首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monoclonal antibody (MAb) 12F5 reacted with 35 Escherichia coli O26 isolates and cross-reacted with 1 of 365 non-E. coli O26 isolates. MAb 15C4 reacted with 30 E. coli O111 strains and 8 Salmonella O35 strains (possessing identical O antigen) but not with 362 other bacterial strains. Lipopolysaccharide immunoblots confirmed MAb O-antigen specificity.  相似文献   

2.
AIMS: Production of a monoclonal antibody (MAb) to Escherichia coli O157 to develop a rapid test using a sandwich ELISA (sELISA) format. METHODS AND RESULTS: A MAb (7A6) was developed to the long-chain lipopolysaccharide of E. coli O157. A sELISA developed with the MAb reacted with 28 bovine and seven human enterohaemorrhagic E. coli (EHEC) O157 strains and also with two enterotoxigenic E. coli O157 strains. Cross-reaction to a rabbit diarrhoeal E.coli O15, Citrobacter freundii, Salmonella urbana and Vibrio cholerae O1 Inaba was detected. CONCLUSION: A MAb-based sELISA to detect E. coli O157 was produced. Its application to field samples is required to fully determine its prospective use for the detection of EHEC O157, to evaluate the non-specific interference of the cross-reacting strains. SIGNIFICANCE AND IMPACT OF THE STUDY: The assay produced is not wholly specific to EHEC O157, but has the potential to be used as a rapid method for screening large numbers of samples for E. coli O157.  相似文献   

3.
Two murine monoclonal antibodies (MAbs) (2B7 and 46E9-9) reactive with the H7 flagellar antigen of Escherichia coli were produced and characterized. A total of 217 E. coli strains (48 O157:H7, 4 O157:NM, 23 O157:non-H7, 22 H7:non-O157, and 120 non-O157:nonH7), 17 Salmonella serovars, and 29 other gram-negative bacteria were used to evaluate the reactivities of the two MAbs by indirect enzyme-linked immunosorbent assay (ELISA). Both MAbs reacted strongly with all E. coli strains possessing the H7 antigen and with H23- and H24-positive E. coli strains. Indirect ELISA MAb specificity was confirmed by inhibition ELISA and by Western blotting (immunoblotting), using partially purified flagellins from E. coli O157:H7 and other E. coli strains. On a Western blot, MAb 46E9-9 was more reactive against H7 flagellin of E. coli O157:H7 than against H7 flagellin of E. coli O1:K1:H7. Competition ELISA suggested that MAbs 2B7 and 46E9-9 reacted with closely related H7 epitopes. When the ELISA reactivities of the MAbs and two commercially available polyclonal anti-H7 antisera were compared, both polyclonal antisera and MAbs reacted strongly with E. coli H7 bacteria. However, the polyclonal antisera cross-reacted strongly both with non-H7 E. coli and with many non-E. coli bacteria. The polyclonal antisera also reacted strongly with H23 and H24 E. coli isolates. The data suggest the need to define serotype-specific epitopes among H7, H23, and H24 E. coli flagella. The anti-H7 MAbs described in this report have the potential to serve as high-quality diagnostic reagents, used either alone or in combination with O157-specific MAbs, to identify or detect E. coli O157:H7 in food products or in human and veterinary clinical specimens.  相似文献   

4.
AIMS: The aim of this study was to isolate Escherichia coli O26, O103, O111 and O145 from 745 samples of bovine faeces using (i) immunomagnetic separation (IMS) beads coated with antibodies to lipopolysaccharide, and slide agglutination (SA) tests and (ii) PCR and DNA probes for the detection of the Verocytotoxin (VT) genes. METHODS AND RESULTS: IMS-SA tests detected 132 isolates of presumptive E. coli O26, 112 (85%) were confirmed as serogroup O26 and 102 had the VT genes. One hundred and twenty-two strains of presumptive E. coli O103 were isolated by IMS-SA, 45 (37%) were confirmed as serogroup O103 but only one of these strains was identified as Verocytotoxin-producing E. coli (VTEC). Using the PCR/DNA probe method, 40 strains of VTEC O26 and three strains of VTEC O103 were isolated. IMS-SA identified 21 strains of presumptive E. coli O145, of which only four (19%) were confirmed as serogroup O145. VTEC of this serogroup was not detected by either IMS-SA or PCR/DNA probes. E. coli O111 was not isolated by either method. CONCLUSION: IMS beads were 2.5 times more sensitive than PCR/DNA probe methods for the detection of VTEC O26 in bovine faeces. SIGNIFICANCE AND IMPACT OF THE STUDY: IMS-SA is a sensitive method for detecting specific E. coli serogroups. However, the specificity of this method would be enhanced by the introduction of selective media and the use of tube agglutination tests for confirmation of the preliminary SA results.  相似文献   

