首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Female preference for male orange coloration in the genus Poecilia suggests a role for duplicated long wavelength-sensitive (LWS) opsin genes in facilitating behaviors related to mate choice in these species. Previous work has shown that LWS gene duplication in this genus has resulted in expansion of long wavelength visual capacity as determined by microspectrophotometry (MSP). However, the relationship between LWS genomic repertoires and expression of LWS retinal cone classes within a given species is unclear. Our previous study in the related species, Xiphophorus helleri, was the first characterization of the complete LWS opsin genomic repertoire in conjunction with MSP expression data in the family Poeciliidae, and revealed the presence of four LWS loci and two distinct LWS cone classes. In this study we characterized the genomic organization of LWS opsin genes by BAC clone sequencing, and described the full range of cone cell types in the retina of the colorful Cumaná guppy, Poecilia reticulata. In contrast to X. helleri, MSP data from the Cumaná guppy revealed three LWS cone classes. Comparisons of LWS genomic organization described here for Cumaná to that of X. helleri indicate that gene divergence and not duplication was responsible for the evolution of a novel LWS haplotype in the Cumaná guppy. This lineage-specific divergence is likely responsible for a third additional retinal cone class not present in X. helleri, and may have facilitated the strong sexual selection driven by female preference for orange color patterns associated with the genus Poecilia.  相似文献   

2.

Background

The diversity of visual systems in fish has long been of interest for evolutionary biologists and neurophysiologists, and has recently begun to attract the attention of molecular evolutionary geneticists. Several recent studies on the copy number and genomic organization of visual pigment proteins, the opsins, have revealed an increased opsin diversity in fish relative to most vertebrates, brought about through recent instances of opsin duplication and divergence. However, for the subfamily of opsin genes that mediate vision at the long-wavelength end of the spectrum, the LWS opsins, it appears that most fishes possess only one or two loci, a value comparable to most other vertebrates. Here, we characterize the LWS opsins from cDNA of an individual guppy, Poecilia reticulata, a fish that is known exhibit variation in its long-wavelength sensitive visual system, mate preferences and colour patterns.

Results

We identified six LWS opsins expressed within a single individual. Phylogenetic analysis revealed that these opsins descend from duplication events both pre-dating and following the divergence of the guppy lineage from that of the bluefin killifish, Lucania goodei, the closest species for which comparable data exists. Numerous amino acid substitutions exist among these different LWS opsins, many at sites known to be important for visual pigment function, including spectral sensitivity and G-protein activation. Likelihood analyses using codon-based models of evolution reveal significant changes in selective constraint along two of the guppy LWS opsin lineages.

Conclusion

The guppy displays an unusually high number of LWS opsins compared to other fish, and to vertebrates in general. Observing both substitutions at functionally important sites and the persistence of lineages across species boundaries suggests that these opsins might have functionally different roles, especially with regard to G-protein activation. The reasons why are currently unknown, but may relate to aspects of the guppy's behavioural ecology, in which both male colour patterns and the female mate preferences for these colour patterns experience strong, highly variable selection pressures.
  相似文献   

3.
A broad range of animals use visual signals to assess potential mates, and the theory of sensory exploitation suggests variation in visual systems drives mate preference variation due to sensory bias. Trinidadian guppies (Poecilia reticulata), a classic system for studies of the evolution of female mate choice, provide a unique opportunity to test this theory by looking for covariation in visual tuning, light environment and mate preferences. Female preference co‐evolves with male coloration, such that guppy females from ‘low‐predation’ environments have stronger preferences for males with more orange/red coloration than do females from ‘high‐predation’ environments. Here, we show that colour vision also varies across populations, with ‘low’‐predation guppies investing more of their colour vision to detect red/orange coloration. In independently colonized watersheds, guppies expressed higher levels of both LWS‐1 and LWS‐3 (the most abundant LWS opsins) in ‘low‐predation’ populations than ‘high‐predation’ populations at a time that corresponds to differences in cone cell abundance. We also observed that the frequency of a coding polymorphism differed between high‐ and low‐predation populations. Together, this shows that the variation underlying preference could be explained by simple changes in expression and coding of opsins, providing important candidate genes to investigate the genetic basis of female preference variation in this model system.  相似文献   

