首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The capsular components of the human pathogen Cryptococcus neoformans are transported to the extracellular space and then used for capsule enlargement by distal growth. It is not clear, however, how the glucuronoxylomannan (GXM) fibers are incorporated into the capsule. In the present study, we show that concentration of C. neoformans culture supernatants by ultrafiltration results in the formation of highly viscous films containing pure polysaccharide, providing a novel, nondenaturing, and extremely rapid method to isolate extracellular GXM. The weight-averaged molecular mass of GXM in the film, determined using multiangle laser light scattering, was ninefold smaller than that of GXM purified from culture supernatants by differential precipitation with cetyl trimethyl ammonium bromide (CTAB). Polysaccharides obtained either by ultrafiltration or by CTAB-mediated precipitation showed different reactivities with GXM-specific monoclonal antibodies. Viscosity analysis associated with inductively coupled plasma mass spectrometry and measurements of zeta potential in the presence of different ions implied that polysaccharide aggregation was a consequence of the interaction between the carboxyl groups of glucuronic acid and divalent cations. Consistent with this observation, capsule enlargement in living C. neoformans cells was influenced by Ca(2+) in the culture medium. These results suggest that capsular assembly in C. neoformans results from divalent cation-mediated self-aggregation of extracellularly accumulated GXM molecules.  相似文献   

2.
The fungal pathogen Cryptococcus neoformans is killed by the bacterium Staphylococcus aureus, and the killing is inhibited by soluble capsular polysaccharides. To investigate the mechanism of killing, cells in coculture were examined by scanning and transmission electron microscopy. S. aureus attached to the capsule of C. neoformans, and the ultrastructure of the attached C. neoformans cells was characteristic of dead cells. To identify the molecules that contributed to the fungal-bacterial interaction, we treated each with NaIO(4) or protease. Treatment of C. neoformans with NaIO(4) promoted adherence. It was inferred that cleavage of xylose and glucuronic acid side chains of glucuronoxylomannan (GXM) allowed S. aureus to recognize mannose residues in the backbone, which resisted periodate oxidation. On the other hand, treatment of S. aureus with protease decreased adherence, suggesting that protein contributed to attachment in S. aureus. In confirmation, side chain-cleaved polysaccharide or defined alpha-(1-->3)-mannan inhibited the killing at lower concentrations than native GXM did. Also, these polysaccharides reduced the adherence of the two species and induced clumping of pure S. aureus cells. alpha-(1-->3)-Mannooligosaccharides with a degree of polymerization (DP) of >/=3 induced cluster formation of S. aureus in a dose-dependent manner. Surface plasmon resonance analyses showed interaction of GXM and surface protein from S. aureus; the interaction was inhibited by oligosaccharides with a DP of > or =3. Conformations of alpha-(1-->3) oligosaccharides were predicted. The three-dimensional structures of mannooligosaccharides larger than triose appeared curved and could be imagined to be recognized by a hypothetical staphylococcal lectin. Native polyacrylamide gel electrophoresis of staphylococcal protein followed by electroblotting, enzyme-linked immunolectin assay, protein staining, and N-terminal amino acid sequencing suggested that the candidate protein was triosephosphate isomerase (TPI). The enzymatic activities were confirmed by using whole cells of S. aureus. TPI point mutants of S. aureus decreased the ability to interact with C. neoformans. Thus, TPI on S. aureus adheres to the capsule of C. neoformans by recognizing the structure of mannotriose units in the backbone of GXM; we suggest that this contact is required for killing of C. neoformans.  相似文献   

