首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Calcitonin gene-related peptide (CGRP) is a vasodilatory peptide, and it is primarily synthesized in dorsal root ganglia (DRG). Plasma CGRP levels increase during pregnancy and with steroid hormones, and nerve growth factor (NGF) stimulates calcitonin/CGRP promoter and CGRP synthesis in DRG. We previously showed that CGRP levels in DRG were stimulated with steroid hormone treatments in vivo but not in vitro. Thus, the stimulation of CGRP by these hormones may be indirect through the upregulation of NGF effects. We hypothesized that the female sex steroid hormones upregulate NGF receptors, trkA and p75(NTR), in DRG. We examined the effects of 17 beta-estradiol (E(2)) and progesterone (P(4)) on NGF receptors in DRG obtained from ovariectomized (ovx) rats. Groups of 4 ovx rats were injected s.c. with 5 microg E(2), 4 mg P(4), or 5 microg E(2) + 4 mg P(4) in 0.2 ml sesame oil or injected with oil only and were killed at 6, 24, and 48 h. In addition, ovx rats were also injected s.c. with varying doses (0.2, 1.0, 5.0, 25 microg) of E(2) (0.5, 1.5, 4, 10 mg) P(4), and (5 microg) E(2) + (0.5, 1.5, 4.0, 10 mg) P(4) in 0.2 ml sesame oil, or vehicle, and killed at 6 (for E(2)) or 24 (for P(4) and E(2) + P(4)) h. Furthermore, groups of ovx rats were also killed at 12 and 24 h; 3 and 7 days; 2, 4, and 6 wk after ovariectomy. The DRGs were collected from all groups and then processed for Western immunoblotting to examine both trkA and p75(NTR) levels. Estradiol increased trkA at 6 h but not p75(NTR). Progesterone caused upregulation of trkA and p75(NTR) at 6 and 24 h. 17 beta-Estradiol + P(4) increased trkA at 6 and 24 h and p75(NTR) at all time points examined. One microgram of E(2) increased trkA but did not affect p75(NTR) levels. Progesterone at 4 and 10 mg upregulated trkA but only 10 mg P(4) increased p75(NTR). Five micrograms of E(2) coinjected with P(4) at 1.5 and 4 mg increased trkA, while p75(NTR) receptor was upregulated when coinjected with P(4) at 1.5 to 10 mg. The ovariectomy caused a decrease in trkA receptors compared to proestrus rats, and these decreases were significant by 6 wk, but surprisingly p75(NTR) increased at 2 wk after ovariectomy. 17 beta-Estradiol increased trkA but not p75(NTR) receptors in DRG, whereas P(4) caused increases in both trkA and p75(NTR) in DRG. In addition, the combination of these steroid hormones had more effect on both receptors than either hormone alone. Thus, we concluded that high levels of female steroid hormones such as those due to pregnancy or hormonal replacement therapy could increase NGF receptor expression in DRG that carry more NGF to elevate the CGRP synthesis in these groups. We suggested that the regulation of NGF receptors by ovarian steroids may underlie steroidal regulation of other factors such as CGRP.  相似文献   

2.
Calcitonin gene-related peptide (CGRP) levels in plasma and the dorsal root ganglia (DRG) are increased during pregnancy and in ovariectomized rats injected with ovarian hormones. Vasodilatory responses to CGRP are also increased in these animals. In the present study, we hypothesized that pregnancy and ovarian hormones elevate the contents of CGRP in perivascular nerves. We assessed CGRP-dependent mesenteric vascular relaxation induced by electrical field stimulation (EFS) and arterial content of CGRP. Because the mesenteric artery represents resistance vessels, segments of mesenteric arteries collected from female rats at different stages of the estrous cycle, pregnancy, or postpartum and from male rats were used in this study. The EFS-induced relaxation in the presence and absence of CGRP(8-37), an antagonist of CGRP, was used to measure CGRP-dependent relaxation, and radioimmunoassay (RIA) of tissue homogenates was used to assess changes in CGRP content in mesenteric branch arteries. The results show that CGRP-dependent, EFS-induced relaxation response was lower in female rats at diestrus and proestrus than in male rats, and no statistically significant differences were observed between Gestational Day 20 and Postpartum Day 2. The RIA revealed significantly lower mesenteric artery CGRP levels in female rats at proestrus, gestation, and postpartum than in female rats at diestrus or in male rats. We conclude that no correlation exists between CGRP-dependent, EFS-induced relaxation and CGRP content in the mesenteric arteries of these animal groups. Because both CGRP levels in DRG and serum are reported to be elevated, the reduced CGRP content in the vasculature during pregnancy and proestrus implicate enhanced basal release of CGRP at the nerve terminal in these animals.  相似文献   