4.
The guppy is known to exhibit remarkable interindividual variations in spectral sensitivity of middle to long wavelength-sensitive (M/LWS) cone photoreceptor cells. The guppy has four M/LWS-type opsin genes (LWS-1, LWS-2, LWS-3 and LWS-4) that are considered to be responsible for this sensory variation. However, the allelic variation of the opsin genes, particularly in terms of their absorption spectrum, has not been explored in wild populations. Thus, we examined nucleotide variations in the four M/LWS opsin genes as well as blue-sensitive SWS2-B and ultraviolet-sensitive SWS1 opsin genes for comparison and seven non-opsin nuclear loci as reference genes in 10 guppy populations from various light environments in Trinidad and Tobago. For the first time, we discovered a potential spectral variation (180 Ser/Ala) in LWS-1 that differed at an amino acid site known to affect the absorption spectra of opsins. Based on a coalescent simulation of the nucleotide variation of the reference genes, we showed that the interpopulation genetic differentiation of two opsin genes was significantly larger than the neutral expectation. Furthermore, this genetic differentiation was significantly related to differences in dissolved oxygen (DO) level, and it was not explained by the spatial distance between populations. The DO levels are correlated with eutrophication that possibly affects the color of aquatic environments. These results suggest that the population diversity of opsin genes is significantly driven by natural selection and that the guppy could adapt to various light environments through color vision changes.  相似文献   

5.
Theoretical models of sexual selection suggest that male courtship signals can evolve through the build‐up of genetic correlations between the male signal and female preference. When preference is mediated via increased sensitivity of the signal characteristics, correlations between male signal and perception/sensitivity are expected. When signal expression is limited to males, we would expect to find signal‐sensitivity correlations in males. Here, we document such a correlation within a breeding population of threespine stickleback mediated by differences in opsin expression. Males with redder nuptial coloration express more long‐wavelength‐sensitive (LWS) opsin, making them more sensitive to orange and red. This correlation is not an artifact of shared tuning to the optical microhabitat. Such correlations are an essential feature of many models of sexual selection, and our results highlight the potential importance of opsin expression variation as a substrate for signal‐preference evolution. Finally, these results suggest a potential sensory mechanism that could drive negative frequency‐dependent selection via male–male competition and thus maintain variation in male nuptial color.  相似文献   

6.
Brooks R 《Genetica》2002,116(2-3):343-358
The evolutionary significance of variation in mate choice behaviour is currently a subject of some debate and considerable empirical study. Here, I review recent work on variation within and among guppy (Poecilia reticulata) populations in female mate choice and mating preferences. Empirical results demonstrate that there is substantial variation within and among populations in female responsiveness and choosiness, and much of this variation is genetic. Evidence for variation in preference functions also exists, but this appears to be more equivocal and the relative importance of genetic variation is less clear cut. In the second half of this review I discuss the potential significance of this variation to three important evolutionary issues: the presence of multiple male ornaments, the maintenance of polymorphism and divergence in mate recognition among populations. Studies of genetic variation in mate choice within populations indicate that females have complex, multivariate preferences that are able to evolve independently to some extent. These findings suggest that the presence of multiple male ornaments may be due to multiple female mating preferences. The extreme polymorphism in male guppy colour patterns demands explanation, yet no single satisfactory explanation has yet emerged. I review several old ideas and a few new ones in order to identify the most promising potential explanations for future empirical testing. Among these are negative frequency dependent selection, environmental heterogeneity coupled with gene flow, and genetic constraints. Last, I review the relative extent of within and among-population variation in mate choice and mating preferences in order to assess why guppies have not speciated despite a history of isolation and divergence. I argue that variation within guppy populations in mate choice and enhanced mating success of new immigrants to a pool are major impediments to population divergence of the magnitude that would be required for speciation to occur.  相似文献   

7.
Light environments critically impact species that rely on vision to survive and reproduce. Animal visual systems must accommodate changes in light that occur from minutes to years, yet the mechanistic basis of their response to spectral (color) changes is largely unknown. Here, we used a laboratory experiment where replicate guppy populations were kept under three different light environments for up to 8–12 generations to explore possible differences in the expression levels of nine guppy opsin genes. Previous evidence for opsin expression‐light environment “tuning” has been either correlative or focused exclusively on the relationship between the light environment and opsin expression over one or two generations. In our multigeneration experiment, the relative expression levels of nine different guppy opsin genes responded differently to light environment changes: some did not respond, while others differed due to phenotypic plasticity. Moreover, for the LWS‐1 opsin we found that, while we observed a wide range of plastic responses under different light conditions, common plastic responses (where the population replicates all followed the same trajectory) occurred only after multigenerational exposure to different light environments. Taken together this suggests that opsin expression plasticity plays an important role in light environment “tuning” in different light environments on different time scales, and, in turn, has important implications for both visual system function and evolution.  相似文献   

