首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 484 毫秒
1.
白洋淀湿地区土壤有机碳密度及储量的空间分布特征   总被引:2,自引:0,他引:2  
李瑾璞  于秀波  夏少霞  赵玮  王树涛  许策 《生态学报》2020,40(24):8928-8935
湿地生态系统碳储量是陆地生态系统碳循环的重要组成部分,提供重要的生态系统服务功能。白洋淀湿地是国家重要生态湿地和华北平原最大的淡水湿地,同时是雄安新区的核心水系,湿地区土壤碳储量的估算研究将为湿地生态系统服务评估和湿地生态恢复提供数据支撑。研究通过对白洋淀湿地7种不同地类的105个土壤剖面进行分层取样,揭示了其湿地土壤有机碳密度及储量的空间分布特征,结果表明:(1)白洋淀湿地区土壤有机碳含量整体偏低,在各层土壤中,淹水芦苇湿地的有机碳含量均显著高于其他植被类型,约为其他类型土壤碳含量的3倍左右。(2)在各植被类型中土壤有机碳含量均以表层(0-20 cm)最高,其分配比例均集中在30%左右,随着土壤剖面深度的增加,湿地土壤的有机碳含量逐渐减少。(3)不同植被类型土壤有机碳含量与土壤有机碳密度的差异显著,具体表现为:乔木园地 < 旱地 < 常绿针叶林 < 落叶阔叶林 < 水田 < 台田芦苇 < 淹水芦苇。(4)根据估算,白洋淀湿地区的土壤有机碳储量约为5816.77×103Mg。随着雄安新区环境治理工作的推进,白洋淀湿地区生态系统固碳将呈现持续向好态势,结合生态恢复和土地布局优化,尽量减少雄安新区建设中土地流转带来的碳排放影响,对提高区域生态效益具有重要意义。  相似文献   

2.
红树林湿地碳储量及碳汇研究进展   总被引:9,自引:0,他引:9  
红树林是生长在热带和亚热带地区潮间带的特殊的湿地森林,在防风固田、促进淤泥沉积、抵御海啸和台风等自然灾害和保护海岸线方面起着重要的作用.全球约有红树林152000 km2,占陆地森林面积的0.4%,我国约有230 km2.热带红树林湿地的碳储量平均高达1023 Mg C·hm-2,全球红树林湿地的碳汇能力在0.18~0.228 Pg C·a-1.影响红树林碳储量和碳汇能力的主要因子除了植物种类组成以外,气温、海水温度、海水盐度、土壤理化性质、大气CO2浓度及人类干扰等均有着重要作用.红树林湿地碳储量、碳汇能力的研究方法以实测法为基础,包括异速方程、遥感反演和模型模拟等.研究红树林湿地碳储量及碳汇能力,有利于深入认识红树林湿地碳循环过程及其调控机制,对红树林湿地的保护和合理利用具有重要意义.  相似文献   

3.
朱耀军  郭菊兰  武高洁 《生态学杂志》2012,31(10):2681-2687
红树林湿地是地球上生产力最高的区域之一,尽管红树林的面积相对较少,但其单位面积的固碳能力很强,是重要的"蓝碳"碳库,其有机碳储量及动态对于全球碳平衡有重要影响。本文对红树林湿地有机碳(包括植被生物量碳和沉积物有机碳)的碳储量及计量方法,沉积物中有机碳的组成、来源及溯源方法,以及影响红树林湿地有机碳动态的因素等方面的研究进行了综述,并对其存在的问题和今后的研究趋势进行了分析。基于红树林湿地的固碳潜力和资源快速减少的现状,准确评估红树林碳库及其动态,有助于气候变化框架条约下的滨海湿地碳计量和价值评价,可以揭示红树林生态系统与全球变化的反馈关系,为红树林生态恢复和保护提供依据。  相似文献   

