首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vaccinia virus complement control protein (VCP) is an immune evasion protein of vaccinia virus. Previously, VCP has been shown to bind and support inactivation of host complement proteins C3b and C4b and to protect the vaccinia virions from antibody-dependent complement-enhanced neutralization. However, the molecular mechanisms involved in the interaction of VCP with its target proteins C3b and C4b have not yet been elucidated. We have utilized surface plasmon resonance technology to study the interaction of VCP with C3b and C4b. We measured the kinetics of binding of the viral protein to its target proteins and compared it with human complement regulators factor H and sCR1, assessed the influence of immobilization of ligand on the binding kinetics, examined the effect of ionic contacts on these interactions, and sublocalized the binding site on C3b and C4b. Our results indicate that (i) the orientation of the ligand is important for accurate determination of the binding constants, as well as the mechanism of binding; (ii) in contrast to factor H and sCR1, the binding of VCP to C3b and C4b follows a simple 1:1 binding model and does not involve multiple-site interactions as predicted earlier; (iii) VCP has a 4.6-fold higher affinity for C4b than that for C3b, which is also reflected in its factor I cofactor activity; (iv) ionic interactions are important for VCP-C3b and VCP-C4b complex formation; (v) VCP does not bind simultaneously to C3b and C4b; and (vi) the binding site of VCP on C3b and C4b is located in the C3dg and C4c regions, respectively.  相似文献   

2.
Vaccinia virus encodes a homolog of the human complement regulators named vaccinia virus complement control protein (VCP). It is composed of four contiguous complement control protein (CCP) domains. Previously, VCP has been shown to bind to C3b and C4b and to inactivate the classical and alternative pathway C3 convertases by accelerating the decay of the classical pathway C3 convertase and (to a limited extent) the alternative pathway C3 convertase, as well as by supporting the factor I-mediated inactivation of C3b and C4b (the subunits of C3 convertases). In this study, we have mapped the CCP domains of VCP important for its cofactor activities, decay-accelerating activities, and binding to the target proteins by utilizing a series of deletion mutants. Our data indicate the following. (i) CCPs 1 to 3 are essential for cofactor activity for C3b and C4b; however, CCP 4 also contributes to the optimal activity. (ii) CCPs 1 to 2 are enough to mediate the classical pathway decay-accelerating activity but show very minimal activity, and all the four CCPs are necessary for its efficient activity. (iii) CCPs 2 to 4 mediate the alternative pathway decay-accelerating activity. (iv) CCPs 1 to 3 are required for binding to C3b and C4b, but the presence of CCP 4 enhances the affinity for both the target proteins. These results together demonstrate that the entire length of the protein is required for VCP's various functional activities and suggests why the four-domain structure of viral CCP is conserved in poxviruses.  相似文献   

3.
The vaccinia virus complement control protein (VCP) is involved in modulating the host inflammatory response by blocking both pathways of complement activity through its ability to bind C3b and C4b. Other activities arise from VCP's ability to strongly bind heparin. To map regions within VCP involved in binding complement and heparin experimentally, surface plasmon resonance (SPR) and recombinantly expressed VCP (rVCP) constructs were employed. Using C3b or heparin as the immobilized ligand, various rVCP constructs were tested for their ability to bind. Results suggest that VCP is the smallest functional unit able to bind C3b, thereby blocking complement activity, and only a single site, the large basic region near the C-terminus, is involved in heparin binding. Kinetic analysis was also performed to determine the relative binding affinities between rVCP and complement (C3-MA and C4b), as well as rVCP and heparin. rVCP was found to possess a significantly greater affinity for C3-MA than C4b, as indicated by the 1.50e3-fold greater association rate constant (k(a)). This study provides insights for the design of new therapeutic proteins capable of blocking complement activation.  相似文献   

4.
Vaccinia virus encodes a structural and functional homolog of human complement regulators named vaccinia virus complement control protein (VCP). This four-complement control protein domain containing secretory protein is known to inhibit complement activation by supporting the factor I-mediated inactivation of complement proteins, proteolytically cleaved form of C3 (C3b) and proteolytically cleaved form of C4 (C4b) (termed cofactor activity), and by accelerating the irreversible decay of the classical and to a limited extent of the alternative pathway C3 convertases (termed decay-accelerating activity [DAA]). In this study, we have mapped the VCP domains important for its cofactor activity and DAA by swapping its individual domains with those of human decay-accelerating factor (CD55) and membrane cofactor protein (MCP; CD46). Our data indicate the following: 1) swapping of VCP domain 2 or 3, but not 1, with homologous domains of decay-accelerating factor results in loss in its C3b and C4b cofactor activities; 2) swapping of VCP domain 1, but not 2, 3, or 4 with corresponding domains of MCP results in abrogation in its classical pathway DAA; and 3) swapping of VCP domain 1, 2, or 3, but not 4, with homologous MCP domains have marked effect on its alternative pathway DAA. These functional data together with binding studies with C3b and C4b suggest that in VCP, domains 2 and 3 provide binding surface for factor I interaction, whereas domain 1 mediates dissociation of C2a and Bb from the classical and alternative pathway C3 convertases, respectively.  相似文献   