5.
We identified Shiga toxin gene (stx)-negative Escherichia coli O26:H11 and O26:NM (nonmotile) strains as the only pathogens in the stools of five patients with hemolytic-uremic syndrome (HUS). Because the absence of stx in E. coli associated with HUS is unusual, we examined the strains for potential virulence factors and interactions with microvascular endothelial cells which are the major targets affected during HUS. All five isolates possessed the enterohemorrhagic E. coli (EHEC)-hlyA gene encoding EHEC hemolysin (EHEC-Hly), expressed the enterohemolytic phenotype, and were cytotoxic, in dose- and time-dependent manners, to human brain microvascular endothelial cells (HBMECs). Significantly reduced cytotoxicity in an EHEC-Hly-negative spontaneous derivative of one of these strains, and a dose- and time-dependent cytotoxicity of recombinant E. coli O26 EHEC-Hly to HBMECs, suggest that the endothelial cytotoxicity of these strains was mediated by EHEC-Hly. The toxicity of EHEC-Hly to microvascular endothelial cells plausibly contributes to the virulence of the stx-negative E. coli O26 strains and to the pathogenesis of HUS.  相似文献   

6.
This study investigated the shedding of Escherichia coli O26, O103, O111, O145, and O157 in a cohort of beef calves from birth over a 5-month period and assessed the relationship between shedding in calves and shedding in their dams, the relationship between shedding and scouring in calves, and the effect of housing on shedding in calves. Fecal samples were tested by immunomagnetic separation and by PCR and DNA hybridization assays. E. coli O26 was shed by 94% of calves. Over 90% of E. coli O26 isolates carried the vtx(1), eae, and ehl genes, 6.5% carried vtx(1) and vtx(2), and one isolate carried vtx(2) only. Serogroup O26 isolates comprised seven pulsed-field gel electrophoresis (PFGE) patterns but were dominated by one pattern which represented 85.7% of isolates. E. coli O103 was shed by 51% of calves. Forty-eight percent of E. coli O103 isolates carried eae and ehl, 2% carried vtx(2), and none carried vtx(1). Serogroup O103 isolates comprised 10 PFGE patterns and were dominated by two patterns representing 62.5% of isolates. Shedding of E. coli O145 and O157 was rare. All serogroup O145 isolates carried eae, but none carried vtx(1) or vtx(2). All but one serogroup O157 isolate carried vtx(2), eae, and ehl. E. coli O111 was not detected. In most calves, the temporal pattern of E. coli O26 and O103 shedding was random. E. coli O26 was detected in three times as many samples as E. coli O103, and the rate at which calves began shedding E. coli O26 for the first time was five times greater than that for E. coli O103. For E. coli O26, O103, and O157, there was no association between shedding by calves and shedding by dams within 1 week of birth. For E. coli O26 and O103, there was no association between shedding and scouring, and there was no significant change in shedding following housing.  相似文献   