3.
Estradiol valerate (EV)-induced polycystic ovaries (PCO) in rats are associated with higher ovarian release and content of norepinephrine, decreased beta2-adrenoceptors (ARs), and dysregulated expression of alpha1-AR subtypes, all preceded by an increase in the production of ovarian NGF. The aim of this study was to further elucidate the role of NGF in the ovaries by blocking the action of NGF during development of EV-induced PCO in rats. Control and EV-injected rats were treated with intraperitoneal injections of IgG (control and PCO groups) or with anti-NGF antibodies (anti-NGF and PCO anti-NGF groups) every third day for 5 wk starting from the day of PCO induction. Rat weight, estrous cyclicity, ovarian morphology, ovarian mRNA, and protein expression of alpha1-AR subtypes, beta2-AR, the NGF receptor tyrosine kinase A (TrkA), p75 neurotrophin receptor (p75NTR), and tyrosine hydroxylase (TH) were analyzed. Ovaries in both PCO and PCO anti-NGF groups decreased in size as well as in number and size of corpora lutea. mRNA expression of alpha1a-AR and TrkA in the ovaries was lower, whereas expression of alpha1b- and alpha1d-AR and TH was higher, in the PCO group than in controls. Protein quantities of alpha1-ARs, TrkA, p75NTR, and TH were higher in the PCO group compared with controls, whereas the protein content of beta2-AR was lower. Anti-NGF treatment in the PCO group restored all changes in mRNA and protein content, except that of alpha1b-AR and TrkA mRNAs, to control levels. The results indicate that the NGF/NGF receptor system plays a role in the pathogenesis of EV-induced PCO in rats.  相似文献   

4.
The neurosteroid dehydroepiandrosterone (DHEA), produced by neurons and glia, affects multiple processes in the brain, including neuronal survival and neurogenesis during development and in aging. We provide evidence that DHEA interacts with pro-survival TrkA and pro-death p75(NTR) membrane receptors of neurotrophin nerve growth factor (NGF), acting as a neurotrophic factor: (1) the anti-apoptotic effects of DHEA were reversed by siRNA against TrkA or by a specific TrkA inhibitor; (2) [(3)H]-DHEA binding assays showed that it bound to membranes isolated from HEK293 cells transfected with the cDNAs of TrkA and p75(NTR) receptors (K(D): 7.4 ± 1.75 nM and 5.6 ± 0.55 nM, respectively); (3) immobilized DHEA pulled down recombinant and naturally expressed TrkA and p75(NTR) receptors; (4) DHEA induced TrkA phosphorylation and NGF receptor-mediated signaling; Shc, Akt, and ERK1/2 kinases down-stream to TrkA receptors and TRAF6, RIP2, and RhoGDI interactors of p75(NTR) receptors; and (5) DHEA rescued from apoptosis TrkA receptor positive sensory neurons of dorsal root ganglia in NGF null embryos and compensated NGF in rescuing from apoptosis NGF receptor positive sympathetic neurons of embryonic superior cervical ganglia. Phylogenetic findings on the evolution of neurotrophins, their receptors, and CYP17, the enzyme responsible for DHEA biosynthesis, combined with our data support the hypothesis that DHEA served as a phylogenetically ancient neurotrophic factor.  相似文献   