8.
Ecological speciation is facilitated when divergent adaptation has direct effects on selective mating. Divergent sensory adaptation could generate such direct effects, by mediating both ecological performance and mate selection. In aquatic environments, light attenuation creates distinct photic environments, generating divergent selection on visual systems. Consequently, divergent sensory drive has been implicated in the diversification of several fish species. Here, we experimentally test whether divergent visual adaptation explains the divergence of mate preferences in Haplochromine cichlids. Blue and red Pundamilia co‐occur across south‐eastern Lake Victoria. They inhabit different photic conditions and have distinct visual system properties. Previously, we documented that rearing fish under different light conditions influences female preference for blue versus red males. Here, we examine to what extent variation in female mate preference can be explained by variation in visual system properties, testing the causal link between visual perception and preference. We find that our experimental light manipulations influence opsin expression, suggesting a potential role for phenotypic plasticity in optimizing visual performance. However, variation in opsin expression does not explain species differences in female preference. Instead, female preference covaries with allelic variation in the long‐wavelength‐sensitive opsin gene (LWS), when assessed under broad‐spectrum light. Taken together, our study presents evidence for environmental plasticity in opsin expression and confirms the important role of colour perception in shaping female mate preferences in Pundamilia. However, it does not constitute unequivocal evidence for the direct effects of visual adaptation on assortative mating.  相似文献   

9.

Background  

Comparisons of functionally important changes at the molecular level in model systems have identified key adaptations driving isolation and speciation. In cichlids, for example, long wavelength-sensitive (LWS) opsins appear to play a role in mate choice and male color variation within and among species. To test the hypothesis that the evolution of elaborate coloration in male guppies (Poecilia reticulata) is also associated with opsin gene diversity, we sequenced long wavelength-sensitive (LWS) opsin genes in six species of the family Poeciliidae.  相似文献   

10.
Although mate choice by males does occur in nature, our understanding of its importance in driving evolutionary change remains limited compared with that for female mate choice. Recent theoretical models have shown that the evolution of male mate choice is more likely when individual variation in male mating effort and mating preferences exist and positively covary within populations. However, relatively little is known about the nature of such variation and its maintenance within natural populations. Here, using the Trinidadian guppy (Poecilia reticulata) as a model study system, we report that mating effort and mating preferences in males, based on female body length (a strong correlate of fecundity), positively covary and are significantly variable among subjects. Individual males are thus consistent, but not unanimous, in their mate choice. Both individual mating effort (including courtship effort) and mating preference were significantly repeatable. These novel findings support the assumptions and predictions of recent evolutionary models of male mate choice, and are consistent with the presence of additive genetic variation for male mate choice based on female size in our study population and thus with the opportunity for selection and further evolution of large female body size through male mate choice.  相似文献   

11.
Although females in numerous species generally prefer males with larger, brighter and more elaborate sexual traits, there is nonetheless considerable intra‐ and interpopulation variation in mating preferences amongst females that requires explanation. Such variation exists in the Trinidadian guppy, Poecilia reticulata, an important model organism for the study of sexual selection and mate choice. While female guppies tend to prefer more ornamented males as mates, particularly those with greater amounts of orange coloration, there remains variation both in male traits and female mating preferences within and between populations. Male body size is another trait that is sexually selected through female mate choice in some species, but has not been examined as extensively as body coloration in the guppy despite known intra‐ and interpopulation variation in this trait among adult males and its importance for survivorship in this species. In this study, we used a dichotomous‐choice test to quantify the mating preferences of female guppies, originating from a low‐predation population in Trinidad, for two male traits, body length and area of the body covered with orange and black pigmentation, independently of each other. We expected strong female mating preferences for both male body length and coloration in this population, given relaxation from predation and presumably relatively low cost of choice. Females indeed exhibited a strong preference for larger males as expected, but surprisingly a weaker (but nonetheless significant) preference for orange and black coloration. Interestingly, larger females demonstrated stronger preferences for larger males than did smaller females, which could potentially lead to size‐assortative mating in nature.  相似文献   

