首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 255 毫秒
1.
The mechanism by which cyclic adenosine diphosphate ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) mobilize intracellular Ca(2+) stores remains controversial. It is open to question whether cADPR regulates ryanodine receptors (RyRs) directly, as originally proposed, or indirectly by promoting Ca(2+) uptake into the sarco/endoplasmic reticulum by sarco/endoplasmic reticulum Ca(2+)-ATPases. Conversely, although we have proposed that NAADP mobilizes endolysosomal Ca(2+) stores by activating two-pore domain channels (TPCs), others suggest that NAADP directly activates RyRs. We therefore assessed Ca(2+) signals evoked by intracellular dialysis from a patch pipette of cADPR and NAADP into HEK293 cells that stably overexpress either TPC1, TPC2, RyR1, or RyR3. No change in intracellular Ca(2+) concentration was triggered by cADPR in either wild-type HEK293 cells (which are devoid of RyRs) or in cells that stably overexpress TPC1 and TPC2, respectively. By contrast, a marked Ca(2+) transient was triggered by cADPR in HEK293 cells that stably expressed RyR1 and RyR3. The Ca(2+) transient was abolished following depletion of endoplasmic reticulum stores by thapsigargin and block of RyRs by dantrolene but not following depletion of acidic Ca(2+) stores by bafilomycin. By contrast, NAADP failed to evoke a Ca(2+) transient in HEK293 cells that expressed RyR1 or RyR3, but it induced robust Ca(2+) transients in cells that stably overexpressed TPC1 or TPC2 and in a manner that was blocked following depletion of acidic stores by bafilomycin. We conclude that cADPR triggers Ca(2+) release by activating RyRs but not TPCs, whereas NAADP activates TPCs but not RyRs.  相似文献   

2.
Presenilin-1 (PS1) and presenilin-2 (PS2) form the catalytic core in gamma-secretase complexes and mutations in these proteins result in aberrant cleavage of amyloid precursor protein leading to accumulation of the beta-amyloid in the brain of familial Alzheimer Disease patients. PS2 possesses a hydrophilic cytoplasmic N-terminal domain (PS2 NTF1-87) dispensable for gamma-secretase activity with physiological functions yet to be determined. The effects of this soluble 87 amino acid fragment of mouse PS2 on single channel activity of mouse brain ryanodine receptors (RyR) were determined. PS2 NTF1-87 application to the cytoplasmic side of the RyR significantly increased single channel activity by favoring higher sublevel openings. The Ca(2+) activation and desensitization ranges for RyRs were unchanged. We demonstrate facilitation of RyR gating by PS2 NTF1-87, which might represent a general mechanism of RyR regulation by presenilins potentially prone to be affected by mutations or external stimuli contributing to the development of neurodegenerative diseases.  相似文献   

3.
Ryanodine receptors (RyRs) are located in the sarcoplasmic/endoplasmic reticulum membrane and are responsible for the release of Ca(2+) from intracellular stores during excitation-contraction coupling in both cardiac and skeletal muscle. RyRs are the largest known ion channels (> 2MDa) and exist as three mammalian isoforms (RyR 1-3), all of which are homotetrameric proteins that interact with and are regulated by phosphorylation, redox modifications, and a variety of small proteins and ions. Most RyR channel modulators interact with the large cytoplasmic domain whereas the carboxy-terminal portion of the protein forms the ion-conducting pore. Mutations in RyR2 are associated with human disorders such as catecholaminergic polymorphic ventricular tachycardia whereas mutations in RyR1 underlie diseases such as central core disease and malignant hyperthermia. This chapter examines the current concepts of the structure, function and regulation of RyRs and assesses the current state of understanding of their roles in associated disorders.  相似文献   

4.
Ryanodine receptors (RyR) function as Ca(2+) channels that regulate Ca(2+) release from intracellular stores to control a diverse array of cellular processes. The massive cytoplasmic domain of RyR is believed to be responsible for regulating channel function. We investigated interaction between the transmembrane Ca(2+)-releasing pore and a panel of cytoplasmic domains of the human cardiac RyR in living cells. Expression of eGFP-tagged RyR constructs encoding distinct transmembrane topological models profoundly altered intracellular Ca(2+) handling and was refractory to modulation by ryanodine, FKBP12.6 and caffeine. The impact of coexpressing dsRed-tagged cytoplasmic domains of RyR2 on intracellular Ca(2+) phenotype was assessed using confocal microscopy coupled with parallel determination of in situ protein: protein interaction using fluorescence resonance energy transfer (FRET). Dynamic interactions between RyR cytoplasmic and transmembrane domains were mediated by amino acids 3722-4610 (Interacting or "I"-domain) which critically modulated intracellular Ca(2+) handling and restored RyR sensitivity to caffeine activation. These results provide compelling evidence that specific interaction between cytoplasmic and transmembrane domains is an important mechanism in the intrinsic modulation of RyR Ca(2+) release channels.  相似文献   