5.
Vaccinia extracellular enveloped virus (EEV) is critical for cell-to-cell and long-range virus spread both in vitro and in vivo. The B5R gene encodes an EEV-specific type I membrane protein that is essential for efficient EEV formation. The majority of the B5R ectodomain consists of four domains with homology to short consensus repeat domains followed by a stalk. Previous studies have shown that polyclonal antibodies raised against the B5R ectodomain inhibit EEV infection. In this study, our goal was to elucidate the antigenic structure of B5R and relate this to its function. To do this, we produced multimilligram quantities of vaccinia virus B5R as a soluble protein [B5R(275t)] using a baculovirus expression system. We then selected and characterized a panel of 26 monoclonal antibodies (MAbs) that recognize B5R(275t). Five of these MAbs neutralized EEV and inhibited comet formation. Two other MAbs were able only to neutralize EEV, while five others were able only to inhibit comet formation. This suggests that the EEV neutralization and comet inhibition assays measure different viral functions and that at least two different antigenic sites on B5R are important for these activities. We further characterized the MAbs and the antigenic structure of B5R(275t) by peptide mapping and by reciprocal MAb blocking studies using biosensor analysis. The epitopes recognized by neutralizing MAbs were localized to SCR1-SCR2 and/or the stalk of B5R(275t). Furthermore, the peptide and blocking data support the concept that SCR1 and the stalk may be in juxtaposition and may be part of the same functional domain.  相似文献   

6.
Three distinct chimpanzee Fabs against the A33 envelope glycoprotein of vaccinia virus were isolated and converted into complete monoclonal antibodies (MAbs) with human gamma 1 heavy-chain constant regions. The three MAbs (6C, 12C, and 12F) displayed high binding affinities to A33 (K(d) of 0.14 nM to 20 nM) and may recognize the same epitope, which was determined to be conformational and located within amino acid residues 99 to 185 at the C terminus of A33. One or more of the MAbs were shown to reduce the spread of vaccinia virus as well as variola virus (the causative agent of smallpox) in vitro and to more effectively protect mice when administered before or 2 days after intranasal challenge with virulent vaccinia virus than a previously isolated mouse anti-A33 MAb (1G10) or vaccinia virus immunoglobulin. The protective efficacy afforded by anti-A33 MAb was comparable to that of a previously isolated chimpanzee/human anti-B5 MAb. The combination of anti-A33 MAb and anti-B5 MAb did not synergize the protective efficacy. These chimpanzee/human anti-A33 MAbs may be useful in the prevention and treatment of vaccinia virus-induced complications of vaccination against smallpox and may also be effective in the immunoprophylaxis and immunotherapy of smallpox and other orthopoxvirus diseases.  相似文献   

7.
Complement, which bridges innate and adaptive immune responses as well as humoral and cell-mediated immunity, is antiviral. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a lytic cycle protein called KSHV complement control protein (KCP) that inhibits activation of the complement cascade. It does so by regulating C3 convertases, accelerating their decay, and acting as a cofactor for factor I degradation of C4b and C3b, two components of the C3 and C5 convertases. These complement regulatory activities require the short consensus repeat (SCR) motifs, of which KCP has four (SCRs 1 to 4). We found that in addition to KCP being expressed on the surfaces of experimentally infected endothelial cells, it is associated with the envelope of purified KSHV virions, potentially protecting them from complement-mediated immunity. Furthermore, recombinant KCP binds heparin, an analogue of the known KSHV cell attachment receptor heparan sulfate, facilitating infection. Treating virus with an anti-KCP monoclonal antibody (MAb), BSF8, inhibited KSHV infection of cells by 35%. Epitope mapping of MAb BSF8 revealed that it binds within SCR domains 1 and 2, also the region of the protein involved in heparin binding. This MAb strongly inhibited classical C3 convertase decay acceleration by KCP and cofactor activity for C4b cleavage but not C3b cleavage. Our data suggest similar topological requirements for cell binding by KSHV, heparin binding, and regulation of C4b-containing C3 convertases but not for factor I-mediated cleavage of C3b. Importantly, they suggest KCP confers at least two functions on the virion: cell binding with concomitant infection and immune evasion.  相似文献   