4.
中国滨海盐沼湿地碳收支与碳循环过程研究进展   总被引:13,自引:0,他引:13  
曹磊  宋金明  李学刚  袁华茂  李宁  段丽琴 《生态学报》2013,33(17):5141-5152
滨海盐沼湿地由于其较高的初级生产力和较缓慢的有机质降解速率而成为缓解全球变暖的有效蓝色碳汇,近年来引起全球范围内的热切关注.我国滨海盐沼湿地分布较广,国内学者对滨海盐沼湿地碳循环及碳收支研究取得了一定进展,深入研究滨海盐沼湿地碳循环有助于对全球碳循环及全球变化的理解,并为利用滨海湿地进行碳的增汇减排提供科学依据.主要从我国滨海盐沼湿地碳循环主要观测方法、碳收支与碳循环过程及特点、碳库的组成与影响因素、气态碳的输入输出、潮汐作用对其碳收支的影响这5个方面出发,对国内的滨海盐沼湿地碳循环与碳收支的研究进展进行了归纳总结,并对今后的研究方向给出如下建议:(1)加强滨海盐沼湿地土壤碳库在深度上和广度上的研究;(2)标准化滨海盐沼湿地碳储量、碳通量的量化方法和观测技术;(3)在研究尺度上要宏观、微观并重,同时加强长期原位监测湿地碳通量的变化与室内模拟研究;(4)量化在潮汐影响下滨海盐沼湿地碳与邻近生态系统之间的横向交换通量.只有对我国滨海盐沼湿地碳库收支进行更准确的评估和长期的碳库动态变化监测,方可进一步认识我国盐沼湿地对全球气候变化的影响及其反馈作用,这对于预测全球变化及制定湿地碳储备功能的提升策略具有重要的意义.  相似文献   

5.
青藏高原湿地作为陆地生态系统的重要组成部分,在全球碳循环中发挥着重要作用.以青藏高原东缘尕海湿地植被不同退化程度样地(未退化CK、轻度退化SD、中度退化MD及重度退化HD)为研究对象,通过分析地上植物、凋落物、根系和土壤有机碳,研究湿地植被退化过程中植被-土壤系统有机碳储量变化特征.结果表明:除HD外,不同退化程度湿地地上植被碳储量为99.58~205.64 g·m-2,根系(0~40 cm)碳储量为56.96~754.37 g·m-2,地上、根系碳储量随退化程度的加剧显著下降,土壤容重随退化程度加剧呈先增加后减少趋势,植被退化湿地各层土壤容重均大于对照样地,而凋落物碳储量为17.29~35.69 g·m-2,CK和MD均显著高于SD;不同退化程度湿地土壤0~40 cm碳储量为7265.06~9604.30 g·m-2,且MD>CK>SD>HD,土壤有机碳储量CK和MD显著高于SD、HD;植被-土壤系统的碳储量为7265.06~10389.94 g·m-2,各样地大小顺序为CK>MD>SD>HD,有机碳主要储存于土壤中,占湿地总碳贮量的90%以上,说明适度干扰有利于发挥高寒湿地生态系统的碳汇功能.  相似文献   

6.
王栋  邹维娜  杨华蕾  李阳  刘君恬  田丰  李秀珍  袁琳 《生态学报》2023,43(20):8465-8475
盐沼湿地在缓解温室效应和应对气候变化方面发挥着重要作用,是重要的"蓝碳"生态系统。储存在盐沼湿地土壤中的有机碳(SOC)是盐沼湿地碳汇的主要成分,但受植被覆盖、土壤环境等生境要素变化的显著影响。以长江口崇明岛周缘的盐沼湿地为典型研究区域,分别测量了环岛不同样线和不同植被区SOC含量及环境因子(盐度、容重、碳氮比(C/N)等),在此基础上分析了盐沼湿地SOC储量的空间分布格局及其影响因素。结果表明:(1)崇明岛周缘盐沼湿地SOC含量和储量均存在明显的空间异质性,北侧的土壤SOC含量高于南侧,东北侧的SOC储量高于西南侧区域;(2)垂直各层上,SOC含量呈现随土层深度增加逐渐减少的趋势,表层0-50 cm深度的单位面积SOC储量大于50-100 cm深度;(3)植物类型和土壤理化因素(土壤C/N、土壤盐度、土壤容重等)在一定程度上影响了崇明岛周缘盐沼湿地土壤碳储量的空间格局。研究表明,受河口区植被和土壤理化性质等多种因素空间异质性的共同影响,盐沼湿地土壤SOC储量格局也易呈现空间差异,因此在开展盐沼湿地储碳机制研究、科学评估盐沼湿地储碳能力及实现盐沼"蓝碳"固碳增汇时应充分考虑区域间的环境和生态的空间异质性特征。  相似文献   

