首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among 131 rice endosperm proteins previously identified by MS-based proteomics, most of the proteins showed low or almost no sequence similarity to known allergens in databases, whereas nine proteins did it significantly. The sequence of two proteins showed high overall identity with Hsp70-like hazel tree pollen allergen (Cor a 10) and barley α-amylase (Hor v 16), respectively, whereas the others showed low identity (28–58%) with lemon germin-like protein (Cit l 1), corn zein (Zea m 50 K), wheat chitinase-like xylanase inhibitor (Tri a XI), and kinase-like pollen allergen of Russian thistle (Sal k 1). Immuno-dot blot analysis showed that recombinant proteins for these rice seed homologs were positive in the IgE-binding, but not necessarily similarity dependent, from some allergic patients. These results suggest that utilization of proteome and sequence databases in combination with IgE-binding analysis was effective to screen and evaluate allergenic potential of rice seed protein components.  相似文献   

2.
Group I grass pollen allergens make up a subgroup of the beta-expansin family of cell wall loosening proteins in plants. A recent study reported that recombinant Phl p 1, the group I allergen from timothy grass pollen, was associated with papain-like proteinase activity and suggested that expansins loosen the plant cell wall via proteolysis. We tested this idea with three experimental approaches. First, we evaluated three purified native group I allergens from timothy grass, ryegrass and maize (Phl p 1, Lol p 1, Zea m 1) using five proteinase assays with a variety of substrates. The proteins had substantial wall loosening activity, but no detectable proteolytic activity. Thus we cannot confirm proteolytic activity in the pollen allergen class of beta-expansins. Second, we tested the ability of proteinases to induce cell wall extension in vitro. Tests included cysteine proteinases, serine proteinases, aspartic proteinases, metallo proteinases, and aggressive proteinase mixtures, none of which induced wall extension in vitro. Thus, wall proteins are unlikely to be important load-bearing components of the plant cell wall. Third, we tested the sensitivity of beta-expansin activity and native wall extension activity to proteinase inhibitors. The results show that a wide range of proteinase inhibitors (phenylmethanesulfonyl fluoride, N-ethylmaleimide, iodoacetic acid, Pefabloc SC, and others) inhibited neither activity. From these three sets of results we conclude proteolysis is not a likely mechanism of plant cell wall loosening and that the pollen allergen class of beta-expansins do not loosen cell walls via a proteolytic mechanism.  相似文献   

3.
Expansins are a family of proteins that catalyze pH-dependent long-term extension of isolated plant cell walls. They are divided into two groups, alpha and beta, the latter consisting of the grass group I pollen allergens and their vegetative homologs. Expansins are suggested to mediate plant cell growth by interfering with either structural proteins or the polysaccharide network in the cell wall. Our group reported papain-like properties of beta-expansin of Timothy grass (Phleum pratense) pollen, Phl p 1, and suggested that cleavage of cell wall structural proteins may be the underlying mechanism of expansin-mediated wall extension. Here, we report additional data showing that beta-expansins resemble ancient and modern cathepsin B, which is a member of the papain (C1) family of cysteine proteinases. Using the Pichia pastoris expression system, we show that cleavage of inhibitory prosequences from the recombinant allergen is facilitated by its N-glycosylation and that the truncated, activated allergen shows proteolytic activity, resulting in very low stability of the protein. We also show that deglycosylated, full-length allergen is not activated efficiently and therefore is relatively stable. Motif and homology search tools detected significant similarity between beta-expansins and cathepsins of modern animals as well as the archezoa Giardia lamblia, confirming the presence of inhibitory prosequences, active site and other functional amino-acid residues, as well as a conserved location of these features within these molecules. Lastly, we demonstrate by site-directed mutagenesis that the conserved His104 residue is involved in the catalytic activity of beta-expansins. These results indicate a common origin of cathepsin B and beta-expansins, especially if taken together with their previously known biochemical properties.  相似文献   