8.
Adherence of group A streptococcus (GAS) to keratinocytes is mediated by an interaction between human CD46 (membrane cofactor protein) with streptococcal cell surface M protein. CD46 belongs to a family of proteins that contain structurally related short consensus repeat (SCR) domains and regulate the activation of the complement components C3b and/or C4b. CD46 possesses four SCR domains and the aim of this study was to characterize their interaction with M protein. Following confirmation of the M6 protein-dependent interaction between GAS and human keratinocytes, we demonstrated that M6 protein binds soluble recombinant CD46 protein and to a CD46 construct containing only SCRs 3 and 4. M6 protein did not bind to soluble recombinant CD46 chimeric proteins that had the third and/or fourth SCR domains replaced with the corresponding domains from another complement regulator, CD55 (decay-accelerating factor). Homology-based molecular modeling of CD46 SCRs 3 and 4 revealed a cluster of positively charged residues between the interface of these SCR domains similar to the verified M protein binding sites on the plasma complement regulators factor H and C4b-binding protein. The presence of excess M6 protein did not inhibit the cofactor activity of CD46 and the presence of excess C3b did not inhibit the ability of CD46 to bind M6 protein by ELISA. In conclusion, 1) adherence of M6 GAS to keratinocytes is M protein dependent and 2) a major M protein binding site is located within SCRs 3 and 4, probably at the interface of these two domains, at a site distinct from the C3b-binding and cofactor site of CD46.  相似文献   

9.
Vaccinia virus complement control protein (VCP) is one of the proteins encoded by vaccinia virus to modulate the host inflammatory response. VCP modulates the inflammatory response and protects viral habitat by inhibiting the classical and the alternative pathways of complement activation. The extended structure of VCP, mobility between its sequential domains, charge distribution and type of residues at the binding regions are factors that have been identified to influence its ability to bind to complement proteins. We report that a Lister strain of vaccinia virus encodes a VCP homolog (Lis VCP) that is functional, glycosylated, has two amino acids less than the well-characterized VCP from vaccinia virus WR strain (WR VCP), and the human smallpox inhibitor of complement enzymes (SPICE) from variola virus. The glycosylated VCP of Lister is immunogenic in contrast to the weak immunogenicity of the nonglycosylated VCP. Lis VCP is the only orthopoxviral VCP homolog found to be glycosylated, and we speculate that glycosylation influences its pattern of complement inhibition. We also correlate dimerization of VCP observed only in mammalian and baculovirus expression systems to higher levels of activity than monomers, observed in the yeast expression system.  相似文献   

10.
R L Roper  L G Payne    B Moss 《Journal of virology》1996,70(6):3753-3762
With the aid of three monoclonal antibodies (MAbs), a glycoprotein specifically localized to the outer envelope of vaccinia virus was shown to be encoded by the A33R gene. These MAbs reacted with a glycosylated protein that migrated as 23- to 28-kDa and 55-kDa species under reducing and nonreducing conditions, respectively. The protein recognized by the three MAbs was synthesized by all 11 orthopoxviruses tested: eight strains of vaccinia virus (including modified vaccinia virus Ankara) and one strain each of cowpox, rabbitpox, and ectromelia viruses. The observation that the protein synthesized by ectromelia virus-infected cells reacted with only one of the three MAbs provided a means of mapping the gene encoding the glycoprotein. By transfecting vaccinia virus DNA into cells infected with ectromelia virus and assaying for MAb reactivity, we mapped the glycoprotein to the A33R open reading frame. The amino acid sequence and hydrophilicity plot predicted that the A33R gene product is a type II membrane protein with two asparagine-linked glycosylation sites. Triton X-114 partitioning experiments indicated that the A33R gene product is an integral membrane protein. The ectromelia virus homolog of the vaccinia virus A33R gene was sequenced, revealing 90% predicted amino acid identity. The vaccinia and variola virus homolog sequences predict 94% identical amino acids, the latter having one fewer internal amino acid. Electron microscopy revealed that the A33R gene product is expressed on the surface of extracellular enveloped virions but not on the intracellular mature form of virus. The conservation of this protein and its specific incorporation into viral envelopes suggest that it is important for virus dissemination.  相似文献   

