established sex chromosomes often become the focus of heightened conflict. This creates a tangled relationship between sex chromosomes and conflict with respect to cause and effect. To further complicate matters, sexual and intragenomic conflict may exacerbate one another and thereby further fuel sex chromosome change. Different magnitudes and foci of conflict offer potential explanations for lineage-specific variation in sex chromosome evolution and answer long-standing questions as to why some sex chromosomes are remarkably stable, whereas others show rapid rates of evolutionary change.Compared to the autosomes, the unique inheritance pattern of the sex chromosomes is often thought to intensify evolutionary conflict (Rice 1984; Frank 1991; Jaenike 2001). Sex chromosomes are therefore hot spots for two specific types of conflict: intralocus conflict, in which an allele confers different fitness effects depending on the sex in which it is found, and intragenomic conflict, in which selfish genetic elements (SGEs) promote their own transmission at the expense of unlinked regions of the genome. These conflicts act in distinct but complementary ways. Not only do they shape sex chromosome and genome evolution, but in some cases, they also have the power to cause complete turnover of sex chromosomes.Unlike the autosomes, because the sex chromosomes are unevenly transmitted between males and females and are also unevenly distributed between the sexes (Fig. 1), the relative effect of male- and female-specific selection acting on them is unbalanced. The inherent differences in sex-specific selection on the sex chromosomes themselves, and between the sex chromosomes and the autosomes, form the basis of a large and often compelling body of evolutionary theory that predicts the ways that intralocus sexual conflict will arise, play out, and in some cases potentially be resolved. This theory predicts that, under some conditions, the sex chromosomes are hot spots of intralocus sexual conflict (Rice 1984; Albert and Otto 2005; Connallon and Clark 2010), and in some cases alleles that harm one sex more than they benefit the other can still reach high frequencies if they are sex-linked (Rice 1984; Dean et al. 2012). All this theory predicts that although the sex chromosomes generally represent a small proportion of the genome, they should play a disproportionately large role in sexual conflict, sexual dimorphism, and sexual selection. There is substantial empirical evidence supporting at least some of this theory (Dean and Mank 2014).Open in a separate windowFigure 1.Transmission of the sex chromosomes. Females are shown in red, males in blue. In male heterogamety (A), the Y chromosome is passed through the patriline and limited to males. The maternal X chromosome is passed from mother to both sons and daughters, but the paternal X can only be transmitted to daughters. Additionally, the X is present two-thirds of the time in females. In female heterogamety (B), the W chromosome is limited to females and passed solely from mother to daughter. The paternal Z chromosome can be passed from father to both daughters and sons; however, the maternal Z chromosome is only passed to sons. Converse to the X chromosome, the Z chromosome is resident in males two-thirds of the time.

Table 1.

Studies showing a disproportionate role of the sex chromosomes in sexual dimorphism, fitness, or fertility
Male heterogametyFemale heterogamety
X chromosomeY chromosomeZ chromosomeW chromosome
Associations with sexually dimorphic phenotypic traitsSize dimorphism in red deer (Foerster et al. 2007)
Sexually antagonistic fitness variation in Drosophila (Gibson et al. 2002; Innocenti and Morrow 2010)
Variation in stalk-eyed fly eye span (Wolfenbarger and Wilkinson 2001)
Male coloration in guppies (Winge 1927; Postma et al. 2011)
Male mating behavior in sticklebacks (Kitano et al. 2009; although see Natri et al. 2013)
Female mating preference in moths (Iyengar et al. 2002)
Female mate choice in flycatchers (Saether et al. 2007)
Male plumage traits in flycatchers (Saetre et al. 2003)
Female benefit coloration in cichlids (Roberts et al. 2009)
Associations with reproduction and fertilityMale reproductive genes in mice (Mueller et al. 2008)Male fertility genes in mammals (Lange et al. 2009)
Male fitness in Drosophila (Lemos et al. 2010; Sackton et al. 2011)
Genes related to male reproductive function in silk moth (Arunkumar et al. 2009)Genes related to female fecundity and fertility in chickens (Moghadam et al. 2012)
Open in a separate windowIn addition to their role in sexual conflict, the sex chromosomes also experience high levels of intragenomic conflict resulting from SGEs that promote their own transmission at the expense of the rest of the genome (Burt and Trivers 2006). Of particular importance are sex-linked segregation distorters, as these generate strong selection favoring genes that suppress their action. Theory predicts that intragenomic conflict should be particularly intense when involving the sex chromosomes (Hurst and Pomiankowski 1991). This is because sex chromosomes can generate antagonistic coevolution between sex-linked segregation distorters and their suppressors (Partridge and Hurst 1998).In addition to shaping the evolutionary properties of existing sex chromosomes, in some situations sexual and intragenomic conflict may also actually catalyze the formation of sex chromosomes (Fisher 1931; Charlesworth and Charlesworth 1980; Rice 1987; Werren and Beukeboom 1998). Conflict may also explain the rate of degradation of the sex-limited Y and W chromosomes (Bachtrog et al. 2011) and turnover of sex chromosomes (Hall 2004; van Doorn and Kirkpatrick 2007, 2010), suggesting that conflict plays a causal role in sex chromosome evolution.There is also growing evidence of a direct relationship between SGEs and sexual conflict involving the sex chromosomes. Many SGEs increase their transmission advantage by targeting sperm, which can reduce male fertility owing to reduced overall sperm production. Lower sperm production can in turn result in reduced siring success during sperm competition (Price and Wedell 2008) and potentially favor polyandry as a female strategy to bias paternity against SGE-carrying males (Wedell 2013). As a consequence, SGEs may also influence the potential for sexual conflict as they can favor increased female mating rates, which increases the potential for conflict between the sexes.Sexual and intragenomic conflict are therefore critical for sex chromosome evolution and, once sex chromosomes are established, can further shape their evolutionary and genomic properties. Disentangling cause and effect is difficult but crucial to understanding the role of sex chromosomes in sexual and intragenomic conflict and vice versa.  相似文献   

14.