3.
Cryptococcus neoformans capsular polysaccharide is composed of at least two components, glucuronoxylomannan (GXM) and galactoxylomannans (GalXM). Although GXM has been extensively studied, little is known about the location of GalXM in the C. neoformans capsule, in part because there are no serological reagents specific to this antigen. To circumvent the poor immunogenicity of GalXM, this antigen was conjugated to protective antigen from Bacillus anthracis as a protein carrier. The resulting conjugate elicited antibodies that reacted with GalXM in mice and yielded an immune serum that proved useful for studying GalXM in the polysaccharide capsule. In acapsular cells, immune serum localized GalXM to the cell wall. In capsulated cells, immune serum localized GalXM to discrete pockets near the capsule edge. GalXM was abundant on the nascent capsules of budding daughter cells. The constituent sugars of GalXM were found in vesicle fractions consistent with vesicular transport for this polysaccharide. In addition, we generated a single-chain fraction variable fragment antibody with specificity to oxidized carbohydrates that also produced punctate immunofluorescence on encapsulated cells that partially colocalized with GalXM. The results are interpreted to mean that GalXM is a transient component of the polysaccharide capsule of mature cells during the process of secretion. Hence, the function of GalXM appears to be more consistent with that of an exopolysaccharide than a structural component of the cryptococcal capsule.  相似文献   

4.
Most mAbs to the capsular polysaccharide glucuronoxylomannan (GXM) of Cryptococcus neoformans are generated from the same VH and VL gene families. Prior Ab studies have assessed protective efficacy, Id structure and binding to capsular polysaccharides, and peptide mimetics. These data have been interpreted as indicating that most mAbs to GXM have the same specificity. A new approach to Ab specificity analysis was investigated that uses genetic manipulation to generate C. neoformans variants with structurally different capsules. C. neoformans mutants expressing GXM with defective O-acetylation were isolated and complemented by the C. neoformans gene CAS1, which is necessary for the O-acetylation of GXM. The mAbs exhibited differences in their binding to the GXM from these mutant strains, indicating previously unsuspected differences in specificity. Analysis of three closely related IgMs revealed that one (mAb 12A1) bound to an epitope that did not require O-acetylation, another (mAb 21D2) was inhibited by O-acetylation, and the third (mAb 13F1) recognized an O-acetylation-dependent conformational epitope. Furthermore, an IgG Ab (mAb 18B7) in clinical development retained binding to de-O-acetylated polysaccharide; however, greater binding was observed to O-acetylated GXM. Our findings suggest that microbial genetic techniques can provide a new approach for epitope mapping of polysaccharide-binding Abs and suggest that this method may applicable for studying the antigenic complexity of polysaccharide Ags in other capsulated microorganisms.  相似文献   

5.
Antibody-mediated phagocytosis was discovered over a century ago but little is known about antibody effects in phagolysosomes. We explored the consequences of antibody-mediated phagocytosis for two closely related human pathogenic fungal species, Cryptococcus neoformans and Cryptococcus gattii , of which C. neoformans encompasses two varieties: neoformans and grubii. The interaction between C. neoformans varieties grubii and neoformans and host cells has been extensively studied, but that of C. gattii and macrophages remains largely unexplored. Like C. neoformans , antibody-mediated phagocytosis of C. gattii cells was followed by intracellular replication, host cell cytoplasmic polysaccharide accumulation and phagosomal extrusion. Both C. gattii and C. neoformans cells exited macrophages in biofilm-like microcolonies where the yeast cells were aggregated in a polysaccharide matrix that contained bound antibody. In contrast, complement-opsonized C. neoformans variety grubii cells were released from macrophages dispersed as individual cells. Hence, both antibody- and complement-mediated phagocytosis resulted in intracellular replication but the mode of opsonization affected the outcome of exocytosis. The biofilm-like microcolony exit strategy of C. neoformans and C. gattii following antibody opsonization reduced fungal cell dispersion. This finding suggests that antibody agglutination effects persist in the phagosome to entangle nascent daughter cells and this phenomenon may contribute to antibody-mediated protection.  相似文献   

6.
Secretion of virulence factors is a critical mechanism for the establishment of cryptococcosis, a disease caused by the yeast pathogen Cryptococcus neoformans. One key virulence strategy of C. neoformans is the release of glucuronoxylomannan (GXM), a capsule-associated immune-modulatory polysaccharide that reaches the extracellular space through secretory vesicles. Golgi reassembly and stacking protein (GRASP) is required for unconventional protein secretion mechanisms in different eukaryotic cells, but its role in polysaccharide secretion is unknown. This study demonstrates that a C. neoformans functional mutant of a GRASP orthologue had attenuated virulence in an animal model of cryptococcosis, in comparison with wild-type (WT) and reconstituted cells. Mutant cells manifested altered Golgi morphology, failed to produce typical polysaccharide capsules and showed a reduced ability to secrete GXM both in vitro and during animal infection. Isolation of GXM from cultures of WT, reconstituted or mutant strains revealed that the GRASP orthologue mutant produced polysaccharides with reduced dimensions. The mutant was also more efficiently associated to and killed by macrophages than WT and reconstituted cells. These results demonstrate that GRASP, a protein involved in unconventional protein secretion, is also required for polysaccharide secretion and virulence in C. neoformans.  相似文献   