12.
Theories of sexual and natural selection predict coevolution of visual perception with conspecific colour and/or the light environment animals occupy. One way to test these theories is to focus on the visual system, which can be achieved by studying the opsin-based visual pigments that mediate vision. Birds vary greatly in colour, but opsin gene coding sequences and associated visual pigment spectral sensitivities are known to be rather invariant across birds. Here, I studied expression of the four cone opsin genes (Lws, Rh2, Sws2 and Sws1) in 16 species of New World warblers (Parulidae). I found levels of opsin expression vary both across species and between the sexes. Across species, female, but not male Sws2 expression is associated with an index of sexual selection, plumage dichromatism. This fits predictions of classic sexual selection models, in which the sensory system changes in females, presumably impacting female preference, and co-evolves with male plumage. Expression of the opsins at the extremes of the light spectrum, Lws and Uvs, correlates with the inferred light environment occupied by the different species. Unlike opsin spectral tuning, regulation of opsin gene expression allows for fast adaptive evolution of the visual system in response to natural and sexual selection, and in particular, sex-specific selection pressures.  相似文献   

13.
Sexual selection is widely hypothesized to facilitate the evolution of reproductive isolation through divergence in sexual traits and sexual trait preferences among populations. However, direct evidence of divergent sexual selection causing intraspecific trait divergence remains limited. Using the wolf spider Schizocosa crassipes, we characterized patterns of female mate choice within and among geographic locations and related those patterns to geographic variation in male display traits to test whether divergent sexual selection caused by mate choice explains intraspecific trait variation. We found evidence of phenotypic selection on male behavior arising from female mate choice, but no evidence that selection varied among locations. Only those suites of morphological and behavioral traits that did not influence mate choice varied geographically. These results are inconsistent with ongoing divergent sexual selection underlying the observed intraspecific divergence in male display traits. These findings align with theory on the potentially restrictive conditions under which divergent sexual selection may persist, and suggest that long‐term studies capable of detecting periodic or transient divergent sexual selection will be critical to rigorously assess the relative importance of divergent sexual selection in intraspecific trait divergence.  相似文献   

14.
Positive selection can be demonstrated by statistical analysis when non-synonymous nucleotide substitutions occur more frequently than synonymous substitutions (dN>dS). This pattern of sequence evolution has been observed in the rhodopsin gene of cichlids. Mutations in opsin genes resulting in amino acid (AA) replacement appear to be associated with the evolution of specific color patterns and the evolution of courtship behaviors. Within fish, AA replacements in opsin proteins have improved vision at great depths and have occurred in deep-sea species. Salmonids experience diverse photic environments during their life history. Furthermore, sexual selection has resulted in species-specific male and female coloration during spawning. To look for evidence of positive selection in salmonid opsins, we sequenced the RH1, RH2, LWS, SWS1, and SWS2 genes from six Pacific salmon species as well as the Atlantic salmon. These salmonids include landlocked and migratory species and species that vary in their coloration during spawning. In each opsin gene comparison from all species sampled, traditional dN:dS analysis did not indicate positive selection. However, the more sensitive Creevey–McInerney statistical analysis indicates that RH1 and RH2 experienced positive selection early in the evolution and speciation of salmonids.  相似文献   

15.
Vision represents an excellent model for studying adaptation, given the genotype‐to‐phenotype map that has been characterized in a number of taxa. Fish possess a diverse range of visual sensitivities and adaptations to underwater light, making them an excellent group to study visual system evolution. In particular, some speciose but understudied lineages can provide a unique opportunity to better understand aspects of visual system evolution such as opsin gene duplication and neofunctionalization. In this study, we showcase the visual system evolution of neotropical Characiformes and the spectral tuning mechanisms they exhibit to modulate their visual sensitivities. Such mechanisms include gene duplications and losses, gene conversion, opsin amino acid sequence and expression variation, and A1/A2‐chromophore shifts. The Characiforms we studied utilize three cone opsin classes (SWS2, RH2, LWS) and a rod opsin (RH1). However, the characiform's entire opsin gene repertoire is a product of dynamic evolution by opsin gene loss (SWS1, RH2) and duplication (LWS, RH1). The LWS‐ and RH1‐duplicates originated from a teleost specific whole‐genome duplication as well as characiform‐specific duplication events. Both LWS‐opsins exhibit gene conversion and, through substitutions in key tuning sites, one of the LWS‐paralogues has acquired spectral sensitivity to green light. These sequence changes suggest reversion and parallel evolution of key tuning sites. Furthermore, characiforms' colour vision is based on the expression of both LWS‐paralogues and SWS2. Finally, we found interspecific and intraspecific variation in A1/A2‐chromophores proportions, correlating with the light environment. These multiple mechanisms may be a result of the diverse visual environments where Characiformes have evolved.  相似文献   