The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing “active gel,” the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming.The eukaryotic cytoskeleton organizes space on the cellular scale and this organization influences almost every process in the cell. Organization depends on the mechanochemical properties of the cytoskeleton that dynamically maintain cell shape, position organelles, and macromolecules by trafficking, and drive locomotion via actin-rich cellular protrusions, ciliary beating, or ciliary gliding. The eukaryotic cytoskeleton is best described as an “active gel,” a cross-linked network of polymers (gel) in which many of the links are active motors that can move the polymers relative to each other (Karsenti et al. 2006). Because prokaryotes have only cytoskeletal polymers but lack motor proteins, this “active gel” property clearly sets the eukaryotic cytoskeleton apart from prokaryotic filament systems.Prokaryotes contain elaborate systems of several cytomotive filaments (Löwe and Amos 2009) that share many structural and dynamic features with eukaryotic actin filaments and microtubules (Löwe and Amos 1998; van den Ent et al. 2001). Prokaryotic cytoskeletal filaments may trace back to the first cells and may have originated as higher-order assemblies of enzymes (Noree et al. 2010; Barry and Gitai 2011). These cytomotive filaments are required for the segregation of low copy number plasmids, cell rigidity and cell-wall synthesis, cell division, and occasionally the organization of membranous organelles (Komeili et al. 2006; Thanbichler and Shapiro 2008; Löwe and Amos 2009). These functions are performed by dynamic filament-forming systems that harness the energy from nucleotide hydrolysis to generate forces either via bending or polymerization (Löwe and Amos 2009; Pilhofer and Jensen 2013). Although the identification of actin and tubulin homologs in prokaryotes is a major breakthrough, we are far from understanding the origin of the structural and dynamic complexity of the eukaryotic cytoskeleton.Advances in genome sequencing and comparative genomics now allow a detailed reconstruction of the cytoskeletal components present in the last common ancestor of eukaryotes. These studies all point to an ancestrally complex cytoskeleton, with several families of motors (Wickstead and Gull 2007; Wickstead et al. 2010) and filament-associated proteins and other regulators in place (Jékely 2003; Richards and Cavalier-Smith 2005; Rivero and Cvrcková 2007; Chalkia et al. 2008; Eme et al. 2009; Fritz-Laylin et al. 2010; Eckert et al. 2011; Hammesfahr and Kollmar 2012). Genomic reconstructions and comparative cell biology of single-celled eukaryotes (Raikov 1994; Cavalier-Smith 2013) allow us to infer the cellular features of the ancestral eukaryote. These analyses indicate that amoeboid motility (Fritz-Laylin et al. 2010; although, see Cavalier-Smith 2013), cilia (Cavalier-Smith 2002; Mitchell 2004; Jékely and Arendt 2006; Satir et al. 2008), centrioles (Carvalho-Santos et al. 2010), phagocytosis (Cavalier-Smith 2002; Jékely 2007; Yutin et al. 2009), a midbody during cell division (Eme et al. 2009), mitosis (Raikov 1994), and meiosis (Ramesh et al. 2005) were all ancestral eukaryotic cellular features. The availability of functional information from organisms other than animals and yeasts (e.g., Chlamydomonas, Tetrahymena, Trypanosoma) also allow more reliable inferences about the ancestral functions of cytoskeletal components (i.e., not only their ancestral presence or absence) and their regulation (Demonchy et al. 2009; Lechtreck et al. 2009; Suryavanshi et al. 2010).The ancestral complexity of the cytoskeleton in eukaryotes leaves a huge gap between prokaryotes and the earliest eukaryote we can reconstruct (provided that our rooting of the tree is correct) (Cavalier-Smith 2013). Nevertheless, we can attempt to infer the series of events that happened along the stem lineage, leading to the last common ancestor of eukaryotes. Meaningful answers will require the use of a combination of gene family history reconstructions (Wickstead and Gull 2007; Wickstead et al. 2010), transition analyses (Cavalier-Smith 2002), and computer simulations relevant to cell evolution (Jékely 2008).  相似文献   

15.