7.
The capsule of Cryptococcus neoformans, the principal virulence factor of this fungus, is composed primarily of polysaccharide. The predominant component of the polysaccharide capsule is glucuronoxylomannan (GXM), a compound with potent immunoregulatory properties. GXM is bound and internalized by natural immune cells affecting innate and subsequent adaptive immune response. The cellular pattern recognition receptors involved in GXM binding include toll-like receptor (TLR)4, CD14, TLR2, CD18, Fc gamma receptor II (FcgammaRPi). This multiple cross-linking leads to a suppressive outcome that is arrested and even reversed by protective antibodies to GXM. This review analyzes the immunosuppressive effects induced by capsular material, considering its pattern recognition receptors, and dissects the mechanism of monoclonal antibody shifting to immunoactivation.  相似文献   

8.
Since primary infection with Cryptococcus neoformans usually occurs in the lungs, and since pulmonary cryptococcosis involves interactions between yeasts and alveolar epithelial cells, we have begun to study the effects of C. neoformans and its secreted antigens (SA) on epithelial reactions potentially associated with localized inflammation. We report here that SAs from encapsulated and acapsular strains of C. neoformans caused significant reductions in tumor necrosis factor-alpha (TNF-alpha)-induced intercellular adhesion molecule-1 (ICAM-1) expression on A549 lung epithelial cells in culture. We also present evidence that the reduction in ICAM-1 expression was not associated with SA-induced shedding of this adhesion molecule.  相似文献   

9.
After inhalation of infectious particles, Cryptococcus neoformans resides in the alveolar spaces, where it can survive and replicate in the extracellular environment. This yeast has developed different mechanisms to avoid internalization by phagocytic cells, the main one being a polysaccharide capsule around the cell body, which inhibits the uptake of the yeast by macrophages. In addition, capsule-independent mechanisms have also been described, such as the production of antiphagocytic proteins. Despite these mechanisms, phagocytosis can occur in the presence of opsonins, and once C. neoformans is internalized, multiple outcomes are possible, including pathogen killing or intracellular replication and escape from macrophages. For this reason, C. neoformans is considered a facultative intracellular pathogen. As alveolar macrophages are the first component of the host immune system to confront C. neoformans, the outcome of this interaction could determine the degree of infection, producing either a severe disseminated disease or a latency state. In this review, we will tackle the complexity of the interaction between C. neoformans and macrophages, including the phagocytic avoidance mechanisms and all the possible outcomes that have been described for this interaction. Finally, we will discuss the consequences of the different outcomes for the type of infection produced in the host.  相似文献   

10.
Mycobacterium tuberculosis infects not only host macrophages but also nonprofessional phagocytes, such as alveolar epithelial cells. Glycosaminoglycans (GAGs) are considered as the component of mycobacterial adherence to epithelial cells. Here we show that extracellularly occurring mycobacterial DNA-binding protein 1 (MDP1) promotes mycobacterial infection to A549 human lung epithelial cells through hyaluronic acid (HA). Both surface plasmon resonance analysis and enzyme-linked immunosorbent assay revealed that MDP1 bound to HA, heparin, and chondroitin sulfate. Utilizing synthetic peptides, we next defined heparin-binding site of 20 amino acids from 31 to 50 of MDP1, which is responsible for the specific DNA-binding site of MDP1. MDP1 bound to A549 cells, and exogenous DNA and HA interfered with the interaction. The binding was also abolished by treatment of A549 cells with hyaluronidase, suggesting that HA participates in the MDP1-A549 cell interaction. Adherence of bacillus Calmette-Guérin (BCG) and M. tuberculosis to A549 cells was inhibited by addition of HA, DNA, and anti-MDP1 antibody, showing that MDP1 participates in the interaction between mycobacteria-alveolar epithelial cells. Simultaneous treatment of intratracheal BCG-infected mice with HA reduced the growth of BCG in vivo. Taken together, theses results suggest that HA participates in Mycobacterium-lung epithelium interaction and has potential for therapeutic and prophylactic interventions in mycobacterial infection.  相似文献   