5.
Meissner G 《Cell calcium》2004,35(6):621-628
The release of Ca(2+) ions from intracellular stores is a key step in a wide variety of cellular functions. In striated muscle, the release of Ca(2+) from the sarcoplasmic reticulum (SR) leads to muscle contraction. Ca(2+) release occurs through large, high-conductance Ca(2+) release channels, also known as ryanodine receptors (RyRs) because they bind the plant alkaloid ryanodine with high affinity and specificity. The RyRs are isolated as 30S protein complexes comprised of four 560 kDa RyR2 subunits and four 12 kDa FK506 binding protein (FKBP12) subunits. Multiple endogenous effector molecules and posttranslational modifications regulate the RyRs. This review focuses on current research toward understanding the control of the isolated cardiac Ca(2+) release channel/ryanodine receptor (RyR2) by Ca(2+), calmodulin, thiol oxidation/reduction and nitrosylation, and protein phosphorylation.  相似文献   

6.
Mobilization of intracellular Ca(2+) stores regulates a multitude of cellular functions, but the role of intracellular Ca(2+) release via the ryanodine receptor (RyR) in the brain remains incompletely understood. We found that nitric oxide (NO) directly activates RyRs, which induce Ca(2+) release from intracellular stores of central neurons, and thereby promote prolonged Ca(2+) signalling in the brain. Reversible S-nitrosylation of type 1 RyR (RyR1) triggers this Ca(2+) release. NO-induced Ca(2+) release (NICR) is evoked by type 1 NO synthase-dependent NO production during neural firing, and is essential for cerebellar synaptic plasticity. NO production has also been implicated in pathological conditions including ischaemic brain injury, and our results suggest that NICR is involved in NO-induced neuronal cell death. These findings suggest that NICR via RyR1 plays a regulatory role in the physiological and pathophysiological functions of the brain.  相似文献   

7.
In resting muscle, cytoplasmic Mg(2+) is a potent inhibitor of Ca(2+) release from the sarcoplasmic reticulum (SR). It is thought to inhibit calcium release channels (RyRs) by binding both to low affinity, low specificity sites (I-sites) and to high affinity Ca(2+) sites (A-sites) thus preventing Ca(2+) activation. We investigate the effects of luminal and cytoplasmic Ca(2+) on Mg(2+) inhibition at the A-sites of skeletal RyRs (RyR1) in lipid bilayers, in the presence of ATP or modified by ryanodine or DIDS. Mg(2+) inhibits RyRs at the A-site in the absence of Ca(2+), indicating that Mg(2+) is an antagonist and does not simply prevent Ca(2+) activation. Cytoplasmic Ca(2+) and Cs(+) decreased Mg(2+) affinity by a competitive mechanism. We describe a novel mechanism for luminal Ca(2+) regulation of Ca(2+) release whereby increasing luminal [Ca(2+)] decreases the A-site affinity for cytoplasmic Mg(2+) by a noncompetitive, allosteric mechanism that is independent of Ca(2+) flow. Ryanodine increases the Ca(2+) sensitivity of the A-sites by 10-fold, which is insufficient to explain the level of activation seen in ryanodine-modified RyRs at nM Ca(2+), indicating that ryanodine activates independently of Ca(2+). We describe a model for ion binding at the A-sites that predicts that modulation of Mg(2+) inhibition by luminal Ca(2+) is a significant regulator of Ca(2+) release from the SR. We detected coupled gating of RyRs due to luminal Ca(2+) permeating one channel and activating neighboring channels. This indicated that the RyRs existed in stable close-packed rafts within the bilayer. We found that luminal Ca(2+) and cytoplasmic Mg(2+) did not compete at the A-sites of single open RyRs but did compete during multiple channel openings in rafts. Also, luminal Ca(2+) was a stronger activator of multiple openings than single openings. Thus it appears that RyRs are effectively "immune" to Ca(2+) emanating from their own pore but sensitive to Ca(2+) from neighboring channels.  相似文献   