16.
17.
The diversity and patchy phylogenetic distribution of genetic sex-determining mechanisms observed in some taxa is thought to have arisen by the addition, modification, or replacement of regulators at the upstream end of the sex-determining pathway. Here, I review the various evolutionary forces acting on upstream regulators of sexual development that can cause transitions between sex-determining systems. These include sex-ratio selection and pleiotropic benefits, as well as indirect selection mechanisms involving sex-linked sexually antagonistic loci or recessive deleterious mutations. Most of the current theory concentrates on the population–genetic aspects of sex-determination transitions, using models that do not reflect the developmental mechanisms involved in sex determination. However, the increasing availability of molecular data creates opportunities for the development of mechanistic models that can clarify how selection and developmental architecture interact to direct the evolution of sex-determination genes.Biparental sexual reproduction is a common mode of reproduction in higher organisms. It is found in gonochorous animals (Bull 1983; Barnes et al. 2001), heterothallic fungi (Heitman et al. 2013), and dioecious flowering plants and algae (Ainsworth 2000; Umen 2011). Species belonging to this diverse group of organisms have distinct sexes, and their development typically passes through a critical stage at which the zygote commits irreversibly to either the male or the female sexual fate (Valenzuela 2008) (except in sequential hermaphrodites, which change sex during their life). This ontogenetic process, known as sex determination, triggers the differentiation of specialized male or female reproductive organs and organizes many sex-specific differences in gene expression, physiology, morphology, and behavior (sex differentiation) (Badyaev 2002; Ellegren and Parsch 2007).Despite the universal and simple dichotomous outcome of sex determination, sex-determining mechanisms are highly diverse across taxa. Some species use a specific environmental cue (e.g., temperature, photoperiod, or population density) as the primary sex-determining signal (environmental sex determination; ESD), whereas others rely on various types of genetic sex determination (GSD), including male or female heterogamety, haplodiploidy or multilocus sex-determining mechanisms (Bull 1983; Marshall Graves 2008; Janousek and Mrackova 2010). In addition, sex determination can depend on epigenetic factors such as imprinting or maternal gene products deposited in the egg (Verhulst et al. 2010a). The apparent variability of sex determination is even more puzzling given that other processes acting in mid-development are evolutionarily conserved, presumably as a result of strong ontogenetic constraints (Marín and Baker 1998; Kalinka and Tomancak 2012). Considerable effort has therefore been directed at explaining the function and evolutionary origin of diversity in the mechanisms determining sex.Here I review this literature, concentrating on transitions between genetic sex determination systems (for other recent reviews, see Beukeboom and Perrin 2014; van Doorn 2014). An important ultimate cause of such transitions is sexually antagonistic selection, which interacts with various other evolutionary forces shaping the sex-determining system. To disentangle these factors, I will first discuss the current paradigm for how sex-determination pathways have been modified, before reviewing the various mechanisms thought to be responsible for transitions in sex determination. The final part of this review will straddle the proximate/ultimate divide by exploring how adaptive mechanisms interact with the developmental architecture of sex determination.  相似文献   

18.