4.
Pear is known as an allergenic food involved in the ‘oral allergy syndrome’ which affects a high percentage of patients allergic to birch pollen. The aim of this study was to clone the major allergen of this fruit, to express it as bacterial recombinant protein and to study its allergenic properties in relation to homologous proteins and natural allergen extracts. The coding region of the cDNA was obtained by a PCR strategy, cloned, and the allergen was expressed as His-Tag fusion protein. The fusion peptide was removed by treatment with cyanogen bromide. Purified non-fusion protein was subjected to allergenicity testing by the enzyme allergosorbent test (EAST), Western blotting, competitive inhibition assays, and basophil histamine release. The deduced protein sequence shared a high degree of identity with other major allergens from fruits, nuts, vegetables, and pollen, and with a family of PR-10 pathogenesis related proteins. The recombinant (r) protein was recognised by specific IgE from sera of all pear-allergic patients (n=16) investigated in this study. Hence, the allergen was classified as a major allergen and named Pyr c 1. The IgE binding characteristics of rPyr c 1 appeared to be similar to the natural pear protein, as was demonstrated by EAST-inhibition and Western blot-inhibition experiments. Moreover, the biological activity of rPyr c 1 was equal to that of pear extract, as indicated by basophil histamine release in two patients allergic to pears. The related major allergens Bet v 1 from birch pollen and Mal d 1 from apple inhibited to a high degree the binding of IgE to Pyr c 1, whereas Api g 1 from celery, also belonging to this family, had little inhibitory effects, indicating epitope differences between Bet v 1-related food allergens. Unlimited amounts of pure rPyr c 1 are now available for studies on the structure and epitopes of pollen-related food allergens. Moreover, the allergen may serve as stable and standardised diagnostic material.  相似文献   

5.
A method to isolate the major allergen from olive pollen (Ole e I) in high yield is described. The allergenic fraction has been separated into 3 subfractions by reverse-phase HPLC. All these fractions were reactive to allergic sera from olive-sensitized patients, giving similar responses. No significant differences were observed between the amino acid compositions of these three proteins. The amino acid sequence of the first 27 amino acid residues from the N-terminal end is given. No homologies have been detected between Ole e I and other known allergens obtained from pollen.  相似文献   

6.
Expansins are a family of proteins that catalyse long-term extension of isolated plant cell walls due to an as yet unknown biochemical mechanism. They are divided into two groups, the alpha-expansins and beta-expansins, the latter group consisting of grass group I allergens and their vegetative homologs. These grass group I allergens, to which more than 95% of patients allergic to grass pollen possess IgE antibodies, are highly immunologically crossreactive glycoproteins exclusively expressed in pollen of all grasses. Alignments of the amino-acid sequences of grass group I allergens derived from diverse grass species reveal up to 95% homology. It is therefore likely that these molecules share a similar biological function. The major grass group I allergen from timothy grass (Phleum pratense), Phl p 1, was chosen as a model glycoprotein and expressed in the methylotrophic yeast Pichia pastoris to obtain a post-translationally modified and functionally active allergen. The recombinant allergen exhibited proteolytic activity when assayed with various test systems and substrates, which was also subsequently demonstrated with the natural protein, nPhl p 1. These observations are confirmed by amino-acid alignments of Phl p 1 with three functionally important sequence motifs surrounding the active-site amino acids of the C1 (papain-like) family of cysteine proteinases. Moreover, the significantly homologous alpha-expansins mostly share the functionally important C1 sequence motifs. This leads us to propose a C1 cysteine proteinase function for grass group I allergens, which may mediate plant cell wall growth and possibly contributes to the allergenicity of the molecule.  相似文献   