8.
cADP ribose (cADPR) serves as second messenger to activate the ryanodine receptors (RyRs) of the sarcoplasmic reticulum (SR) and mobilize intracellular Ca(2+) in vascular smooth muscle cells. However, the mechanisms mediating the effect of cADPR remain unknown. The present study was designed to determine whether FK-506 binding protein 12.6 (FKBP12.6), an accessory protein of the RyRs, plays a role in cADPR-induced activation of the RyRs. A 12.6-kDa protein was detected in bovine coronary arterial smooth muscle (BCASM) and cultured CASM cells by being immunoblotted with an antibody against FKBP12, which also reacted with FKBP12.6. With the use of planar lipid bilayer clamping techniques, FK-506 (0.01-10 microM) significantly increased the open probability (NP(O)) of reconstituted RyR/Ca(2+) release channels from the SR of CASM. This FK-506-induced activation of RyR/Ca(2+) release channels was abolished by pretreatment with anti-FKBP12 antibody. The RyRs activator cADPR (0.1-10 microM) markedly increased the activity of RyR/Ca(2+) release channels. In the presence of FK-506, cADPR did not further increase the NP(O) of RyR/Ca(2+) release channels. Addition of anti-FKBP12 antibody also completely blocked cADPR-induced activation of these channels, and removal of FKBP12.6 by preincubation with FK-506 and subsequent gradient centrifugation abolished cADPR-induced increase in the NP(O) of RyR/Ca(2+) release channels. We conclude that FKBP12.6 plays a critical role in mediating cADPR-induced activation of RyR/Ca(2+) release channels from the SR of BCASM.  相似文献   

9.
Molecular genetics of ryanodine receptors Ca2+-release channels   总被引:7,自引:0,他引:7  
Rossi D  Sorrentino V 《Cell calcium》2002,32(5-6):307-319
The family of ryanodine receptor (RyR) genes encodes three highly related Ca(2+)-release channels: RyR1, RyR2 and RyR3. RyRs are known as the Ca(2+)-release channels that participate to the mechanism of excitation-contraction coupling in striated muscles, but they are also expressed in many other cell types. Actually, in several cells two or three RyR isoforms can be co-expressed and interactive feedbacks among them may be important for generation of intracellular Ca(2+) signals and regulation of specific cellular functions. Important developments have been obtained in understanding the biochemical complexity underlying the process of Ca(2+) release through RyRs. The 3-D structure of these large molecules has been obtained and some regulatory regions have been mapped within these 3-D reconstructions. Recent studies have clarified the role of protein kinases and phosphatases that, by physically interacting with RyRs, appear to play a role in the regulation of these Ca(2+)-release channels. These and other recent advancements in understanding RyR biology will be the object of this review.  相似文献   

10.
The mechanisms of Ca(2+) release from intracellular stores in CNS white matter remain undefined. In rat dorsal columns, electrophysiological recordings showed that in vitro ischemia caused severe injury, which persisted after removal of extracellular Ca(2+); Ca(2+) imaging confirmed that an axoplasmic Ca(2+) rise persisted in Ca(2+)-free perfusate. However, depletion of Ca(2+) stores or reduction of ischemic depolarization (low Na(+), TTX) were protective, but only in Ca(2+)-free bath. Ryanodine or blockers of L-type Ca(2+) channel voltage sensors (nimodipine, diltiazem, but not Cd(2+)) were also protective in zero Ca(2+), but their effects were not additive with ryanodine. Immunoprecipitation revealed an association between L-type Ca(2+) channels and RyRs, and immunohistochemistry confirmed colocalization of Ca(2+) channels and RyR clusters on axons. Similar to "excitation-contraction coupling" in skeletal muscle, these results indicate a functional coupling whereby depolarization sensed by L-type Ca(2+) channels activates RyRs, thus releasing damaging amounts of Ca(2+) under pathological conditions in white matter.  相似文献   