11.
The major virulence factor of the pathogenic fungi Cryptococcus neoformans and C. gattii is the capsule. Glucuronoxylomannan (GXM), the major component of the capsule, is a high-molecular-weight polysaccharide that is shed during cryptococcosis and can persist in patients after successful antifungal therapy. Due to the importance of T cells in the anticryptococcal response, we studied the effect of GXM on the ability of dendritic cells (DCs) to initiate a T-cell response. GXM inhibited the activation of cryptococcal mannoprotein-specific hybridoma T cells and the proliferation of OVA-specific OT-II T cells when murine bone marrow-derived DCs were used as antigen-presenting cells. Inhibition of OT-II T-cell proliferation was observed when either OVA protein or OVA323-339 peptide was used as antigen, indicating GXM did not merely prevent antigen uptake or processing. We found that DCs internalize GXM progressively over time; however, the suppressive effect did not require DCs, as GXM directly inhibited T-cell proliferation induced by anti-CD3 antibody, concanavalin A, or phorbol-12-myristate-13-acetate/ionomycin. Analysis of T-cell viability revealed that the reduced proliferation in the presence of GXM was not the result of increased cell death. GXM isolated from each of the four major cryptococcal serotypes inhibited the proliferation of human peripheral blood mononuclear cells stimulated with tetanus toxoid. Thus, we have defined a new mechanism by which GXM can impart virulence: direct inhibition of T-cell proliferation. In patients with cryptococcosis, this could impair optimal cell-mediated immune responses, thereby contributing to the persistence of cryptococcal infections.  相似文献   

12.
The capsule of Cryptococcus neoformans is a complex structure whose assembly requires intermolecular interactions to connect its components into an organized structure. In this study, we demonstrated that the wheat germ agglutinin (WGA), which binds to sialic acids and beta-1,4-N-acetylglucosamine (GlcNAc) oligomers, can also bind to cryptococcal capsular structures. Confocal microscopy demonstrated that these structures form round or hooklike projections linking the capsule to the cell wall, as well as capsule-associated structures during yeast budding. Chemical analysis of capsular extracts by gas chromatography coupled to mass spectrometry and high-pH anion-exchange chromatography suggested that the molecules recognized by WGA were firmly associated with the cell wall. Enzymatic treatment, competition assays, and staining with chemically modified WGA revealed that GlcNAc oligomers, but not sialic acids, were the molecules recognized by the lectin. Accordingly, treatment of C. neoformans cells with chitinase released glucuronoxylomannan (GXM) from the cell surface and reduced the capsule size. Chitinase-treated acapsular cells bound soluble GXM in a modified pattern. These results indicate an association of chitin-derived structures with GXM and budding in C. neoformans, which may represent a new mechanism by which the capsular polysaccharide interacts with the cell wall and is rearranged during replication.  相似文献   

13.
In prior studies, we demonstrated that glucuronoxylomannan (GXM), the major capsular polysaccharide of the fungal pathogen Cryptococcus neoformans, interacts with chitin oligomers at the cell wall-capsule interface. The structural determinants regulating these carbohydrate-carbohydrate interactions, as well as the functions of these structures, have remained unknown. In this study, we demonstrate that glycan complexes composed of chitooligomers and GXM are formed during fungal growth and macrophage infection by C. neoformans. To investigate the required determinants for the assembly of chitin-GXM complexes, we developed a quantitative scanning electron microscopy-based method using different polysaccharide samples as inhibitors of the interaction of chitin with GXM. This assay revealed that chitin-GXM association involves noncovalent bonds and large GXM fibers and depends on the N-acetyl amino group of chitin. Carboxyl and O-acetyl groups of GXM are not required for polysaccharide-polysaccharide interactions. Glycan complex structures composed of cryptococcal GXM and chitin-derived oligomers were tested for their ability to induce pulmonary cytokines in mice. They were significantly more efficient than either GXM or chitin oligomers alone in inducing the production of lung interleukin 10 (IL-10), IL-17, and tumor necrosis factor alpha (TNF-α). These results indicate that association of chitin-derived structures with GXM through their N-acetyl amino groups generates glycan complexes with previously unknown properties.  相似文献   