7.
In a paradigmatic approach we identified cross-reactive plant allergens for allergy diagnosis and treatment by screening of a tobacco leaf complementary DNA (cDNA) library with serum IgE from a polysensitized allergic patient. Two IgE-reactive cDNA clones were isolated which code for proteins with significant sequence similarity to the actin-binding protein, villin. Northern- and Western-blotting demonstrate expression of the villin-related allergens in pollen and somatic plant tissues. In addition, villin-related proteins were detected in several plant allergen sources (tree-, grass-, weed pollen, fruits, vegetables, nuts). A recombinant C-terminal fragment of the villin-related protein was expressed in Escherichia coli, purified and shown to react specifically with allergic patients IgE. After profilin, villin-related proteins represent another family of cytoskeletal proteins, which has been identified as cross-reactive plant allergens. They may be used for the diagnosis and treatment of patients suffering from multivalent plant allergies.  相似文献   

8.
This review presents an update on the sources and molecular basis of aeroallergens of plants, derived from pollen, seeds, leaf and stem detritus and their protein molecules. These aeroallergens are a natural component of the atmosphere, either because of their natural function or human activity. Pollen is a source of allergens within the 10–200 μm size range, and while most allergenic pollen types account for only 20–30% of total annual pollen catch, during their flowering season, they are usually the dominant type. Tree pollen commences the season in winter, with birch pollen counts in Scandinavia being the highest daily pollen counts yet reported and a major allergen, a 14-kDa protein, which is similar to pathogenesis-related proteins. Grass pollen follows in spring, and is unique as its two immunodominant allergens, a 35-kDa glycoprotein and 28–32-kDa protein, are in different cellular sites: the cytosol and surface of pollen grains; and in intracellular starch granules. The allergens at the pollen surface are not inhalable and can interact only with the eyes, nasal and oral cavities. Starch granules are released to the atmospheric aerosol when grains rupture in rainwater. These are a major source of allergen-containing micronic particles, which are important because they are inhalable. At the same time, allergen molecules are present in the aerosol, and these can bind to soot particles, and so be respired deep into the airways. The major Japanese cedar pollen allergen has been detected both within the pollen and in orbicules; particles less than 1 μm that line the anther cavity and can be released into the air when dehiscence occurs. Ragweed is the major cause of late summer hayfever in eastern North America, where its pollen accounts for up to 41% of the annual pollen catch. It is a major source of aeroallergens in both respirable and non-respirable size ranges. As a result of human activity, dusts derived from seeds and cereal grains during transport, storage and milling provide a source of micronic particles, containing potent allergens that can trigger allergic disease.  相似文献   

9.
Kao SH  Su SN  Huang SW  Tsai JJ  Chow LP 《Proteomics》2005,5(14):3805-3813
Bermuda grass (Cynodon dactylon) pollen (BGP) is one of the most common causes of airway allergic disease, and has been shown to contain over 12 allergenic proteins on 1-D immunoglobulin E (IgE) immunoblots. However, only a few allergens have been identified and characterized. Cyn d 1 is a major allergen and the most abundant protein in BGP, representing 15% of the whole-pollen extract. To investigate variability in the IgE-reactive patterns of BGP-sensitized patients and to identify other prevalent allergens, a BGP extract was passed through an affinity column to remove Cyn d 1, and the non-bound material was collected and analyzed by 2-DE. IgE-reactive proteins were subsequently characterized by immunoblotting using serum samples from ten BGP-allergic patients. The prevalent IgE-reactive proteins were identified by MALDI-TOF MS, N-terminal sequence similarity, and LC-MS/MS. Here, we present a sub-proteome approach for allergen investigation and its use for determining BGP 2-DE profiles and identifying six novel allergens.  相似文献   