11.
The molecular determinants of a Ca(2+) spark, those events that determine the sudden opening and closing of a small number of ryanodine receptor (RyR) channels limiting Ca(2+) release to a few milliseconds, are unknown. As a first step we investigated which of two RyR isoforms present in mammalian embryonic skeletal muscle, RyR type 1(RyR-1) or RyR type 3 (RyR-3) has the ability to generate Ca(2+) sparks. Their separate contributions were investigated in intercostal muscle cells of RyR-1 null and RyR-3 null mouse embryos. A comparison of Ca(2+) spark parameters of RyR-1 null versus RyR-3 null cells measured at rest with fluo-3 showed that neither the peak fluorescence intensity (DeltaF/F(o) = 1.25 +/- 0.7 vs. 1.55 +/- 0.6), spatial width at half-max intensity (FWHM = 2.7 +/- 1.2 vs. 2.6 +/- 0.6 microm), nor the duration at half-max intensity (FTHM = 45 +/- 49 vs. 43 +/- 25 ms) was significantly different. Sensitivity to caffeine (0.1 mM) was remarkably different, with sparks in RyR-1 null myotubes becoming brighter and longer in duration, whereas those in RyR-3 null cells remained unchanged. Controls performed in double RyR-1/RyR-3 null cells obtained by mice breeding showed that sparks were not observed in the absence of both isoforms in >150 cells imaged. In conclusion, 1) RyR-1 and RyR-3 appear to be the only intracellular Ca(2+) channels that participate in Ca(2+) spark activity in embryonic skeletal muscle; 2) except in their responsiveness to caffeine, both isoforms have the ability to produce Ca(2+) sparks with nearly identical properties, so it is rather unlikely that a single RyR isoform, when others are also present, would be responsible for Ca(2+) sparks; and 3) because RyR-1 null cells are excitation-contraction (EC) uncoupled and RyR-3 null cells exhibit a normal phenotype, Ca(2+) sparks result from the inherent activity of small clusters of RyRs regardless of the participation of these RyRs in EC coupling.  相似文献   

12.
13.
The role of ryanodine receptor (RyR) in cardiac excitation-contraction (E-C) coupling in newborns (NB) is not completely understood. To determine whether RyR functional properties change during development, we evaluated cellular distribution and functionality of sarcoplasmic reticulum (SR) in NB rats. Sarcomeric arrangement of immunostained SR Ca(2+)-ATPase (SERCA2a) and the presence of sizeable caffeine-induced Ca2+ transients demonstrated that functional SR exists in NB. E-C coupling properties were then defined in NB and compared with those in adult rats (AD). Ca2+ transients in NB reflected predominantly sarcolemmal Ca2+ entry, whereas the RyR-mediated component was approximately 13%. Finally, the RyR density and functional properties at the single-channel level in NB were compared with those in AD. Ligand binding assays revealed that in NB, RyR density can be up to 36% of that found in AD, suggesting that some RyRs do not contribute to the Ca2+ transient. To test the hypothesis that RyR functional properties change during development, we incorporated single RyRs into lipid bilayers. Our results show that permeation and gating kinetics of NB RyRs are identical to those of AD. Also, endogenous ligands had similar effects on NB and AD RyRs: sigmoidal Ca2+ dependence, stronger Mg(2+)-induced inhibition at low cytoplasmic Ca2+ concentrations, comparable ATP-activating potency, and caffeine sensitivity. These observations indicate that NB rat heart contains fully functional RyRs and that the smaller contribution of RyR-mediated Ca2+ release to the intracellular Ca2+ transient in NB is not due to different single RyR channel properties or to the absence of functional intracellular Ca2+ stores.  相似文献   

14.
Yamaguchi N  Xu L  Pasek DA  Evans KE  Chen SR  Meissner G 《Biochemistry》2005,44(45):15074-15081
Ryanodine receptors (RyRs) are a family of intracellular Ca(2+) channels that are regulated by calmodulin (CaM). At low Ca(2+) concentrations (<1 microM), CaM activates RyR1 and RyR3 and inhibits RyR2. At elevated Ca(2+) concentrations (>1 microM), CaM inhibits all three RyR isoforms. Here we report that the regulation of recombinant RyR3 by CaM is sensitive to redox regulation. RyR3 in the presence of reduced glutathione binds CaM with 10-15-fold higher affinity, at low and high Ca(2+) concentrations, compared to in the presence of oxidized glutathione. However, compared to RyR1 assayed at low Ca(2+) concentrations under both reducing and oxidizing conditions, CaM binds RyR3 with reduced affinity but activates RyR3 to a greater extent. Under reducing conditions, RyR1 and RyR3 activities are inhibited with a similar affinity at [Ca(2+)] > 1 microM. Mutagenesis studies demonstrate that RyR3 contains a single conserved CaM binding site. Corresponding amino acid substitutions in the CaM binding site differentially affect CaM binding and CaM regulation of RyR3 and those of the two other isoforms. The results support the suggestion that other isoform dependent regions have a major role in the regulation of RyRs by CaM [Yamaguchi et al. (2004) J. Biol. Chem. 279, 36433-36439].  相似文献   