7.
AIMS: To improve the sensitivity of a monoclonal antibody (MAb 2F3) based enteropathogenic Escherichia coli (EPEC)/enterohaemorrhagic E. coli (EHEC) serogroup O26-specific sandwich ELISA (sELISA), using a capture/enrichment format of the assay. METHODS AND RESULTS: The sELISA utilized an EPEC/EHEC O26-specific MAb 2F3 as the capture reagent and an E. coli serogroup O26 lipopolysaccharide-specific polyclonal antibody in the development stage. Wells containing faeces test samples from bovine enteritis cases and agar colony sweep cultures from human diarrhoea cases, after a 2-h capture stage, were washed and enrichment of the captured cells was encouraged by addition of tryptone soya broth. After overnight incubation, the contents of each well were transferred to sterile wells and the sELISA completed. Any sELISA positive samples were then subcultured onto blood agar to recover and further characterize the positive cultures. The assay had a sensitivity of 10(3) CFU ml(-1). ELISA positive samples consisted of 21 (4.8%) of the 442 bovine and 19 (3.7%) of the 519 human samples tested, and ELISA positive EPEC/EHEC O26 strains were isolated from 11 and three of these samples respectively. CONCLUSION: The capture/enrichment method improved the sensitivity of a MAb-based sELISA for the detection of EPEC/EHEC O26 strains, and also contributed to an improved isolation rate of the organism from field samples. SIGNIFICANCE AND IMPACT OF THE STUDY: The application of a specific MAb in a capture/enrichment format of the sELISA, provides a prospectively suitable screening method for the detection of pathogenic bacteria from mixed culture samples.  相似文献   

8.
This study reports two novel selective differential media. A first differential medium can be applied in methods for the isolation of non-O157 Shiga toxin-producing Escherichia coli (STEC) serotypes (O26, O103, O111 and O145) from food or faeces. A second differential medium was designed for both sorbitol-positive and -negative O157 STEC strains. Selective differential media are based on a chromogenic compound to signal beta-galactosidase activity and one or more fermentative carbon sources. The chromogenic marker and carbohydrates were combined with a pH indicator and several inhibitory components, which resulted in highly specific differentiation media. Consecutive use of a serotype-dependent choice of confirmation media resulted in a very low incidence of false-positive isolates when comparing clinical STEC strains with a collection of commensal E. coli strains.  相似文献   

9.
Enterohemorrhagic Escherichia coli (EHEC) strains of serogroup O26 cause hemolytic-uremic syndrome (HUS) whereas atypical enteropathogenic E. coli (aEPEC) O26 typically cause uncomplicated diarrhea but have been also isolated from HUS patients. To gain insight into the virulence of aEPEC O26, we compared the presence of O island (OI) 122, which is associated with enhanced virulence in EHEC strains, among aEPEC O26 and EHEC O26 clinical isolates. We also tested these strains for the high pathogenicity island (HPI) which is a fitness island. All 20 aEPEC O26 and 20 EHEC O26 investigated contained virulence genes located within OI-122 (efa1/lifA, nleB, nleE, ent). In both aEPEC O26 and EHEC O26, OI-122 was linked to the locus for enterocyte effacement, forming a mosaic island which was integrated in pheU. Moreover, strains of these two pathotypes shared a conserved HPI. These data support a close relatedness between aEPEC O26 and EHEC O26 and have evolutionary implications. The presence of OI-122 in aEPEC O26 might contribute to their pathogenic potential.  相似文献   

10.
Polymyxin-based enzyme-linked immunosorbent assay (polymyxin-ELISA) systems were developed for the detection of Escherichia coli O111 and O26 in ground beef after enrichment. Polymyxin immobilized in the wells of a microtiter plate served as a high affinity adsorbent for lipopolysaccharide (LPS) antigens, which were detected immunoenzymatically using commercially available anti-E. coli O111 or anti-E. coli O26 antisera. The polymyxin-ELISA sensitively detected E. coli strains bearing the O111 and O26 LPS antigens, discriminating between these target strains and a panel of various non-target Gram negative and Gram positive bacteria. The detection of E. coli O111 and O26 strains inoculated into ground beef was achieved after enrichment in either modified trypticase soy broth (TSB) with novobiocin, or the serotype-specific medium TSB supplemented with cefixime and vancomycin (E. coli O111), and the same medium containing potassium tellurite (E. coli O26). The polymyxin-ELISA shows promise as a rapid, simple and inexpensive screening tool for E. coli O111 and O26 in enrichment cultures of ground beef.  相似文献   