10.
Grass pollen allergens are one of the major causes of type I allergic reactions (allergic rhinoconjunctivitis, allergic bronchial asthma, and hayfever) in temperate climates afflicting 15-20% of a genetically predisposed population. Workers have found considerable physico- and immunochemical heterogeneity within the grass pollen allergens which has made them difficult to purify for both therapeutic uses and further biochemical study. We recently reported the construction of a cDNA library in lambda gt11 using mRNA extracted from dehydrated Kentucky bluegrass (KBG, Poa pratensis). Here, we present the nucleotide and deduced amino acid sequences for three KBG pollen allergen cDNA clones, KBG 41, 60, and 31, which were isolated from the above library using a pool of six sera from grass pollen allergic patients. These clones exhibit an exceptionally high degree of sequence similarity to one another, only minor similarity to other known allergens, and no homologies to other known proteins or genes. The predicted molecular mass for the cloned proteins range from 28.3 to 37.8 kDa with pI values of 9.6-10.2. All three clones appear to possess leader peptides and lack asparagine sequons required for N-glycosylation. Therefore, the molecular mass of the post-translationally modified proteins were calculated to be 28.4-34.9 kDa, which is consistent with the size of the polypeptides revealed in Western blots of pollen proteins using an antiserum to a recombinant peptide encoded by the partial cDNA clone KBG 8.3. Northern blotting analysis indicates that expression of the genes corresponding to these clones is confined to pollen tissue. The results suggest that the clones code for a group of proteins that represent a new and previously uncharacterized group of grass pollen isoallergens, which have been hereby designated as Poa p IX.  相似文献   

11.
Rice seed-based edible vaccines expressing T-cell epitope peptides derived from Japanese cedar major pollen allergens have been used to successfully suppress allergen-specific Th2-mediated immunoglobulin E (IgE) responses in mouse experiments. In order to further expand the application of seed-based allergen-specific immunotherapy for controlling Japanese cedar pollinosis, we generated transgenic rice plants that specifically express recombinant Cry j 1 allergens in seeds. Cry j 1 allergens give low specific IgE-binding activity but contain all of the T-cell epitopes. The allergens were expressed directly or as a protein fusion with the major rice storage protein glutelin. Fusion proteins expressed under the control of the strong rice endosperm-specific GluB-1 promoter accumulated in rice endosperm tissue up to 15% of total seed protein. The fusion proteins aggregated with cysteine-rich prolamin and were deposited in endoplasmic reticulum-derived protein body I. The production of transgenic rice expressing structurally disrupted Cry j 1 peptides with low IgE binding activity but spanning the entire Cry j1 region can be used as a universal, safe and effective tolerogen for rice seed-based oral immunotherapy for cedar pollen allergy in humans and other mammals.  相似文献   

12.
Worldwide more than 200 million individuals are allergic to group 1 grass pollen allergens. We have used the major timothy grass pollen allergen Phl p 1, which cross-reacts with most grass-, corn-, and monocot-derived group 1 allergens to develop a generally applicable strategy for the production of hypoallergenic allergy vaccines. On the basis of the experimentally determined B cell epitopes of Phl p 1, we have synthesized five synthetic peptides. These peptides are derived from the major Phl p 1 IgE epitopes and were between 28-32 amino acids long. We demonstrate by nuclear magnetic resonance that the peptides exhibit no secondary and tertiary structure and accordingly failed to bind IgE antibodies from grass pollen allergic patients. The five peptides, as well as an equimolar mixture thereof, lacked allergenic activity as demonstrated by basophil histamine release and skin test experiments in grass pollen allergic patients. When used as immunogens in mice and rabbits, the peptides induced protective IgG antibodies, which recognized the complete Phl p 1 wild-type allergen and group 1 allergens from other grass species. Moreover, peptide-induced antibodies inhibited the binding of grass pollen allergic patients IgE antibodies to the wild-type allergen. We thus demonstrate that synthetic hypoallergenic peptides derived from B cell epitopes of major allergens represent safe vaccine candidates for the treatment of IgE- mediated allergies.  相似文献   

