首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 697 毫秒
1.
Bacteriophage PM2 DNA is a 10-kb covalently closed circular (ccc) molecule with a reported superhelical density of sigma = -0.12. Here we describe the binding of anti-Z-DNA antibodies to PM2 form I DNA under high and low salt conditions. The binding to PM2 DNA has been demonstrated by competitive radioimmunoassay (RIA), retardation of the DNA:antibody complexes in agarose gels and visualization by electron microscopy. The antibody binding is dependent on the degree of negative supercoiling. Thus, PM2 form II and form III did not bind the antibody. The low salt RIA results indicated the presence of 200-400 bp of left-handed DNA per PM2 molecule. This could reduce the effective superhelical density to sigma = -0.04 to -0.08, a range comparable with those found for other ccc DNAs in vivo. Electron microscopy revealed that a maximum of 22 antibody molecules bind to PM2. Single-site restriction with HpaII of the fixed DNA:antibody complex showed a cluster of four to five antibody molecules bound near one end of the linear DNA molecule. The evidence presented indicates that PM2 DNA contains regions of left-handed conformation under physiological conditions (low salt concentration) as well as at high salt concentrations. In addition, electrophoretic analyses of PM2 topoisomers indicate the presence of left-handed regions at superhelical densities less than that of isolated PM2 DNA.  相似文献   

2.
The sedimentation coefficient and intrinsic viscosity of nicked and closed circular PM2 bacteriophage DNA have been measured as a function of pH in the alkaline region. A gradual increase in the sidimentation coefficient, and a corresponding decrease in the intrinsic viscosity, are observed for the superhelical (closed) circle in the pH region from 10.5 to about 10.9. This has been tentatively interpreted in terms of the known dependence of sedimentation coefficient upon the number of superhelical turns. At slightly higher pH values, the curve passes through the minimum (sedimentation coefficient) and maximum (intrinsic viscosity) expected when the superhelical turns present at neutral pH are unwound by partial alkaline denaturation. Sedimentation studies of the relaxed (nicked) circular species have revealed the existence of DNA forms in the pH region from 11.27 to 11.37 which sediment considerably faster than the closed circle in the same pH region. These have been identified as partially denatured nicked circles, in which varying fractions of the duplex structure have undergone alkaline denaturation, but strand separation has not yet occurred. Varying fractions of a slower species, either undenatured or completely denatured nicked circles, are also observed in some of these experiments. A corresponding result is observed in the intrinsic viscosity vs. pH curve. When nicked circular PM2 DNA is exposed to various alkaline pH's, rapidly neutralized, and sedimented at neutral pH, the expected sharp transition from native to denatured (strand-separated) molecules is seen. However, a very narrow pH range is noted in which native and denatured forms coexist in a single experiment. The above experiments carried out upon the closed form also reveal a narrow pH range in which the bulk of the transition from native closed circles to the collapsed cyclic coil takes place, in acccord with an earlier study on a different DNA. This transition is shown never to be completely effected, however, as there is a fraction (7–8%)of the closed circles which renature to the native form, regardless of the alkaline pH employed. This same phenomenon was not observed in the case of artificially closed λb2b5c DNA circles. Possible explanations for some of the above results are discussed.  相似文献   

3.
We have developed a rapid electrophoretic technique for performing ethidium bromide dye titrations in cylindrical 0.7% agarose gels. The technique was used to analyze the extent of supercoiling in circular covalently closed SV40, Co1E1, and pSC101 DNA. We have estimated the superhelical densities of SV40, Co1E1, and pSC101 DNA to be ?0.050, ?0.078, and ?0.085 respectively. The results obtained for native SV40 DNA correlate well with previously published values for the superhelical density of this DNA when these values are corrected to reflect a 26° duplex unwinding angle for ethidium bromide. Ethidium bromide concentrations sufficient to partially relax a supercoiled DNA allow the DNA to be resolved into a series of discrete bands in agarose gels. The distribution of bands represents a natural heterogeneity in the superhelical densities of the DNA molecules in the population.  相似文献   