5.
Nerve growth factor (NGF) is the ligand for two unrelated cellular receptors, TrkA and p75(NTR), and acts as a mediator in the development and maintenance of the mammalian nervous system. Signaling through TrkA kinase domains promotes neuronal survival, whereas activation of the p75(NTR) "death domains" induces apoptosis under correct physiological conditions. However, co-expression of these receptors leads to enhanced neuronal survival upon NGF stimulation, possibly through a ternary p75(NTR) x NGF x TrkA complex. We have expressed human p75(NTR) ligand binding domain as a secreted glycosylated protein in Trichoplusia ni cells. Following assembly and purification of soluble p75(NTR) x NGF complexes, mass spectrometry, analytical ultracentrifugation, and solution x-ray scattering measurements are indicative of 2:2 stoichiometry, which implies a symmetric complex. Molecular models of the 2:2 p75(NTR) x NGF complex based on these data are not consistent with the further assembly of either symmetric (2:2:2) or asymmetric (2:2:1) ternary p75(NTR) x NGF x TrkA complexes.  相似文献   

6.
Calcitonin gene-related peptide (CGRP) is a potent smooth muscle relaxant in a variety of tissues. We recently demonstrated that CGRP relaxes uterine tissue during pregnancy but not during labor. In the present study we examined whether uterine (125)I-CGRP binding and immunoreactive CGRP receptors are regulated by pregnancy and labor and by sex steroid hormones. We found that (125)I-CGRP binding to membrane preparations from uteri was elevated during pregnancy and decreased during labor and postpartum. Changes in immunoreactive CGRP receptors were similar to the changes in (125)I-CGRP binding in these tissues, suggesting pregnancy-dependent regulation of CGRP receptor protein. CGRP receptors were elevated by Day 7 of gestation, and a precipitous decrease in these receptors occurred on Day 22 of gestation prior to the onset of labor. Both (125)I-CGRP-binding and immunofluorescence studies indicated that CGRP receptors were localized to myometrial cells. Hormonal control of uterine CGRP receptors was assessed by the use of antiprogesterone RU-486, progesterone, and estradiol-17beta. RU-486 induced a decrease in uterine CGRP receptors during pregnancy (Day 19). On the other hand, progesterone prevented the fall in uterine CGRP receptors at term (Day 22). In addition, progesterone also increased uterine CGRP receptors in nonpregnant, ovariectomized rats, while estradiol had no effects. These hormone-induced changes in uterine CGRP receptors were demonstrated by (125)I-CGRP-binding, Western immunoblotting, and immunolocalization methods. These results indicate that CGRP receptors and CGRP binding in the rat uterus are increased with pregnancy and decreased at term. These receptors are localized to the myometrial cells, and progesterone is required for maintaining CGRP receptors in the rat uterus. Thus, the inhibitory effects of CGRP on uterine contractility are mediated through the changes in CGRP receptors and may play a role in uterine quiescence during pregnancy.  相似文献   

7.
The TrkA receptor is activated primarily by nerve growth factor (NGF), but it can also be activated by high concentrations of neurotrophin 3 (NT-3). The pan-neurotrophin receptor p75(NTR) strongly inhibits activation of TrkA by NT-3 but not by NGF. To examine the role of p75(NTR) in regulating the specificity of TrkA signaling, we expressed both receptors in Xenopus oocytes. Application of NGF or NT-3 to oocytes expressing TrkA alone resulted in efflux of (45)Ca(2+) by a phospholipase C-gamma-dependent pathway. Coexpression of p75(NTR) with TrkA inhibited (45)Ca(2+) efflux in response to NT-3 but not NGF. The inhibitory effect on NT-3 activation of TrkA increased with increasing expression of p75(NTR). Coexpression of a truncated p75(NTR) receptor lacking all but the first 9 amino acids of the cytoplasmic domain inhibited NT-3 stimulation of (45)Ca(2+) efflux, whereas coexpression of an epidermal growth factor receptor/p75(NTR) chimera (extracellular domain of epidermal growth factor receptor with transmembrane and cytoplasmic domains of p75(NTR)) did not inhibit NT-3 signaling through TrkA. These studies demonstrated that the extracellular domain of p75(NTR) was necessary to inhibit NT-3 signaling through TrkA. Remarkably, p75(NTR) binding to NT-3 was not required to prevent signaling through TrkA, since occupying p75(NTR) with brain-derived neurotrophic factor or anti-p75 antibody (REX) did not rescue the ability of NT-3 to activate (45)Ca(2+) efflux. These data suggested a physical association between TrkA and p75(NTR). Documenting this physical interaction, we showed that p75(NTR) and TrkA could be coimmunoprecipitated from Xenopus oocytes. Our results suggest that the interaction of these two receptors on the cell surface mediated the inhibition of NT-3-activated signaling through TrkA.  相似文献   