13.
The second major allergen of Juniperus ashei (mountain cedar) pollen, Jun a 2, has been purified and its cDNA cloned. The purified protein has a molecular mass of 43 kDa and its N-terminal 9-residue amino acid sequence is highly homologous to those of Cry j 2 and Cha o 2, the second major allergen of Cryptomeria japonica and Chamaecyparis obtusa pollen, respectively. cDNA clones encoding Jun a 2 were isolated after PCR based amplification, and their nucleotide sequences were determined. The cDNA contains an open reading frame of 507 amino acid residues, and encodes a putative 54-residue signal sequence and a 453-residue intermediate, which releases a C-terminal fragment upon maturation. Three possible N-linked glycosylation sites and 20 cystein-residues are found in the deduced amino acid sequence. The amino acid sequence of Jun a 2 shows 70.7 and 82.0% identity with those of Cry j 2 and Cha o 2, respectively. Immunological observations that IgE antibodies in sera of Japanese pollinosis patients bind not only to Cry j 2 and Cha o 2 but also to Jun a 2 strongly suggest that Jun a 2 is an allergen of mountain cedar pollen, and that allergenic epitopes of these three allergens are similar.  相似文献   

14.
15.
Allergic reactions to peanuts and tree nuts are major causes of anaphylaxis in the United States. We compare different properties of natural and recombinant versions of Ara h 1, a major peanut allergen, through structural, immunologic, and bioinformatics analyses. Small angle x-ray scattering studies show that natural Ara h 1 forms higher molecular weight aggregates in solution. In contrast, the full-length recombinant protein is partially unfolded and exists as a monomer. The crystal structure of the Ara h 1 core (residues 170-586) shows that the central part of the allergen has a bicupin fold, which is in agreement with our bioinformatics analysis. In its crystalline state, the core region of Ara h 1 forms trimeric assemblies, while in solution the protein exists as higher molecular weight assemblies. This finding reveals that the residues forming the core region of the protein are sufficient for formation of Ara h 1 trimers and higher order oligomers. Natural and recombinant variants of proteins tested in in vitro gastric and duodenal digestion assays show that the natural protein is the most stable form, followed by the recombinant Ara h 1 core fragment and the full-length recombinant protein. Additionally, IgE binding studies reveal that the natural and recombinant allergens have different patterns of interaction with IgE antibodies. The molecular basis of cross-reactivity between vicilin allergens is also elucidated.  相似文献   

16.
The dominant allergenic components of grass pollen are known by immunologists as group 1 allergens. These constitute a set of closely related proteins from the beta-expansin family and have been shown to have cell wall-loosening activity. Group 1 allergens may facilitate the penetration of pollen tubes through the grass stigma and style. In maize (Zea mays), group 1 allergens are divided into two classes, A and B. We have identified 15 genes encoding group 1 allergens in maize, 11 genes in class A and four genes in class B, as well as seven pseudogenes. The genes in class A can be divided by sequence relatedness into two complexes, whereas the genes in class B constitute a single complex. Most of the genes identified are represented in pollen-specific expressed sequence tag libraries and are under purifying selection, despite the presence of multiple copies that are nearly identical. Group 1 allergen genes are clustered in at least six different genomic locations. The single class B location and one of the class A locations show synteny with the rice (Oryza sativa) regions where orthologous genes are found. Both classes are expressed at high levels in mature pollen but at low levels in immature flowers. The set of genes encoding maize group 1 allergens is more complex than originally anticipated. If this situation is common in grasses, it may account for the large number of protein variants, or group 1 isoallergens, identified previously in turf grass pollen by immunologists.  相似文献   