4.
The dependence of the initial rate of introduction of the first single-chain scission (initial nicking rate) into covalently closed circular phage PM2 DNA by the single strand-specific nuclease from Alteromonas espejiana BAL 31 upon the superhelix density (sigma) of the DNA has been examined. The initial nicking rate decreases with decreasing numbers of negative superhelical turns (decreasing values of -sigma), which behavior is characteristic of other single strand-specific nucleases as reported earlier. In contrast to earlier work, the initial nicking rates of closed circular DNAs by the action of the Alteromonas nuclease have been shown to be readily measurable at values of -sigma as low as 0.02. However, even at the elevated concentrations of enzyme and extended digestion periods required to cause nicking at an appreciable rate at near-zero values of sigma, closed circular DNA containing very few superhelical turns (form IO DNA) is not cleaved at a detectable rate. When this DNA is rendered positively supercoiled by ethidium bromide (EtdBr), it is not affected by the nuclease until very high positive values of sigma are attained, at which low rates of cleavage can be detected at elevated enzyme concentrations. The effects of EtdBr on the enzyme activity have been tested and are entirely insufficient to allow the interpretation of zero nicking rates as the result of inhibition of the nuclease activity by the dye. Positively supercoiled DNA is concluded not to contain regions having significant single-stranded character until values of sigma are reached which are very much higher than the values of -sigma for which negatively supercoiled DNAs behave as if they contain unpaired or weakly paired bases.  相似文献   

5.
PM2 DNA was prepared with different superhelical densities (sigma) in order to examine the relationship betweenn supercoiling and the occurrence of a region(s) of unpaired bases in this DNA. A previous study showed that CH3HgOH reacts with native superhelical PM2 DNA more rapidly than the nicked form II. This evaluation of binding, monitored through the change of sedimentation velocity, was repeated on PM2 DNA I with different superhelical densities. Early binding is detected by an increase in sedimentation velocity and occurs with molecules with sigma' values betwee -0.025 and -0.037. The conversion of form I to form II with the single-strand-specific endonuclease from Neurospora crassa also occurs above a sigma value of -0.025. This data strongly supports the view that supercoiling produces interrupted secondary structure. The question whether the interrupted regions remain single stranded in character or form small intrastrand hairpin regions is considered by examining which model best fits the CH3HgOH- induced sedimentation velocity changes and the standard sedimentation velocity versus the superhelical density curve for the in vitro made DNAs. The hairpin model offers the most satisfactory explanations for all the results of this and previous studies.  相似文献   

6.
A topoisomerase able to introduce positive supercoils in a closed circular DNA, has been isolated from the archaebacterium Sulfolobus acidocaldarius. This enzyme, fully active at 75 degrees C, performed in vitro positive supercoiling either from negatively supercoiled, or from relaxed DNA in a catalytic reaction. In the presence of polyethylene glycol (PEG 6000), this reaction became very fast and highly processive, and the product was positively supercoiled DNA with a high superhelical density (form I+). Very low (5 - 10 micromoles) ATP concentrations were sufficient to support full supercoiling; the nonhydrolyzable analogue adenosine-5' -0-(3-thiotriphosphate) also sustained the production of positive supercoils, but to a lesser extent, suggesting that ATP hydrolysis was necessary for efficient activity. Nevertheless, low residual of positive supercoiling occurred, even in the absence of ATP, when the substrate was negatively supercoiled. Finally, the different ATP-driven topoisomerizations observed, i.e., relaxation of negative supercoils and positive supercoiling, in all cases increased the linking number of DNA in steps of 1, suggesting the action of a type I, rather than a type II topoisomerase.=  相似文献   

7.
Structural changes in positively and negatively supercoiled DNA   总被引:1,自引:0,他引:1  
The effect of superhelical constraint on the structure of covalently closed circular DNA (cccDNA; pBR322) with positive and negative writhe (superturn) has been investigated as a function of decreasing and increasing specific linking difference (mean superhelical density sigma). At low and moderate negative superhelical densities sigma, the overall average structure is maintained in an unwound B-form slightly modified. The overwound cccDNAs with positive writhe differ from those with negative writhe by an absence of cruciform structure. At high negative densities of supercoiling different changes involving the reversal of twist handedness are shown to lead to the formation of DNA segments in a conformation identical to the left-handed component of form V DNA.  相似文献   