8.
In normal adult retinas, NGF receptor TrkA is expressed in retinal ganglion cells (RGC), whereas glia express p75(NTR). During retinal injury, endogenous NGF, TrkA, and p75(NTR) are up-regulated. Paradoxically, neither endogenous NGF nor exogenous administration of wild type NGF can protect degenerating RGCs, even when administered at high frequency. Here we elucidate the relative contribution of NGF and each of its receptors to RGC degeneration in vivo. During retinal degeneration due to glaucoma or optic nerve transection, treatment with a mutant NGF that only activates TrkA, or with a biological response modifier that prevents endogenous NGF and pro-NGF from binding to p75(NTR) affords significant neuroprotection. Treatment of normal eyes with an NGF mutant-selective p75(NTR) agonist causes progressive RGC death, and in injured eyes it accelerates RGC death. The mechanism of p75(NTR) action during retinal degeneration due to glaucoma is paracrine, by increasing production of neurotoxic proteins TNF-α and α(2)-macroglobulin. Antagonists of p75(NTR) inhibit TNF-α and α(2)-macroglobulin up-regulation during disease, and afford neuroprotection. These data reveal a balance of neuroprotective and neurotoxic mechanisms in normal and diseased retinas, and validate each neurotrophin receptor as a pharmacological target for neuroprotection.  相似文献   

9.
Nerve growth factor (NGF) promotes cell survival via binding to the tyrosine kinase receptor A (TrkA). Its precursor, proNGF, binds to p75(NTR) and sortilin receptors to initiate apoptosis. Current disagreement exists over whether proNGF acts neurotrophically following binding to TrkA. As in Alzheimer's disease the levels of proNGF increase and TrkA decrease, it is important to clarify the properties of proNGF. Here, wild-type and cleavage-resistant mutated forms (M) of proNGF were engineered and their binding characteristics determined. M-proNGF and NGF bound to p75(NTR) with similar affinities, whilst M-proNGF had a lower affinity than NGF for TrkA. M-proNGF behaved neurotrophically, albeit less effectively than NGF. M-proNGF addition resulted in phosphorylation of TrkA and ERK1/2, and in PC12 cells elicited neurite outgrowth and supported cell survival. Conversely, M-proNGF addition to cultured cortical neurons initiated caspase 3 cleavage. Importantly, these biological effects were shown to be mediated by unprocessed M-proNGF. Surprisingly, binding of the pro region alone to TrkA, at a site other than that of NGF, caused TrkA and ERK1/2 phosphorylation. Our data show that M-proNGF stimulates TrkA to a lesser degree than NGF, suggesting that in Alzheimer brain the increased proNGF : NGF and p75(NTR) : TrkA ratios may permit apoptotic effects to predominate over neurotrophic effects.  相似文献   

10.
BACKGROUND: The function and survival of pancreatic beta-cells strongly depend on glucose concentration and on autocrine secretion of peptide growth factors. NGF and its specific receptors TrkA and p75NTR play a pivotal role in islet survival and glucose-dependent insulin secretion. We therefore investigated whether or not glucose concentration influences expression of TrkA and p75NTR in rat islets and in INS-1E beta-cells at the mRNA and protein level (INS-1E). METHODS: Gene expression of the NGF receptors TrkA and p75NTR but also of the metabolic gene liver-type pyruvate kinase (L-PK) and the neurotrophin receptors TrkB and TrkC was studied by semi-quantitative PCR and by real-time PCR in islets and INS-1E beta-cells. RESULTS: In rat islets, high glucose exposure (25 mmol/l) increased gene expression of TrkA, p75NTR and L-PK. Expression of TrkA, p75NTR and L-PK reflected insulin secretion at the respective glucose concentration. In rat INS-1E insulinoma cells, expression of L-PK and p75NTR was suppressed by low glucose as in the islets, while expression of TrkA was strongly increased by low glucose levels and thus was regulated differently than in islets. Expression of TrkB and TrkC was not regulated by glucose concentration at all. TrkA protein was regulated in the same fashion as its mRNA expression, while p75NTR protein was not significantly regulated within 24 h. CONCLUSION: Glucose interacts with gene expression of TrkA and p75NTR that are strongly involved in beta-cell growth and glucose-dependent insulin secretion. The fact that TrkA expression is regulated the opposite way in islets and in INS-1E beta-cells might reflect their specific grade of differentiation and tendency to proliferate.  相似文献   