11.
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are a diverse group of food-borne pathogens with various levels of virulence for humans. In this study, we describe the use of a combination of multiple real-time PCR assays for the screening of 400 raw-milk cheeses for the five main pathogenic STEC serotypes (O26:H11, O103:H2, O111:H8, O145:H28, and O157:H7). The prevalences of samples positive for stx, intimin-encoding gene (eae), and at least one of the five O group genetic markers were 29.8%, 37.3%, and 55.3%, respectively. The H2, H7, H8, H11, and H28 fliC alleles were highly prevalent and could not be used as reliable targets for screening. Combinations of stx, eae variants, and O genetic markers, which are typical of the five targeted STEC serotypes, were detected by real-time PCR in 6.5% of the cheeses (26 samples) and included stx-wzx(O26)-eae-β1 (4.8%; 19 samples), stx-wzx(O103)-eae-ε (1.3%; five samples), stx-ihp1(O145)-eae-γ1 (0.8%; three samples), and stx-rfbE(O157)-eae-γ1 (0.3%; one sample). Twenty-eight immunomagnetic separation (IMS) assays performed on samples positive for these combinations allowed the recovery of seven eaeβ1-positive STEC O26:H11 isolates, whereas no STEC O103:H2, O145:H28, or O157:H7 strains could be isolated. Three stx-negative and eaeβ1-positive E. coli O26:[H11] strains were also isolated from cheeses by IMS. Colony hybridization allowed us to recover STEC from stx-positive samples for 15 out of 45 assays performed, highlighting the difficulties encountered in STEC isolation from dairy products. The STEC O26:H11 isolates shared the same virulence genetic profile as enterohemorrhagic E. coli (EHEC) O26:H11, i.e., they carried the virulence-associated genes EHEC-hlyA, katP, and espP, as well as genomic O islands 71 and 122. Except for one strain, they all contained the stx1 variant only, which was reported to be less frequently associated with human cases than stx2. Pulsed-field gel electrophoresis (PFGE) analysis showed that they displayed high genetic diversity; none of them had patterns identical to those of human O26:H11 strains investigated here.  相似文献   

12.
A national survey of Escherichia coli O26 in Norwegian sheep flocks was conducted, using fecal samples to determine the prevalence. In total, 491 flocks were tested, and E. coli O26 was detected in 17.9% of the flocks. One hundred forty-two E. coli O26 isolates were examined for flagellar antigens (H typing) and four virulence genes, including stx and eae, to identify possible Shiga toxin-producing E. coli (STEC) and enteropathogenic E. coli (EPEC). Most isolates (129 out of 142) were identified as E. coli O26:H11. They possessed eae and may have potential as human pathogens, although only a small fraction were identified as STEC O26:H11, giving a prevalence in sheep flocks of only 0.8%. Correspondingly, the sheep flock prevalence of atypical EPEC (aEPEC) O26:H11 was surprisingly high (15.9%). The genetic relationship between the E. coli O26:H11 isolates was investigated by pulsed-field gel electrophoresis (PFGE) and multilocus variable number tandem repeat analysis (MLVA), identifying 63 distinct PFGE profiles and 22 MLVA profiles. Although the MLVA protocol was less discriminatory than PFGE and a few cases of disagreement were observed, comparison by partition mapping showed an overall good accordance between the two methods. A close relationship between a few isolates of aEPEC O26:H11 and STEC O26:H11 was identified, but all the E. coli O26:H11 isolates should be considered potentially pathogenic to humans. The present study consisted of a representative sampling of sheep flocks from all parts of Norway. This is the first large survey of sheep flocks focusing on E. coli O26 in general, including results of STEC, aEPEC, and nonpathogenic isolates.  相似文献   

13.
Enrichment, colony isolation and confirmation are three general phases of a standard diagnostic method. E. coli O 157 (the main member of EHEC group) differs metabolically from other strains of E. coli in a number of ways. Most isolates are slow- or non-fermenters of sorbitol and lack the enzyme beta-glucuronidase (GUD). But, a variety of atypical strains of E. coli O157 (sorbitol-fermenting variants, nonmotile and GUD-positive) have been reported. The discovery of these atypical pathogenic strains brings into question the validity of testing for the pathogen only by biotyping. Using classical cultivation and immunomagnetic separation, we have isolated from food a few atypical E. coli O157 (sorbitol-fermenting strains, GUD positive, nonmotile O157 strain which does not agglutinate with O157 latex and does not produce Shiga toxin). On the other hand, non-O157 VTEC (O26 serotype) producing Shiga toxin was isolated from meat. Molecular markers of E. coli O157 and virulence-associated factors of strains with aberrant biochemical properties were studied by PCR. This method helped us in the final identification of isolates. Since it was suggested that the production of verotoxins (VT) is accompanied by the production of enterohemolysin (Ehly) such correlation has also been evaluated in respect to the collection of VTEC of human, animal and food origin.  相似文献   