8.
In a cell-free system, the anticancer anthracycline antibiotic adriamycin was able to convert purified covalently closed circular, superhelical, form I bacteriophage PM2 DNA to relaxed circular form II DNA in the presence of either sodium borohydride (NaBH4), NADPH cytochrome P-450 reductase or beta-NADH dehydrogenase isolated from myocardial cells. There was no detectable increase in the amount of form III linear duplex DNA formed during the reaction even at high drug concentrations. Less drug was required for the conversion of form I to form II DNA in the presence of the enzymic reducing agents than in the presence of NaBH4. Form II DNA, prepared by irradiation using a Cs-137 source, was not degraded to form III linear duplex DNA. However, form I0 DNA, covalently closed circular DNA without superhelical turns, freshly prepared using topoisomerase I, was converted to form II DNA similar to the conversion of superhelical form I to form II DNA. Again, no increase in the amount of form III linear duplex DNA could be detected.  相似文献   

9.
Systems for gel electrophoresis in the presence of one of the intercalative unwinding ligands, ethidium or chloroquine, have been developed which permit the resolution of highly supercoiled closed circular DNA molecules differing by unit values of the topological winding number, alpha. All native closed circular DNAs examined, including the viral and intracellular forms of SV40 and polyoma DNA, bacterial plasmid DNAs, and the double stranded closed circular DNA genome of the marine bacteriophage, PM2, are more heterogeneous with respect to the number of superhelical turns present than are the thermal distributions observed in the limit products of the action of nicking-closing (N-C) enzyme on the respective DNAs. In the cases of SV40 and polyoma, where it has been shown that the supercoiling is a combined consequence of the binding of the four nucleosomal histones, H2a, H2b, H3 and H4, and the action of N-C enzyme, the breadth of the distributions within the form I DNAs poses specific problems since the work of other laboratories indicates that the number of nucleosomes on the respective minichromosomes falls within a narrow distribution of 21. If it is assumed that all nucleosomes have identical structures, and that the DNA within a nucleosome is not free to rotate, the native DNA would be anticipated to be less heterogeneous than the thermal equilibrium mixtures present in N-C enzyme relaxed SV40 and polyoma DNAs.The absolute number of superhelical turns (at 37 degrees C in 0.2 M NaCl) in virion polyoma DNA has been determined to be 26 +/- 1, which is the same value obtained for virion SV40 DNA. This is consistent with the observations that polyoma DNA has a higher molecular weight, a lower superhelix density, but the same number of nucleosomes as SV40 DNA. In addition, the distributions within the virion and intracellular form I DNAs of both SV40 and polyoma were found to be indistinguishable.Images  相似文献   

10.
When a negatively twisted covalently closed DNA is annealed with single-stranded fragments of the same DNA, under proper conditions a loop (or loops) may form by the disruption of a segment (or segments) of base pairs between the complementary strands of the covalently closed DNA, and the formation of base pairs between the strands of the covalently closed DNA and the single-stranded fragments. Since such a process involves essentially no net gain or loss of the number of base pairs, it is driven by the free energy favoring the reduction of the number of superhelical turns. If the fragments are sufficiently long or are present at a sufficiently hig concentration during annealing, the most stable product between a covalently closed DNA and the DNA fragments (under conditions favoring the formation of double-stranded DNA) is a looped molecule devoid of superhelical turns. The size of the looped region or regions, which can be measured by electron microscopy, provides a way to determine the degree of superhelicity of the covalently closed DNA in the absence of the fragments. When this is compared with the degree of superhelicity of the covalently closed DNA determined by titration with the intercalative dye ethidium, the unwinding angle of the DNA double helix due to the intercalation of an ethidium can be calculated. Such measurements were done on two samples of phage PM2 DNA with different extents of supercoiling. The results are in agreement with the value 26 degree obtained recently by alkaline titration of covalently closed PM2 DNA samples in CsC1 density gradients (Wange, J.C., (1974) J. Mol. Biol. 89, 783-801).  相似文献   

11.
A rapid procedure for the purification of the nicking-closing enzyme from mouse L cells is described. The procedure reproducibly provides high yields of enzyme. A purity of greater than 90% is obtained in five steps. The enzymatic character of the nicking-closing activity has been demonstrated. On the average 20 PM2 DNA I molecules are completely relaxed by one enzyme molecule. The enzyme releases superhelical turns from closed circular DNA by providing a swivel through a sequence of successive nicking and closing events. It is not known yet whether the release of superhelical turns proceeds via a one hit or a multiple hit mechanism.  相似文献   