11.
Nerve growth factor (NGF) is a peptide displaying multiple cholinotropic activities. The aim of this work was to explain mechanisms of the positive and negative effects of NGF on phenotypic properties and viability of cholinergic cells. To discriminate these effects we used two p75NTR receptor-positive lines of cholinergic neuroblastoma cells, SN56 and T17 that are devoid of or express high affinity NGF (TrkA) receptors, respectively. cAMP and retinoic acid caused differentiation of both cell lines. In addition to the morphologic maturation, the increase of choline acetyltransferase activity, acetylcholine, Ca and cytoplasmic acetyl-CoA levels and decrease of mitochondrial acetyl-CoA and cell viability were observed. NGF caused similar effects in non-differentiated T17 cells but had no influence on non-differentiated SN56 cells. On the contrary, in both cAMP/all-trans-retinoic acid (RA) differentiated cell lines, NGF resulted in a similar suppression of cholinergic phenotype along with an increase of mitochondrial acetyl-CoA and cell susceptibility to nitric oxide and amyloid-beta25-35. These effects of NGF were prevented by an antibody against the p75NTR receptor. Data indicate that: (i) positive cholinotrophic effects of NGF required activation of both TrkA and p75NTR receptors; (ii) cAMP/RA-evoked differentiation inhibited NGF effects mediated by TrkA receptors and activated its p75NTR-dependent suppressing influences and (iii) a differentiation-evoked decrease of mitochondrial acetyl-CoA and an elevation of mitochondrial Ca could augment impairment of cholinergic neurons by neurotoxic signals.  相似文献   

12.
We have recently shown that nerve growth factor (NGF) induces the phosphorylation of the microtubule-associated protein 1B (MAP1B) by activating the serine/threonine kinase glycogen synthase kinase 3beta (GSK3beta) in a spatio-temporal pattern in PC12 cells that correlates tightly with neurite growth. PC12 cells express two types of membrane receptor for NGF: TrkA receptors and p75NTR receptors, and it was not clear from our studies which receptor was responsible. We show here that brain-derived neurotrophic factor, which activates p75NTR but not TrkA receptors, does not stimulate GSK3beta phosphorylation of MAP1B in PC12 cells. Similarly, NGF fails to activate GSK3beta phosphorylation of MAP1B in PC12 cells that lack TrkA receptors but express p75NTR receptors (PC12 nnr). Chick ciliary ganglion neurons in culture lack TrkA receptors but express p75NTR and also fail to show NGF-dependent GSK3beta phosphorylation of MAP1B, whereas in rat superior cervical ganglion neurons in culture, NGF activation of TrkA receptors elicits GSK3beta phosphorylation of MAP1B. Finally, inhibition of TrkA receptor tyrosine kinase activity in PC12 cells and superior cervical ganglion neurons with K252a potently and dose-dependently inhibits neurite elongation while concomitantly blocking GSK3beta phosphorylation of MAP1B. These results suggest that the activation of GSK3beta by NGF is mediated through the TrkA tyrosine kinase receptor and not through p75NTR receptors.  相似文献   