Sexual antagonism occurs when an allele is beneficial in one sex but costly in the other. Parental antagonism occurs when an allele is beneficial when inherited from one sex but costly when inherited from the other because of fitness interactions among kin. Sexual and parental antagonisms together define four genetic niches within the genome that favor different patterns of gene expression. Natural selection generates linkage disequilibrium among sexually and parentally antagonistic loci with male-beneficial alleles coupled to alleles that are beneficial when inherited from males and female-beneficial alleles coupled to alleles that are beneficial when inherited from females. Linkage disequilibrium also develops between sexually and parentally antagonistic loci and loci that influence sex determination. Genes evolve sex-specific expression to resolve sexual antagonism and evolve imprinted expression to resolve parental antagonism. Sex-specific chromosomes allow a gene to specialize in a single niche.Every diploid individual of a sexually reproducing population is derived from an egg fertilized by a sperm. Therefore, males considered collectively have the same reproductive value as females because half the genes of the next generation will be derived from males and half from females (Kokko et al. 2006). This fundamental symmetry is independent of sex ratio and mating system and applies also to hermaphrodites in male and female roles. Despite their equal stakes in posterity, males and females have evolved distinct morphologies and reproductive strategies as indirect consequences, often very indirect, of the ancient dichotomy between production of larger gametes by one sex and smaller gametes by the other (Queller 1997). Vive la différence!Not only are half the genes of the next generation present in females of the current generation, but half the genes of the current generation were inherited from females. Genes of maternal and paternal origin (hereafter matrigenes and patrigenes) are each transmitted to 50% of the next generation of gametes and resulting offspring. Therefore, matrigenic and patrigenic alleles benefit equally from an individual’s survival and reproduction. This symmetry is broken when organisms interact with kin to whom they are unequally related via their mother and father (Haig 1997; Úbeda and Gardner 2010). Adaptive responses to such asymmetries of relatedness can favor gene expression that is conditional on parental origin. “Imprinted” expression can cause matrigenes and patrigenes to have opposing effects on disputed phenotypes (Haig 2000a; Holman and Kokko 2014).Anatomical, physiological, and behavioral sex differences are thus associated with two selective asymmetries, one obvious (natural selection acts differently on genes in female and male bodies) and the other less obvious (natural selection acts differently on genes of maternal and paternal origin). These asymmetries define orthogonal partitions of the gene pool into pairs of “environments” in which there is niche-specific selection (Fig. 1A). Differential selection in male and female niches reinforces sexual dimorphism by processes of sex-specific adaptation. Differential selection in matrigenic and patrigenic niches can result in imprinted gene expression and molecular adaptations acting at cross-purposes within organisms.Open in a separate windowFigure 1.Sex-related partitions of the gene pool. The gene pool is independently subdivided into female (circles) and male (squares) niches and into matrigenic (pink) and patrigenic (blue) niches. Gene flow between the environments is represented by arrows. Thin arrows represent 50% gene flow in each generation. Thick arrows represent 100% gene flow. (A) Autosomal alleles experience all four environments. (B) Y-linked genes experience only the patrigenic male environment. X-linked genes are excluded from this environment.  相似文献   

19.
Of the many pathogens that infect humans and animals, a large number use cells of the host organism as protected sites for replication. To reach the relevant intracellular compartments, they take advantage of the endocytosis machinery and exploit the network of endocytic organelles for penetration into the cytosol or as sites of replication. In this review, we discuss the endocytic entry processes used by viruses and bacteria and compare the strategies used by these dissimilar classes of pathogens.Many of the most widespread and devastating diseases in humans and livestock are caused by viruses and bacteria that enter cells for replication. Being obligate intracellular parasites, viruses have no choice. They must transport their genome to the cytosol or nucleus of infected cells to multiply and generate progeny. Bacteria and eukaryotic parasites do have other options; most of them can replicate on their own. However, some have evolved to take advantage of the protected environment in the cytosol or in cytoplasmic vacuoles of animal cells as a niche favorable for growth and multiplication. In both cases (viruses and intracellular bacteria), the outcome is often destructive for the host cell and host organism. The mortality and morbidity caused by infectious diseases worldwide provide a strong rationale for research into pathogen–host cell interactions and for pursuing the detailed mechanisms of transmission and dissemination. The study of viruses and bacteria can, moreover, provide invaluable insights into fundamental aspects of cell biology.Here, we focus on the mechanisms by which viral and bacterial pathogens exploit the endocytosis machinery for host cell entry and replication. Among recent reviews on this topic, dedicated uniquely to either mammalian viruses or bacterial pathogens, we recommend the following: Cossart and Sansonetti (2004); Pizarro-Cerda and Cossart (2006); Kumar and Valdivia (2009); Cossart and Roy (2010); Mercer et al. (2010b); Grove and Marsh (2011); Kubo et al. (2012); Vazquez-Calvo et al. (2012a); Sun et al. (2013).The term “endocytosis” is used herein in its widest sense, that is, to cover all processes whereby fluid, solutes, ligands, and components of the plasma membrane as well as particles (including pathogenic agents) are internalized by cells through the invagination of the plasma membrane and the scission of membrane vesicles or vacuoles. This differs from current practice in the bacterial pathogenesis field, where the term “endocytosis” is generally reserved for the internalization of molecules or small objects, whereas the uptake of bacteria into nonprofessional phagocytes is called “internalization” or “bacterial-induced phagocytosis.” In addition, the term “phagocytosis” is reserved for internalization of bacteria by professional phagocytes (macrophages, polymorphonuclear leucocytes, dendritic cells, and amoebae), a process that generally but not always leads to the destruction of the ingested bacteria (Swanson et al. 1999; May and Machesky 2001; Henry et al. 2004; Zhang et al. 2010). With a few exceptions, we will not discuss phagocytosis of bacteria or the endocytosis of protozoan parasites such as Toxoplasma and Plasmodium (Robibaro et al. 2001).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号