14.
A previous national survey of Escherichia coli in Norwegian sheep detected eae-positive (eae(+)) E. coli O26:H11 isolates in 16.3% (80/491) of the flocks. The purpose of the present study was to evaluate the human-pathogenic potential of these ovine isolates by comparing them with E. coli O26 isolates from humans infected in Norway. All human E. coli O26 isolates studied carried the eae gene and shared flagellar type H11. Two-thirds of the sheep flocks and 95.1% of the patients harbored isolates containing arcA allele type 2 and espK and were classified as enterohemorrhagic E. coli (EHEC) (stx positive) or EHEC-like (stx negative). These isolates were further divided into group A (EspK2 positive), associated with stx(2-EDL933) and stcE(O103), and group B (EspK1 positive), associated with stx(1a). Although the stx genes were more frequently present in isolates from patients (46.3%) than in those from sheep flocks (5%), more than half of the ovine isolates in the EHEC/EHEC-like group had multiple-locus variable number of tandem repeat analysis (MLVA) profiles that were identical to those seen in stx-positive human O26:H11 isolates. This indicates that EHEC-like ovine isolates may be able to acquire stx-carrying bacteriophages and thereby have the possibility to cause serious illness in humans. The remaining one-third of the sheep flocks and two of the patients had isolates fulfilling the criteria for atypical enteropathogenic E. coli (aEPEC): arcA allele type 1 and espK negative (group C). The majority of these ovine isolates showed MLVA profiles not previously seen in E. coli O26:H11 isolates from humans. However, according to their virulence gene profile, the aEPEC ovine isolates should be considered potentially pathogenic for humans. In conclusion, sheep are an important reservoir of human-pathogenic E. coli O26:H11 isolates in Norway.  相似文献   

15.
Escherichia coli serogroup O26 consists of enterohemorrhagic E. coli (EHEC) and atypical enteropathogenic E. coli (aEPEC). The former produces Shiga toxins (Stx), major determinants of EHEC pathogenicity, encoded by bacteriophages; the latter is Stx negative. We have isolated EHEC O26 from patient stools early in illness and aEPEC O26 from stools later in illness, and vice versa. Intrapatient EHEC and aEPEC isolates had quite similar pulsed-field gel electrophoresis (PFGE) patterns, suggesting that they might have arisen by conversion between the EHEC and aEPEC pathotypes during infection. To test this hypothesis, we asked whether EHEC O26 can lose stx genes and whether aEPEC O26 can be lysogenized with Stx-encoding phages from EHEC O26 in vitro. The stx2 loss associated with the loss of Stx2-encoding phages occurred in 10% to 14% of colonies tested. Conversely, Stx2- and, to a lesser extent, Stx1-encoding bacteriophages from EHEC O26 lysogenized aEPEC O26 isolates, converting them to EHEC strains. In the lysogens and EHEC O26 donors, Stx2-converting bacteriophages integrated in yecE or wrbA. The loss and gain of Stx-converting bacteriophages diversifies PFGE patterns; this parallels findings of similar but not identical PFGE patterns in the intrapatient EHEC and aEPEC O26 isolates. EHEC O26 and aEPEC O26 thus exist as a dynamic system whose members undergo ephemeral interconversions via loss and gain of Stx-encoding phages to yield different pathotypes. The suggested occurrence of this process in the human intestine has diagnostic, clinical, epidemiological, and evolutionary implications.  相似文献   