15.
Ca(2+) signaling plays an important role in the function of dendritic cells (DC), the specialized antigen-presenting cells of the immune system. Here we describe functional ryanodine receptor (RyR) Ca(2+) release channels in murine, bone marrow-derived DC. RT-PCR analysis identified selective expression of the type 1 RyR, with higher levels detected in immature rather than mature DC. The RyR activators caffeine, FK506, ryanodine and 4-chloro-m-cresol mobilized Ca(2+) in DC, and responses to 4-chloro-m-cresol were inhibited by dantrolene. Furthermore, activation of RyRs both inhibited subsequent inositol trisphosphate-mediated Ca(2+) release and provoked store-operated Ca(2+) entry, suggesting a functional interaction between these intracellular Ca(2+) channels. Thus, the RyR1 channel may play an intrinsic role in Ca(2+) signaling in DC.  相似文献   

16.
Members of the glutathione transferase (GST) structural family are novel regulators of cardiac ryanodine receptor (RyR) calcium channels. We present the first detailed report of the effect of endogenous muscle GST on skeletal and cardiac RyRs. An Mu class glutathione transferase is specifically expressed in human muscle. An hGSTM2-2-like protein was isolated from rabbit skeletal muscle and sheep heart, at concentrations of approximately 17-93 microM. When added to the cytoplasmic side of RyRs, hGSTM2-2 and GST isolated from skeletal or cardiac muscle, modified channel activity in an RyR isoform-specific manner. High activity skeletal RyR1 channels were inactivated at positive potentials or activated at negative potentials by hGSTM2-2 (8-30 microM). Inactivation became faster as the positive voltage was increased. Channels recovered from inactivation when the voltage was reversed, but recovery times were significantly slowed in the presence of hGSTM2-2 and muscle GSTs. Low activity RyR1 channels were activated at both potentials. In contrast, hGSTM2-2 and GSTs isolated from muscle (1-30 microM) in the cytoplasmic solution, caused a voltage-independent inhibition of cardiac RyR2 channels. The results suggest that the major GST isoform expressed in muscle regulates Ca2+ signalling in skeletal and cardiac muscle and conserves Ca2+ stores in the sarcoplasmic reticulum.  相似文献   

17.
The effect of peptides, corresponding to sequences in the skeletal muscle dihydropyridine receptor II-III loop, on Ca(2+) release from sarcoplasmic reticulum (SR) and on ryanodine receptor (RyR) calcium release channels have been compared in preparations from normal and malignant hyperthermia (MH)-susceptible pigs. Peptide A (Thr(671)-Leu(690); 36 microM) enhanced the rate of Ca(2+) release from normal SR (SR(N)) and from SR of MH-susceptible muscle (SR(MH)) by 10 +/- 3.2 nmole/mg/min and 76 +/- 9.7 nmole/mg/min, respectively. Ca (2+) release from SR(N) or SR(MH) was not increased by control peptide NB (Gly(689)-Lys(708)). AS (scrambled A sequence; 36 microM) did not alter Ca (2+) release from SR(N), but increased release from SR(MH) by 29 +/- 4.9 nmoles/mg/min. RyR channels from MH-susceptible muscle (RyR(MH)) were up to about fourfold more strongly activated by peptide A (> or =1 nM) than normal RyR channels (RyR(N)) at -40 mV. Neither NB or AS activated RyR(N). RyR(MH) showed an approximately 1.8-fold increase in mean current with 30 microM AS. Inhibition at +40 mV was stronger in RyR(MH) and seen with peptide A (> or = 0.6 microM) and AS (> or = 0.6 microM), but not NB. These results show that the Arg(615)Cys substitution in RyR(MH) has multiple effects on RyRs. We speculate that enhanced DHPR activation of RyRs may contribute to increased Ca(2+) release from SR in MH-susceptible muscle.  相似文献   