13.
Nerve growth factor (NGF) binding to its receptors TrkA and p75(NTR) enhances the survival, differentiation, and maintenance of neurons. Recent studies have suggested that NGF receptor activation may occur in caveolae or caveolae-like membranes (CLM). This is an intriguing possibility because caveolae have been shown to contain many of the signaling intermediates in the TrkA signaling cascade. To examine the membrane localization of TrkA and p75(NTR), we isolated caveolae from 3T3-TrkA-p75 cells and CLM from PC12 cells. Immunoblot analysis showed that TrkA and p75(NTR) were enriched about 13- and 25-fold, respectively, in caveolae and CLM. Binding and cross-linking studies demonstrated that the NGF binding to both TrkA and p75(NTR) was considerably enriched in CLM and that about 90% of high affinity binding to TrkA was present in CLM. When PC12 cells were treated with NGF, virtually all activated (i.e. tyrosine phosphorylated) TrkA was found in the CLM. Remarkably, in NGF-treated cells, it was only in CLM that activated TrkA was coimmunoprecipitated with phosphorylated Shc and PLCgamma. These results document a signaling role for TrkA in CLM and suggest that both TrkA and p75(NTR) signaling are initiated from these membranes.  相似文献   

14.
Nerve growth factor (NGF) is an important neuronal survival factor, especially during development. Optimal sensitivity of the survival response to NGF requires the presence of TrkA and the p75 neurotrophin receptor, p75(NTR). Signalling pathways used by TrkA are well established, but the mechanisms by which p75(NTR) enhances NGF signalling remain far from clear. A prevalent view is that p75(NTR) and TrkA combine to form a high-affinity receptor, but definitive evidence for this is still lacking. We therefore investigated the possibility that p75(NTR) and TrkA interact via their signal transduction pathways. Using antisense techniques to down-regulate p75(NTR) and TrkA, we found that p75(NTR) specifically enhanced phosphorylation of the 46- and 52-kDa isoforms of Shc during nerve growth factor-induced TrkA activation. p75(NTR) did not enhance tyrosine phosphorylation of other TrkA substrates. Serine phosphorylation of Akt, downstream of Shc activation, was also p75(NTR)-dependent. We consistently detected co-immunoprecipitation of p75(NTR) and Shc. These data indicate that p75(NTR) interacts with Shc physically, via a binding interaction, and functionally, by assisting its phosphorylation. Whilst providing evidence that p75(NTR) augments TrkA signal transduction, these results do not preclude the presence of a p75(NTR)-TrkA high-affinity NGF receptor.  相似文献   

15.
16.
Membrane protein sorting is mediated by interactions between proteins and lipids. One mechanism that contributes to sorting involves patches of lipids, termed lipid rafts, which are different from their surroundings in lipid and protein composition. Although the nerve growth factor (NGF) receptors, TrkA and p75(NTR) collaborate with each other at the plasma membrane to bind NGF, these two receptors are endocytosed separately and activate different cellular responses. We hypothesized that receptor localization in membrane rafts may play a role in endocytic sorting. TrkA and p75(NTR) both reside in detergent-resistant membranes (DRMs), yet they responded differently to a variety of conditions. The ganglioside, GM1, caused increased association of NGF, TrkA, and microtubules with DRMs, but a decrease in p75(NTR). When microtubules were induced to polymerize and attach to DRMs by in vitro reactions, TrkA, but not p75(NTR), was bound to microtubules in DRMs and in a detergent-resistant endosomal fraction. NGF enhanced the interaction between TrkA and microtubules in DRMs, yet tyrosine phosphorylated TrkA was entirely absent in DRMs under conditions where activated TrkA was detected in detergent-sensitive membranes and endosomes. These data indicate that TrkA and p75(NTR) partition into membrane rafts by different mechanisms, and that the fraction of TrkA that associates with DRMs is internalized but does not directly form signaling endosomes. Rather, by attracting microtubules to lipid rafts, TrkA may mediate other processes such as axon guidance.  相似文献   