14.
Cryptococcus flavescens, a strain originally identified as C. laurentii, was isolated from the cerebrospinal fluid of an AIDS patient, and the soluble capsular polysaccharide of the yeast was investigated. Glucuronoxylomannan (GXM) was obtained from C. flavescens under conditions similar to those used to obtain C. neoformans polysaccharide. However, the GXM differed from C. neoformans polysaccharide in the decreased O-acetyl group content. The structure of GXM was determined by methylation analysis, partial acid hydrolysis, NMR analyses, and controlled Smith degradation. These analyses indicated that GXM has the following structure: an alpha-(1-->3)-D-mannan backbone with side chains of beta-D-glucuronic acid residues bound to the C-2 position of the mannose residue. The C-6 position of the mannose is substituted with D-man-beta-(1-->4)-D-xyl-beta-(1--> disaccharide. Furthermore, the existence of side chains containing more than two xylose residues was suggested. This mannosylxylose side chain is a novel structure in polysaccharides of C. neoformans and other Cryptococcus species.  相似文献   

15.
The encapsulated yeast Cryptococcus neoformans is the causative agent of cryptococosis, an opportunistic life-threatening infection. C. neoformans is coated by a polysaccharide capsule mainly composed of glucuronoxylomannan (GXM). GXM is considered a key virulence factor of this pathogen. The present work aimed at evaluating the effects of GXM on the key glycolytic enzyme, 6-phosphofructo-1-kinase (PFK). GXM inhibited PFK activity in cultured murine macrophages in both dose- and time-dependent manners, which occurred in parallel to cell viability decrease. The polysaccharide also inhibited purified PFK, promoting a decrease on the enzyme affinity for its substrates. In macrophages GXM and PFK partially co-localized, suggesting that internalized polysaccharide directly may interact with this enzyme. The mechanism of PFK inhibition involved dissociation of tetramers into weakly active dimers, as revealed by fluorescence spectroscopy. Allosteric modulators of the enzyme able to stabilize its tetrameric conformation attenuated the inhibition promoted by GXM. Altogether, our results suggest that the mechanism of GXM-induced cell death involves the inhibition of the glycolytic flux.  相似文献   

16.
The major capsular polysaccharide glucuronoxylomannan (GXM) of the pathogenic fungus Cryptococcus neoformans has been associated with depression of a variety of immunological host responses. For one, GXM has been shown to interfere with the migration of phagocytes to sites of inflammation by interference with both chemokinesis and leucocyte adhesion to the endothelium. We reported previously that GXM blocks the firm adhesion of neutrophils (PMNs) to endothelium in a static adhesion model, most probably by interfering with E-selectin binding pathways. Using a flow model, we now demonstrate that GXM also interferes with the initial rolling phase of PMN adhesion to endothelium (40% decrease) as well as to E-selectin-transfected CHO cells (43% inhibition). Furthermore, we show that CD14 and TLR4, which are known receptors for GXM, mediate this interference with PMN rolling. However, thus far, we are not able to identify the ligand of E-selectin on the surface of PMNs that is specifically affected by GXM. In conclusion, cryptococcal GXM interferes with both rolling and fixed binding of neutrophils on the endothelium, providing a novel means of contributing to the absence of neutrophil infiltration observed in cryptococcal infections.  相似文献   

17.
The mechanisms by which macromolecules are transported through the cell wall of fungi are not known. A central question in the biology of Cryptococcus neoformans, the causative agent of cryptococcosis, is the mechanism by which capsular polysaccharide synthesized inside the cell is exported to the extracellular environment for capsule assembly and release. We demonstrate that C. neoformans produces extracellular vesicles during in vitro growth and animal infection. Vesicular compartments, which are transferred to the extracellular space by cell wall passage, contain glucuronoxylomannan (GXM), a component of the cryptococcal capsule, and key lipids, such as glucosylceramide and sterols. A correlation between GXM-containing vesicles and capsule expression was observed. The results imply a novel mechanism for the release of the major virulence factor of C. neoformans whereby polysaccharide packaged in lipid vesicles crosses the cell wall and the capsule network to reach the extracellular environment.  相似文献   