18.
In arterial myocytes the Ca(2+) mobilizing messenger NAADP evokes spatially restricted Ca(2+) bursts from a lysosome-related store that are subsequently amplified into global Ca(2+) waves by Ca(2+)-induced Ca(2+)-release from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs). Lysosomes facilitate this process by forming clusters that co-localize with a subpopulation of RyRs on the SR. We determine here whether RyR subtypes 1, 2 or 3 selectively co-localize with lysosomal clusters in pulmonary arterial myocytes using affinity purified specific antibodies. The density of: (1) alphalgP120 labelling, a lysosome-specific protein, in the perinuclear region of the cell (within 1.5mum of the nucleus) was approximately 4-fold greater than in the sub-plasmalemmal (within 1.5mum of the plasma membrane) and approximately 2-fold greater than in the extra-perinuclear (remainder) regions; (2) RyR3 labelling within the perinuclear region was approximately 4- and approximately 14-fold greater than that in the extra-perinuclear and sub-plasmalemmal regions, and approximately 2-fold greater than that for either RyR1 or RyR2; (3) despite there being no difference in the overall densities of fluorescent labelling of lysosomes and RyR subtypes between cells, co-localization with alphalgp120 labelling within the perinuclear region was approximately 2-fold greater for RyR3 than for RyR2 or RyR1; (4) co-localization between alphalgp120 and each RyR subtype declined markedly outside the perinuclear region. Furthermore, selective block of RyR3 and RyR1 with dantrolene (30muM) abolished global Ca(2+) waves but not Ca(2+) bursts in response to intracellular dialysis of NAADP (10nM). We conclude that a subpopulation of lysosomes cluster in the perinuclear region of the cell and form junctions with SR containing a high density of RyR3 to comprise a trigger zone for Ca(2+) signalling by NAADP.  相似文献   

19.
Ryanodine receptor (RyR)-Ca(2+) release channels from rabbit skeletal muscle were incorporated into lipid bilayers. The effects of cytoplasmic and luminal pH were studied separately over the pH range 5-8, using half-unit intervals. RyR activity (at constant luminal pH of 7.5) was inhibited at acidic cytoplasmic pH, with a half-inhibitory pH (pH(I)) approximately 6.5, irrespective of bilayer potential and of whether the RyRs were activated by cytoplasmic Ca(2+) (50 microM), ATP (2 or 5 mM), or both. Inhibition occurred within approximately 1 s and could be fully reversed within approximately 1 s after brief inhibition or within approximately 30-60 s after longer exposure to acidic cytosolic pH. There was no evidence of any hysteresis in the cytoplasmic pH effect. Ryanodine-modified channels were less sensitive to pH inhibition, with pH(I) at approximately 5.5, but the inhibition was similarly reversible. Steady-state open and closed dwell times of RyRs during cytoplasmic pH inhibition suggest a mechanism where the binding of one proton inhibits the channel and the binding of two to three additional protons promotes further inhibited states. RyR activity was unaffected by luminal pH in the pH range 7.5 to 6.0. At lower luminal pH (5-5.5) most RyRs were completely inhibited, and raising the pH again produced partial to full recovery in only approximately 50% of cases, with the extent of recovery not detectably different between pH 7.5 and pH 9. The results indicate that isolated skeletal muscle RyRs are not inhibited as strongly by low cytoplasmic and luminal pH, as suggested by previous single-channel studies.  相似文献   

20.
Gallstones can cause acute pancreatitis, an often fatal disease in which the pancreas digests itself. This is probably because of biliary reflux into the pancreatic duct and subsequent bile acid action on the acinar cells. Because Ca(2+) toxicity is important for the cellular damage in pancreatitis, we have studied the mechanisms by which the bile acid taurolithocholic acid 3-sulfate (TLC-S) liberates Ca(2+). Using two-photon plasma membrane permeabilization and measurement of [Ca(2+)] inside intracellular stores at the cell base (dominated by ER) and near the apex (dominated by secretory granules), we have characterized the Ca(2+) release pathways. Inhibition of inositol trisphosphate receptors (IP(3)Rs), by caffeine and 2-APB, reduced Ca(2+) release from both the ER and an acidic pool in the granular area. Inhibition of ryanodine receptors (RyRs) by ruthenium red (RR) also reduced TLC-S induced liberation from both stores. Combined inhibition of IP(3)Rs and RyRs abolished Ca(2+) release. RyR activation depends on receptors for nicotinic acid adenine dinucleotide phosphate (NAADP), because inactivation by a high NAADP concentration inhibited release from both stores, whereas a cyclic ADPR-ribose antagonist had no effect. Bile acid-elicited intracellular Ca(2+) liberation from both the ER and the apical acidic stores depends on both RyRs and IP(3)Rs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号