12.
13.
The sedimentation coefficients of closed circular Simian virus (SV40) DNA, phage PM2 DNA and animal mitochondrial DNAs in alkaline NaCl and alkaline CsCl were found to decrease by about 5% as the initial superhelix densities decreased from 0.0 to ?0.10, corresponding to a decrease in the degree of strand interwinding from 1.0 to 0.9 net turns per ten base pairs. The small dependence of the appropriately normalized sedimentation coefficients on the degree of strand interwinding is taken to indicate that fully titrated and denatured closed circular DNA is highly supercoiled in a positive sense. This supercoiling results from the spontaneous decrease in the number of secondary turns in the no longer ordered pairs of polynucleotide strands.The measured sedimentation coefficients form a smoothly connected monotonie curve when plotted along with the sedimentation coefficients in alkali (Sebring et al., 1971) of parental closed circles derived from closed circular SV40 DNA replicating intermediates. These DNAs have degrees of strand interwinding that range from 0.6 to 0.15.The possibility raised by Paoletti &; LePecq (1971) that closed circular duplex DNAs contain positive supercoils, i.e. have degrees of strand interwinding greater than 1.0, has been ruled out in a series of ethidium bromide titrations of partially replicated mitochondrial DNA before and after removal of the progeny strand. More ethidium bromide was required in the latter case for relaxation, a result which shows that intercalated ethidium and a displacing strand act on the duplex in the same way, and that both unwind the duplex. This result requires the supercoils of naturally closed circular DNAs to be negative.  相似文献   

14.
Supercoiling response of the lac ps promoter in vitro   总被引:15,自引:0,他引:15  
  相似文献   

15.
Brief exposure of covalently closed circular duplex PM2 DNA to low concentrations of the clinical bleomycin mixture (Blenoxane) resulted in specific fragmentation of the genome that does not depend on the presence of superhelical turns. The double-strand breaks are in fact produced at several discrete sites on the PM2 genome but frequently occurring near the HpaII restriction endonuclease cleavage site. Initial rates of formation of nicked circular and linear duplex PM2 DNAs are reduced to different extents as the ionic strength of the reaction is increased. Increasing ionic strength is most effective in reducing the initial rate and overall yield of apparent double-strand scissions compared with single-strand scissions in the bleomycin-treated PM2 DNA.  相似文献   

16.
An endonuclease purified from germinating pea (Pisum sativum) seeds has been shown to catalyze the hydrolysis of heat-denatured single-stranded DNA. Since P. sativum endonuclease shows appreciable activity in the presence of DNA destabilizing agents and, unlike many similar endonucleases, significant activity at neutral pH, it is a potentially valuable tool for studies of the secondary structure of nucleic acids. The residual hydrolysis of duplex DNA is directed towards partially denatured, A,T-rich areas in native DNA. The rate of hydrolysis of deoxypolynucleotides was in the order poly(dT) greater than denatured DNA greater than poly(dA) greater than poly(dA-dT) = native DNA. Neither poly(dC), poly(dG) nor poly(dC).poly(dG) were attacked by the enzyme. Supercoiled, covalently closed circular phage PM2 form I DNA is converted to singly hit nicked circular form II and doubly hit linear from III duplexes. Prolonged treatment with enzyme does not further cleave the linear form III DNA. Addition of increasing concentrations of NaCl in the incubation mixture suppresses the conversion of form I to form II, but not the conversion of form II to form III, which is enhanced with the increasing ionic strength. The enzymatically relaxed circular form, I degree, obtained by unwinding of supercoiled DNA with a DNA-relaxing protein, is resistant to the action of the enzyme. Molecules with intermediate superhelix densities do not serve as substrates. The sites of cleavage of P. sativum endonuclease in PM2 DNA occur within regions that are readily denaturable in a topologically constrained superhelical molecule.  相似文献   