11.
The outbreak of monkeypox in the Unites States in the summer of 2003 was the first occurrence of this smallpox-like disease outside of Africa. This limited human epidemic resulted from cross-infection of prairie dogs by imported African rodents. Although there were no human fatalities, this outbreak illustrates that monkeypox is an emerging natural infection and a potential biological weapon. We characterized a virulence factor expressed by monkeypox (monkeypox inhibitor of complement enzymes or MOPICE). We also compared its structure and regulatory function to homologous complement regulatory proteins of variola (SPICE) and vaccinia (VCP). In multiple expression systems, 5-30% of MOPICE, SPICE, and VCP consisted of function-enhancing disulfide-linked homodimers. Mammalian cells infected with vaccinia virus also expressed VCP dimers. MOPICE bound human C3b/C4b intermediate to that of SPICE and VCP. Cofactor activity of MOPICE was similar to VCP, but both were approximately 100-fold less efficient than SPICE. SPICE and VCP, but not MOPICE, possessed decay-accelerating activity for the C3 and C5 convertases of the classical pathway. Additionally, all three regulators possessed heparin-binding capability. These studies demonstrate that MOPICE regulates human complement and suggest that dimerization is a prominent feature of these virulence factors. Thus, our data add novel information relative to the functional repertoire of these poxviral virulence factors. Furthermore, targeting and neutralizing these complement regulatory active sites via mAbs is a therapeutic approach that may enhance protection against smallpox.  相似文献   

12.
The vaccinia virus (VACV) complement control protein (VCP) is the major protein secreted from VACV-infected cells. It has been reported that VCP binds to the surfaces of uninfected cells by interacting with heparan sulfate proteoglycans (HSPGs). In this study, we show that VCP is also expressed on the surfaces of infected cells and demonstrate that surface localization occurs independently of HSPGs. Since VCP does not contain a transmembrane domain, we hypothesized that VCP interacts with a membrane protein that localizes to the infected-cell surface. We show that the VACV A56 membrane protein is necessary for the cell surface expression of VCP and demonstrate that VCP and A56 interact in VACV-infected cells. Since the surface expression of VCP was abrogated by reducing agents, we examined the contribution of an unpaired cysteine residue on VCP to VCP surface expression and VCP's interaction with A56. To do this, we mutated the unpaired cysteine in VCP and generated a recombinant virus expressing the altered form of VCP. Following the infection of cells with the mutant virus, VCP was neither expressed on the cell surface nor able to interact with A56. Importantly, the cell surface expression of VCP was found to protect infected cells from complement-mediated lysis. Our findings suggest a new function for VCP that may be important for poxvirus pathogenesis and impact immune responses to VACV-based vaccines.  相似文献   

13.
We previously characterized three neutralization-positive epitopes (NP1 [1a and 1b], NP2, and NP3) and three neutralization-negative epitopes on the simian rotavirus SA11 VP4 with 13 monoclonal antibodies (MAbs). Conformational changes occurred as a result of the binding of NP1 MAbs to the SA11 spike VP4, and enhanced binding of all neutralization-negative MAbs was observed when NP1 MAbs bound VP4 in a competitive MAb capture enzyme-linked immunosorbent assay. To further understand the structure and function of VP4, we have continued studies with these MAbs. Electron microscopic and sucrose gradient analyses of SA11-MAb complexes showed that triple-layered viral particles disassembled following treatment with NP1b MAbs 10G6 and 7G6 but not following treatment with NP1a MAb 9F6, NP2 MAb 2G4, and NP3 MAb 23. Virus infectivity was reduced approximately 3 to 5 logs by the NP1b MAbs. These results suggest that NP1b MAb neutralization occurs by a novel mechanism. We selected four neutralization escape mutants of SA11 with these VP4 MAbs and characterized them by using plaque reduction neutralization assays, hemagglutination inhibition assays, and an antigen capture enzyme-linked immunosorbent assay. These analyses support the previous assignment of the NP1a, NP1b, NP2, and NP3 MAbs into separate epitopes and confirmed that the viruses were truly neutralization escape mutants. Nucleotide sequence analyses found 1 amino acid (aa) substitution in VP8* of VP4 at (i) aa 136 for NP1a MAb mutant 9F6R, (ii) aa 180 and 183 for NP1b MAb mutants 7G6R and 10G6R, respectively, and (iii) aa 194 for NP3 MAb mutant 23R. The NP1b MAb mutants showed an unexpected enhanced binding with heterologous nonneutralization MAb to VP7 compared with parental SA11 and the other mutants. Taken together, these results suggest that the NP1b epitope is a critical site for VP4 and VP7 interactions and for virus stability.  相似文献   