17.
Recent evidence suggests that apoptosis of endothelial cells contributes to lumen formation during angiogenesis, but the biological mechanism remains obscure. In this study, we investigated the effect of nerve growth factor (NGF), a member of the neurotrophin family and a potential angiogenic factor, on human umbilical vein endothelial cells (HUVEC) apoptosis and the formation of lumen-like structures (LLS) by cultured HUVEC on Matrigel. We demonstrate that NGF induces cell apoptosis. NGF treatment has no significant effect on the expression level of its two receptors, TrkA and p75NTR. Blockade of both TrkA and p75NTR, but not that of either receptor alone significantly decreases NGF-induced cell apoptosis. NGF significantly increases formation of LLS which consist substantially of apoptotic cells. Application of NGF-neutralizing antibody or simultaneous blockade of TrkA and p75NTR significantly blocks spontaneous and NGF-induced LLS formation. These data support a role for NGF-induced cell apoptosis in LLS formation in vitro.  相似文献   

18.
Nerve growth factor (NGF) is a member of the neurotrophins, which are important regulators of embryonic development and adult function in the vertebrate nervous systems. The signaling elicited by NGF regulates diverse activities, including survival, axon growth, and synaptic plasticity. NGF action is mediated by engagement with two structurally unrelated transmembrane receptors, p75(NTR) and TrkA, which are co-expressed in a variety of cells. The functional interactions of these receptors have been widely demonstrated and include complex formation, convergence of signaling pathways, and indirect interaction through adaptor proteins. Each domain of the receptors was shown to be important for the formation of TrkA and p75(NTR) complexes, but only the intramembrane and transmembrane domains seemed to be crucial for the creation of high-affinity binding sites. However, whether these occur through a physical association of the receptors is unclear. In the present work, we demonstrate by F?rster resonance energy transfer that p75(NTR) and TrkA are physically associated through their intracellular (IC) domains and that this interaction occurs predominantly at the cell membrane and prior to NGF stimulation. Our data suggest that there is a pool of receptors dimerized before NGF stimulus, which could contribute to the high-affinity binding sites. We modeled the three-dimensional structure of the TrkA IC domain by homology modeling, and with this and the NMR-resolved structure of p75(NTR), we modeled the heterodimerization of TrkA and p75(NTR) by docking methods and molecular dynamics. These models, together with the results obtained by F?rster resonance energy transfer, provide structural insights into the receptors' physical association.  相似文献   

19.
β-amyloid precursor protein (APP) is a key factor in Alzheimer''s disease (AD) but its physiological function is largely undetermined. APP has been found to regulate retrograde transport of nerve growth factor (NGF), which plays a crucial role in mediating neuronal survival and differentiation. Herein, we reveal the mechanism underlying APP-mediated NGF trafficking, by demonstrating a direct interaction between APP and the two NGF receptors, TrkA and p75NTR. Downregulation of APP leads to reduced cell surface levels of TrkA/p75NTR and increased endocytosis of TrkA/p75NTR and NGF. In addition, APP-deficient cells manifest defects in neurite outgrowth and are more susceptible to Aβ-induced neuronal death at physiological levels of NGF. However, APP-deficient cells show better responses to NGF-stimulated differentiation and survival than control cells. This may be attributed to increased receptor endocytosis and enhanced activation of Akt and MAPK upon NGF stimulation in APP-deficient cells. Together, our results suggest that APP mediates endocytosis of NGF receptors through direct interaction, thereby regulating endocytosis of NGF and NGF-induced downstream signaling pathways for neuronal survival and differentiation.  相似文献   

20.
Nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) and are members of the neurotrophin family, a family of neurotrophic factors that also includes neurotrophin (NT) 3 and NT4/5. Neurotrophins have essential roles in the survival, development and differentiation of neurons in the central and peripheral nervous systems. Neurotrophins exert their effects by binding to corresponding receptors which are formed by the tyrosine protein kinases TrkA, TrkB and TrkC, and the low affinity neurotrophic receptor (p75NTR). In the present study, using immunohistochemistry and quantitative analysis, we have investigated immunoreactivity to BDNF, NGF, TrkB, p75NTR and TrkA in the pelvic ganglia of normal and castrated rats. Neurons of the pelvic ganglia expressed both these neurotrophins and their receptors. After castration the immunoreactivity persisted. However, the number of BDNF- and p75NTR-IR cells statistically significant decreased after castration. These results suggest that castration modulates the expression of neurotrophins and their receptors in pelvic autonomic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号