17.
Allergy against birch pollen is among the most common causes of spring pollinosis in Europe and is diagnosed and treated using extracts from natural sources. Quality control is crucial for safe and effective diagnosis and treatment. However, current methods are very difficult to standardize and do not address individual allergen or isoallergen composition. MS provides information regarding selected proteins or the entire proteome and could overcome the aforementioned limitations. We studied the proteome of birch pollen, focusing on allergens and isoallergens, to clarify which of the 93 published sequence variants of the major allergen, Bet v 1, are expressed as proteins within one source material in parallel. The unexpectedly complex Bet v 1 isoallergen composition required manual data interpretation and a specific design of databases, as current database search engines fail to unambiguously assign spectra to highly homologous, partially identical proteins. We identified 47 non-allergenic proteins and all 5 known birch pollen allergens, and unambiguously proved the existence of 18 Bet v 1 isoallergens and variants by manual data analysis. This highly complex isoallergen composition raises questions whether isoallergens can be ignored or must be included for the quality control of allergen products, and which data analysis strategies are to be applied.  相似文献   

18.
The recombinant major grass pollen allergen Phl p 6 has been expressed with a N-terminal 6 x His-tag sequence and subsequently purified using nickel-chelating Sepharose. After cleavage of the tag-sequence, a second pass over the affinity chromatography revealed that even untagged rPhl p 6 bound tightly. In order to determine if that property is typical for Phl p 6, the natural allergen was purified in the same way starting with a grass pollen extract. Indeed, nPhl p 6 could be highly enriched in one step using nickel-chelating Sepharose. In addition to this new powerful purification method, the results provide further information in that the recombinant and natural allergens share a lot of properties, since biochemical characteristics are reflected in the purification strategies. The preparations of natural and recombinant Phl p 6 were used for comparative electrophoretic, chromatographic and immunological analysis which demonstrated high similarity.  相似文献   

19.
The Bet v. 1 gene family of birch encodes the major pollen allergens as well as pathogenesis-related (PR) proteins that are induced by microbes in somatic tissues. These PR proteins belong to a group of conserved intracellular defense-related proteins that have been termed 'ribonuclease-like' PR proteins, on the basis of the partial sequence homology observed between PR1, a Bet v 1-homologue from parsley, and a recently characterized ginseng ribonuclease. However, this enzymatic activity has not yet been demonstrated, not for any of the members of this family of PR proteins, nor for the related pollen allergens. We have investigated the possible nuclease activity of Bet v 1 using apparently homogeneous preparations of natural Bet v 1 purified from birch pollen, and a recombinant non-fusion protein purified from E. coli extracts. We report here that Bet v 1 proteins indeed possess an intrinsic ribonucleolytic activity as they can digest different RNA substrates in vitro, but show no activity on single or double-stranded DNA.  相似文献   

20.
Many patients who have been sensitised to pollen, display allergic symptoms after ingestion of certain plant food such as fresh fruit, vegetables and nuts. The cause is the cross-reactivity between structurally very similar major plant allergens. In particular, allergy to celery is very frequently associated with birch and mugwort pollen sensitization, known as to the birch-mugwort-celery syndrome. The crystal structure of the major celery allergen Api g 1, a homologue of the major birch pollen allergen Bet v 1, has been determined to a resolution of 2.9 A. The structure of Api g 1 is very similar to that of Bet v 1 with major differences occurring in the segment comprised of residues 23-45, preceding the well conserved glycine-rich P-loop, as well as in loops beta3-beta4 and beta5-beta6. In particular, Api g 1 lacks E45, which has been shown to be a crucial residue for antibody recognition in the crystal complex of Bet v 1 with the Fab fragment of a murine monoclonal IgG (BV16) antibody. The absence of E45 and the structural differences in the preceding segment suggest that this region of the Api g 1 surface is probably not responsible for the observed cross-reactivity with Bet v 1. A detailed analysis of the molecular surface in combination with sequence alignment revealed three conserved surface patches which may account for cross-reactivity with Bet v 1. Several residues of Bet v 1 which have been shown by mutagenesis studies to be involved in IgE recognition belong to these conserved surface regions. The structure of Api g 1 and the related epitope analysis provides a molecular basis for a better understanding of allergen cross-reactivity and may lead to the development of hypoallergens which would allow a safer immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号