14.
The selection of human monoclonal antibodies (MAbs) specific for human immunodeficiency virus (HIV) type 1 by binding assays may fail to identify Abs to quaternary epitopes on the intact virions. The HIV neutralization assay was used for the selection of human MAb 2909, which potently neutralizes SF162 and recognizes an epitope on the virus surface but not on soluble proteins. Three regions of gp120, the V2 and V3 loops and the CD4 binding domain, contribute to the epitope recognized by MAb 2909. The existence of such a unique MAb, which defines a complex epitope formed by a quaternary structure, suggests that there may be other new neutralizing HIV epitopes to target with vaccines.  相似文献   

15.
Cells producing neutralizing monoclonal antibodies (mAbs) to UV-inactivated vaccinia virus strain WR were derived by fusion of hyperimmunized mouse spleen cells with mouse myeloma cells. Three mAbs that reacted strongly with purified virus envelopes as determined by enzyme-linked immunosorbent assay were studied. The three mAbs recognized a 14,000-molecular-weight (14K) envelope protein of vaccinia virus and were shown to be immunoglobulin G2b (mAbC3 and mAbB11) and immunoglobulin M (mAbF11). By using ascites, one of the antibodies, mAbC3, neutralized (50%) virus infectivity with a titer of about 10(-4), whereas the others exhibited lower neutralization titers of 10(-2) to 10(-3). The binding of the mAbs to vaccinia virus did not alter virus attachment to cells. However, virus uncoating was extensively blocked by mAbC3, whereas mAbB11 and mAbF11 had little or no effect. The three mAbs recognized a similar 14K protein in cowpox, rabbitpox, and vaccinia Elstree strains, indicating a high degree of protein conservation among orthopoxviruses. Based on the binding of mAbs to V-8 protease cleavage products of the 14K protein, the extent of protein recognition for other poxviruses, and differences in the degree of virus neutralization and of virus uncoating into cells, we suggest that the three mAbs recognize different domains of vaccinia 14K viral envelope protein. Furthermore, our findings indicate that the 14K protein may play a role in virus penetration.  相似文献   

16.
Human C4b-binding protein (C4bp) facilitates the factor I-mediated proteolytic cleavage of the active forms of complement effectors C3b and C4b into their inactive forms. C4bp comprises a disulfide-linked heptamer of alpha-chains with complement (C) regulatory activity and a beta-chain. Each alpha-chain contains 8 short consensus repeat (SCR) domains. Using SCR-deletion mutants of recombinant multimeric C4bp, we identified the domains responsible for the C3b/C4b-binding and C3b/C4b-inactivating cofactor activity. The C4bp mutant with deletion of SCR2 lost the C4b-binding ability, as judged on C3b/C4b-Sepharose binding assaying and ELISA. In contrast, the essential domains for C3b-binding extended more to the C-terminus, exceeding SCR4. Using fluid phase cofactor assaying and deletion mutants of C4bp, SCR2 and 3 were found to be indispensable for C4b cleavage by factor I, and SCR1 contributed to full expression of the factor I-mediated C4b cleaving activity. On the other hand, SCR1, 2, 3, 4, and 5 participated in the factor I-cofactor activity for C3b cleavage, and SCR2, 3, and 4 were absolutely required for C3b inactivation. Thus, different sets of SCRs participate in C3b and C4b inactivation, and the domain repertoire supporting C3b cofactor activity is broader than that supporting C4b inactivation by C4bp and factor I. Furthermore, the domains participating in C3b/C4b binding are not always identical to those responsible for cofactor activity. The necessity of the wide range of SCRs in C3b inactivation compared to C4b inactivation by C4bp and factor I may reflect the physiological properties of C4bp, which is mainly directed to C4b rather than C3b.  相似文献   