17.
Addition of the intercalating dye ethidium bromide (EtdBr) to a solution of alkali-denatured double-stranded closed circular PM2, ΦX174, or λb2b5c phage DNAs, under conditions such that the solution remains strongly alkaline, can result in the renaturation of up to 100% of the DNA upon neutralization of the solution. For a fixed time of incubation of the alkaline dye-containing solution before neutralization, there exists a minimum concentration of the dye below which no EtdBr-mediated renaturation is observed for each species of closed circular DNA examined. These minimum concentrations increase, for a given DNA, with increasing ionic strength and temperature. The kinetics of accumulation of forms renaturing upon neutralization of alkaline solutions, at fixed concentrations of dye and DNA, are dependent upon the molecular weight and superhelix density of the starting DNA. After extended periods of incubation at a fixed ionic strength and temperature, however, the profiles of percentage of DNA renatured as a function of ethidium concentration become very similar for all the closed circular DNAs tested and display a transition from an absence of dye-mediated renaturation to virtually 100% renaturation upon neutralization over a small range of dye concentration. Circular DNA containing one or more strand scissions remains strand-separated under all the conditions used to effect the renaturation of closed circular DNA. These findings indicate that configurations of closed circular DNA, in which at least some of the complementary bases are apposed, can be selectively stabilized and accumulate in the presence of ethidium in solutions containing 0.19 N hydroxide ion.  相似文献   

18.
K Muniyappa  J Ramdas  E Mythili  S Galande 《Biochimie》1991,73(2-3):187-190
The ability of E coli recA protein to promote homologous pairing with linear duplex DNA bound to HU protein (Nucleosome cores) was found to be differentially affected. The formation of paranemic joint molecules was not affected whereas the formation of plectomic joint molecules was inhibited from the start of the reaction. The formation of paranemic joint molecules between nucleoprotein filaments of recA protein-circular single stranded DNA and closed circular duplex DNA is believed to generate positive supercoiling in the duplex DNA. We found that the positively superhelical duplex DNA was inert in the formation of joint molecules but could be converted into an active substrate, in situ, by the action of wheat germ topoisomerase I. These observations initiate an understanding of the structural features of E coli chromosome such as DNA supercoiling and nucleosome-like structures in homologous recombination.  相似文献   

19.
A homogeneous preparation of venom phosphodiesterase from Crotalus adamanteus possesses an intrinsic endonuclease activity, specific for superhelical (form I) and single-stranded DNA. The phosphodiesterase degrades single-stranded T7 DNA by endonucleolytic cleavages. Duplex T7 DNA is hydrolyzed by the liberation of acid-soluble products simultaneously from the 3' and 5' termini but without demonstrable internal scissions in duplex regions. Since venom phosphodiesterase is known to hydrolyze oligonucleotides stepwise from the 3' termini, the cleavage at the 5' end of duplex T7 DNA is ascribed to an endonuclease activity. Form I PM2 DNA is nicked to yield first relaxed circles and then linear DNA which is subsequently hydrolyzed only from the chain termini. The linear duplex DNA intermediates consist of a discrete series of fragments (11 are usually resolved on agarose gels) with initial molecular weights ranging from 6.3 x 10(6) (the intact PM2 DNA size) to approximately 1 x 10(6). The cleavage of the form I molecule must, therefore, occur at a limited number of unique sites. The enzyme also cleaves nonsuperhelical, covalently closed circular PM2 DNA but at a 10(4) times slower rate. Both the endonuclease activity on form I DNA and the known exonuclease activity co-migrate on polyacrtkanude gels, are optimally active at pH 9, are stimulated by small concentrations of Mg2+, and are similarly inactivated by heat, reducing agents, and EDTA.  相似文献   

20.
H Vasmel 《Biopolymers》1985,24(6):1001-1008
We report high-resolution Raman spectra obtained from the circularly closed double stranded DNA (Form I) of the plasmid pBR322 and from its corresponding linear form (Form III). Comparison of the Raman spectra of the two forms demonstrates that, at a superhelical density (σ) of ?0.069, which is of the same order as those found for most naturally occurring circularly closed DNAs, no major structural transitions occur under the influence of supercoiling. It is shown that at least 98% of all bases are fully basepaired, and that the conformation of the sugar–phosphate backbone is essentially identical to that of linear DNA. Thus, the structural influence of supercoiling, under these conditions, is confined to minor stretches of the plasmid DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号