18.
Defined Abs to the Cryptococcus neoformans capsular polysaccharide glucuronoxylomannan (GXM) have been shown to be protective against experimental cryptococcosis. This suggests that if a vaccine could induce similar Abs it might protect against infection. However, the potential use of a GXM-based vaccine has been limited by evidence that GXM is a poor immunogen that can induce nonprotective and deleterious, as well as protective, Abs, and that the nature of GXM oligosaccharide epitopes that can elicit a protective response is unknown. In this study, we investigated whether a peptide surrogate for a GXM epitope could induce an Ab response to GXM in mice. The immunogenicity of peptide-protein conjugates produced by linking a peptide mimetic of GXM, P13, to either BSA, P13-BSA, or tetanus toxoid, P13-tetanus toxoid, was examined in BALB/c and CBA/n mice that received four s.c. injections of the conjugates at 14- to 30-day intervals. All mice immunized with conjugate produced IgM and IgG to P13 and GXM. Challenge of conjugate-immunized mice with C. neoformans revealed longer survival and lower serum GXM levels than control mice. These results indicate that 1) P13 is a GXM mimotope and 2) that it induced a protective response against C. neoformans in mice. P13 is the first reported mimotope of a C. neoformans Ag. Therefore, the P13 conjugates are vaccine candidates for C. neoformans and their efficacy in this study suggests that peptide mimotopes selected by protective Abs deserve further consideration as vaccine candidates for encapsulated pathogens.  相似文献   

19.
The major component of capsular material of Cryptococcus neoformans is glucuronoxylomannnan (GXM), a polysaccharide that exhibits potent immunosuppressive properties in vitro and in vivo. The results reported here show that 1) soluble purified GXM induces a prompt, long-lasting, and potent up-regulation of Fas ligand (FasL) on macrophages, 2) the up-regulation of FasL is related to induced synthesis and increased mobilization to the cellular surface, 3) this effect is largely mediated by interaction between GXM and TLR4, 4) FasL up-regulation occurs exclusively in GXM-loaded macrophages, 5) macrophages that show up-regulation of FasL induce apoptosis of activated T cells expressing Fas and Jurkat cells that constitutively express Fas, and 6) anti-Fas Abs rescue T cells from apoptosis induced by GXM. Collectively our results reveal novel aspects of the immunoregulatory properties of GXM and suggest that this nontoxic soluble compound could be used to dampen the immune response, to promote or accelerate the death receptor, and to fix FasL expression in a TLR/ligand-dependent manner. In the present study, we delineate potential new therapeutic applications for GXM that exploit death receptors as key molecular targets in regulating cell-mediated cytotoxicity, immune homeostasis, and the immunopathology of diseases.  相似文献   

20.
The opportunistic yeast Cryptococcus neoformans is surrounded by a polysaccharide capsule comprised primarily of glucuronoxylomannan (GXM). GXM is a key component of the antigenic character of the capsule. Expression of the epitope that allows for binding of mAbs that require O -acetylation of GXM for mAb recognition was greatly influenced by cell age, growth conditions and serotype. Yeast cells of serotype A grown in vitro under capsule induction conditions showed considerable cell-to-cell variability in binding of two O -acetyl-dependent mAbs, and such mAbs uniformly failed to bind to GXM that covers yeast buds. Expression of the O -acetyl-dependent epitope increased with cell age. In contrast, all serotype A cells harvested from brain tissue bound the same O -acetyl-dependent mAbs. The ability of the cryptococcal capsule to activate the complement cascade and bind C3 occurred uniformly over the surface of all yeast cells, including the bud. Finally, the cell-to-cell variability in binding of O -acetyl-dependent mAbs with strains of serotype A was not found with strains of serotype D; almost all cells of serotype D showed homogeneous binding of O -acetyl-dependent mAbs. These results indicate that variability in expression of antigenic epitopes by GXM should be considered in selection of mAbs used for immunodiagnosis or immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号