17.
Herpesvirus saimiri (HVS) is a lymphotropic virus that causes T-cell lymphomas in New World primates. It encodes a structural homolog of complement control proteins named complement control protein homolog (CCPH). Previously, CCPH has been shown to inhibit C3d deposition on target cells exposed to complement. Here we have studied the mechanism by which it inactivates complement. We have expressed the soluble form of CCPH in Escherichia coli, purified to homogeneity and compared its activity to vaccinia virus complement control protein (VCP) and human complement regulators factor H and soluble complement receptor 1. The expressed soluble form of CCPH bound to C3b (KD = 19.2 microm) as well as to C4b (KD = 0.8 microm) and accelerated the decay of the classical/lectin as well as alternative pathway C3-convertases. In addition, it also served as factor I cofactor and supported factor I-mediated inactivation of both C3b and C4b. Time course analysis indicated that although its rate of inactivation of C4b is comparable with VCP, it is 14-fold more potent than VCP in inactivating C3b. Site-directed mutagenesis revealed that Arg-118, which corresponds to Lys-120 of variola virus complement regulator SPICE (a residue critical for its enhanced C3b cofactor activity), contributes significantly in enhancing this activity. Thus, our data indicate that HVS encodes a potent complement inhibitor that allows HVS to evade the host complement attack.  相似文献   

18.
Recently it has been shown that kaposica, an immune evasion protein of Kaposi's sarcoma-associated herpesvirus, inactivates complement by acting on C3-convertases by accelerating their decay as well as by acting as a cofactor in factor I-mediated inactivation of their subunits C3b and C4b. Here, we have mapped the functional domains of kaposica. We show that SCRs 1 and 2 (SCRs 1-2) and 1-4 are essential for the classical and alternative pathway C3-convertase decay-accelerating activity (DAA), respectively, while the SCRs 2-3 are required for factor I cofactor activity (CFA) for C3b and C4b. SCR 3 and SCRs 1 and 4, however, contribute to optimal classical pathway DAA and C3b CFA, respectively. Binding data show that SCRs 1-4 and SCRs 1-2 are the smallest structural units required for measuring detectable binding to C3b and C4b, respectively. The heparin-binding site maps to SCR 1.  相似文献   

19.
Vaccinia virus has two forms of infectious virions: the intracellular mature virus and the extracellular enveloped virus (EEV). EEV is critical for cell-to-cell and long-range spread of the virus. The B5R open reading frame (ORF) encodes a membrane protein that is essential for EEV formation. Deletion of the B5R ORF results in a dramatic reduction of EEV, and as a consequence, the virus produces small plaques in vitro and is highly attenuated in vivo. The extracellular portion of B5R is composed mainly of four domains that are similar to the short consensus repeats (SCRs) present in complement regulatory proteins. To determine the contribution of these putative SCR domains to EEV formation, we constructed recombinant vaccinia viruses that replaced the wild-type B5R gene with a mutated gene encoding a B5R protein lacking the SCRs. The resulting recombinant viruses produced large plaques, indicating efficient cell-to-cell spread in vitro, and gradient centrifugation of supernatants from infected cells confirmed that EEV was formed. In contrast, phalloidin staining of infected cells showed that the virus lacking the SCR domains was deficient in the induction of thick actin bundles. Thus, the highly conserved SCR domains present in the extracellular portion of the B5R protein are dispensable for EEV formation. This indicates that the B5R protein is a key viral protein with multiple functions in the process of virus envelopment and release. In addition, given the similarity of the extracellular domain to complement control proteins, the B5R protein may be involved in viral evasion from host immune responses.  相似文献   

20.
Only a few monoclonal antibodies (MAbs) have been isolated that recognize conserved sites in human immunodeficiency virus type 1 (HIV-1) Env proteins and possess broad neutralizing activities. Other MAbs directed against targets in various domains of Env have been described that are strongly neutralizing, but they possess limited breadth. One such MAb, 2909, possesses a uniquely potent neutralizing activity specific for a quaternary epitope on SF162 Env that requires the presence of both the V2 and the V3 domains. We now show that replacement of the SF162 V3 sequence with consensus V3 sequences of multiple subtypes led to attenuated but still potent neutralization by 2909 and that the main determinants for the type specificity of 2909 reside in the V2 domain. A substitution at position 160 completely eliminated 2909 reactivity, and mutations at position 167 either attenuated or potentiated neutralization by this antibody. Different substitutions at the same positions in V2 were previously shown to introduce epitopes recognized by MAbs 10/76b and C108g and to allow potent neutralization by these MAbs. Two substitutions at key positions in the V2 domain of JR-FL Env also allowed potent expression of the 2909 epitope, and single substitutions in YU2 V2 were sufficient for expression of the 2909, C108g, and 10/76b epitopes. These results demonstrate that the minimal epitopes for 2909, C108g, and 10/76b differed from that of the clade B consensus sequence only at single positions and suggest that all three MAbs recognize distinct variants of a relatively conserved sequence in V2 that is a particularly sensitive mediator of HIV-1 neutralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号