16.
Paul  REL  Lafond  T  Müller-Graf  CDM  Nithiuthai  S  Brey  PT  Koella  JC 《BMC evolutionary biology》2004,4(1):1-13

Background

Theoretical studies suggest that direct and indirect selection have the potential to cause substantial evolutionary change in female mate choice. Similarly, sexual selection is considered a strong force in the evolution of male attractiveness and the exaggeration of secondary sexual traits. Few studies have, however, directly tested how female mate choice and male attractiveness respond to selection. Here we report the results of a selection experiment in which we selected directly on female mating preference for attractive males and, independently, on male attractiveness in the guppy, Poecilia reticulata. We measured the direct and correlated responses of female mate choice and male attractiveness to selection and the correlated responses of male ornamental traits, female fecundity and adult male and female survival.

Results

Surprisingly, neither female mate choice nor male attractiveness responded significantly to direct or to indirect selection. Fecundity did differ significantly among lines in a way that suggests a possible sexually-antagonistic cost to male attractiveness.

Conclusions

The opportunity for evolutionary change in female mate choice and male attractiveness may be much smaller than predicted by current theory, and may thus have important consequences for how we understand the evolution of female mate choice and male attractiveness. We discuss a number of factors that may have constrained the response of female choice and male attractiveness to selection, including low heritabilities, low levels of genetic (co)variation in the multivariate direction of selection, sexually-antagonistic constraint on sexual selection and the "environmental covariance hypothesis".
  相似文献   

17.
Mate choice has important evolutionary consequences because it influences assortative mating and the level of genetic variation maintained within populations. In species with genetically determined polymorphisms, nonrandom mate choice may affect the evolutionary stability and maintenance (or loss) of alternative phenotypes. We examined the mating pattern in the colour polymorphic Gouldian finch (Erythrura gouldiae), and the role of mate choice, both female and male, in maintaining the three discrete head colours (black, red and yellow). In both large captive and wild populations, Gouldian finches paired assortatively with respect to head colour. In mate choice trials, females showed a strong preference for mates with the most elaborate sexually dimorphic traits (i.e. more chromatic UV/blue plumage and longer pin-tail feathers), but did not discriminate assortatively. Unexpectedly, however, males were particularly choosy, associating and pairing only with females of their own morph-type. Although female mate choice is generally invoked as the major selective force maintaining conspicuous male colouration in sexually dichromatic species, and is typically thought to drive nonrandom mating, these findings suggest that mutual mate choice and male mate choice in particular, are an important yet neglected component of selection.  相似文献   

18.
19.
Mate choice is often based on multiple signal traits and can be influenced by context-dependent factors. Understanding the importance of these signals and factors can be difficult because they are often correlated and might interact. Here, we experimentally disentangle the effects of familiarity, kinship, pattern rarity, and ornament patterns on mate choice in guppies. We estimate whether these factors alter sexual selection on six phenotypic traits known to influence male attractiveness. Rarity of the male's phenotype is the only context-dependent factor that significantly influenced female mating decisions, with common patterns being least attractive. This preference for rare male patterns is a source of negative frequency-dependent selection that may contribute to maintaining the extreme polymorphism in male guppy coloration. Neither visual familiarity nor relatedness between mating partners had any significant effect on mate choice decisions. There was significant linear and nonlinear sexual selection on ornamental traits, but this was not influenced by the context-dependent measures. Our approach highlights the complexity of female mate choice and sexual selection, as well as the value of combining multifactorial experiments with multivariate selection analyses. Our study shows that both negative frequency-dependent selection and disruptive selection contribute to the maintenance of extreme polymorphism in guppies.  相似文献   

20.
The haplochromine cichlids of Lake Victoria constitute a classical example of explosive speciation. Extensive intra- and interspecific variation in male nuptial coloration and female mating preferences, in the absence of postzygotic isolation between species, has inspired the hypothesis that sexual selection has been a driving force in the origin of this species flock. This hypothesis rests on the premise that the phenotypic traits that underlie behavioural reproductive isolation between sister species diverged under sexual selection within a species. We test this premise in a Lake Victoria cichlid, by using laboratory experiments and field observations. We report that a male colour trait, which has previously been shown to be important for behavioural reproductive isolation between this species and a close relative, is under directional sexual selection by female mate choice within this species. This is consistent with the hypothesis that female choice has driven the divergence in male coloration between the two species. We also find that male territoriality is vital for male reproductive success and that multiple mating by females is common.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号