16.
Cattle can be a reservoir of sorbitol-fermenting Escherichia coli O157 (SF E. coli O157) and a source of human diseases. In this study, six strains of SF E. coli O157 were isolated and characterized from cattle using an immunomagnetic separation procedure. PCR analysis of the SF E. coli O157 virulence markers showed that all six isolates tested positive for sfpA, rfbE and eaeA, and negative for terA, ureA, katP and espP. Two of the isolates contained the stx genes. Four isolates tested positive for enterohemorrhagic E. coli hlyA (EhlyA) by PCR but were nonhemolytic on the blood agar. Five isolates tested positive for the cdtA gene. The possession of these virulence factors was an indication of their pathogenic potential. The random amplified polymorphic DNA patterns, which were generated by the arbitrarily primed PCR of the SF E. coli O157 isolates from the cattle, were significantly different from those of the non-sorbitol-fermenting E. coli O157 (NSF E. coli O157) strains originating from cattle or humans. GelCompar analysis showed that the SF E. coli O157 isolates had only a 57% genetic similarity with the NSF E. coli strains. The minimal inhibitory concentration assay showed that imipenem inhibited the growth of the six isolates at a concentration of <4 microg/ml.  相似文献   

17.
Hybridomas secreting immunoglobulin A (IgA) monoclonal antibodies (MAbs) against Salmonella enteritidis lipopolysaccharide (LPS) were generated after mucosal immunization of BALB/c mice with heat killed bacteria. Antigen binding properties and specificity of the produced MAbs were studied in ELISA and immunoblotting with purified LPS. Two IgA MAbs agglutinated all Salmonella OD1 strains and all S. enteritidis clinical isolates. MAb 178H11 recognized O:9 antigen of subserogroup OD1 LPS. MAb 177E6/A9 reacted also with OD3 LPS antigen and agglutinated OD3 strains. These data suggest the existence of different O:9 antigen subspecificities, one presented in subgroup OD1 and the other common for OD1 and OD3. Thus the produced IgA MAbs prove to be useful reagents, which could differentiate OD1 and OD3 from OD2 strains.  相似文献   

18.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important food-borne pathogen in industrialized countries. We developed a rapid and simple test for detecting E. coli O157:H7 using a method based on restriction site polymorphisms. Restriction-site-specific PCR (RSS-PCR) involves the amplification of DNA fragments using primers based on specific restriction enzyme recognition sequences, without the use of endonucleases, to generate a set of amplicons that yield "fingerprint" patterns when resolved electrophoretically on an agarose gel. The method was evaluated in a blinded study of E. coli isolates obtained from environmental samples collected at beef cattle feedyards. The 54 isolates were all initially identified by a commonly used polyclonal antibody test as belonging to O157:H7 serotype. They were retested by anti-O157 and anti-H7 monoclonal antibody enzyme-linked immunosorbent assay (ELISA). The RSS-PCR method identified all 28 isolates that were shown to be E. coli O157:H7 by the monoclonal antibody ELISA as belonging to the O157:H7 serotype. Of the remaining 26 ELISA-confirmed non-O157:H7 strains, the method classified 25 strains as non-O157:H7. The specificity of the RSS-PCR results correlated better with the monoclonal antibody ELISA than with the polyclonal antibody latex agglutination tests. The RSS-PCR method may be a useful test to distinguish E. coli O157:H7 from a large number of E. coli isolates from environmental samples.  相似文献   

19.
Two mouse monoclonal antibodies (MAbs), viz. 2B7 and 2 D10 raised against haemagglutinin-neuraminidase glycoprotein of Newcastle disease virus (NDV) were used to identify several other field isolates and vaccine strains of NDV. These MAbs reacted specifically with all the NDV strains/isolates in Dot-ELISA whereas, only MAb 2D10 reacted with all the NDV strains/isolates in agar gel precipitation test. These two tests employing the MAbs were standardised for rapid diagnosis and identification of NDV.  相似文献   

20.
A mouse monoclonal antibody specific for the R3 lipopolysaccharide core type of Escherichia coli was used to determine the core type of E. coli O157:H7 and other non-O157 verotoxin-producing E. coli strains. Lipopolysaccharide extracts from 28 clinical isolates were examined by sodium dodecylsulfate-polyacrylamide gel electrophoresis and immunoblotting and all were found to have the R3 core. None of the core lipopolysaccharide from the strains tested reacted with the control R1 and R2 specific monoclonal antibodies. A common core type between all the verotoxin-producing E. coli strains tested may be significant when considering the immune response to these bacteria, and to the receptor for the VT bacteriophage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号