7.
大气中近 10%的碳由土壤产生, 其微小变化就能对全球碳平衡产生重要的影响, 进而影响全球气候变化。因此, 土壤碳储量和释放量的准确测定已成为当前全球变化研究的关键问题之一。从典型陆地生态系统土壤碳储量的计算结果、计算方法及影响因素 3 个层面对当前土壤碳储量的相关研究成果进行了归纳与总结, 分析了当前关于土壤碳储量计算研究中尚存在的问题及原因, 并提出了应加强的研究内容, 以期为今后的研究提供一些参考。  相似文献   

8.
青藏高原湿地作为陆地生态系统的重要组成部分,在全球碳循环中发挥着重要作用.以青藏高原东缘尕海湿地植被不同退化程度样地(未退化CK、轻度退化SD、中度退化MD及重度退化HD)为研究对象,通过分析地上植物、凋落物、根系和土壤有机碳,研究湿地植被退化过程中植被-土壤系统有机碳储量变化特征.结果表明: 除HD外,不同退化程度湿地地上植被碳储量为99.58~205.64 g·m-2,根系(0~40 cm)碳储量为56.96~754.37 g·m-2,地上、根系碳储量随退化程度的加剧显著下降,土壤容重随退化程度加剧呈先增加后减少趋势,植被退化湿地各层土壤容重均大于对照样地,而凋落物碳储量为17.29~35.69 g·m-2,CK和MD均显著高于SD;不同退化程度湿地土壤0~40 cm碳储量为7265.06~9604.30 g·m-2,且MD>CK>SD>HD,土壤有机碳储量CK和MD显著高于SD、 HD;植被-土壤系统的碳储量为7265.06~10389.94 g·m-2,各样地大小顺序为CK>MD>SD>HD,有机碳主要储存于土壤中,占湿地总碳贮量的90%以上,说明适度干扰有利于发挥高寒湿地生态系统的碳汇功能.  相似文献   

9.
生源要素有效性及生物因子对湿地土壤碳矿化的影响   总被引:3,自引:0,他引:3  
张林海  曾从盛  仝川 《生态学报》2011,31(18):5387-5395
湿地土壤是全球碳存储的重要场所,湿地生态系统的碳循环过程对全球变化有重要指示作用。土壤碳矿化是湿地生态系统碳循环的重要环节,对于认知湿地生态系统生物地球化学循环过程具有重要的意义。综述了生源要素及生物因素对湿地土壤碳矿化的内在作用机制。土壤活性有机碳库通过调节土壤能源物质和微生物活性影响土壤碳库的有效性,是表征土壤碳矿化的敏感指标。湿地其它养分如N、P、S等元素的有效性也是影响土壤碳矿化的关键要素。电子受体(NO3-、SO42-、Fe3+、Mn4+等)对湿地土壤碳矿化和有机碳转变的影响主要通过电子受体的还原过程完成,在厌氧分解过程中,湿地土壤利用难溶性电子受体可能是土壤C矿化的更重要途径。动物、植物、微生物群落和区系等则是土壤碳矿化的主要驱动因子。土壤动物区系在有机态养分矿化为无机态养分的过程有着独特的功能,能显著增加土壤碳矿化。土壤微生物的活性,决定着土壤中有机碎屑的降解速率,是土壤有机碳分解周转的主要诱导因素。湿地植物则通过影响根系、微生物呼吸底物的供应以及对小气候和土壤因子的调节而影响土壤有机质的分解。湿地生源要素和生物因子还极易与土壤理化性质如温度、水分、pH值和质地等环境因素形成交互和制约,共同影响土壤碳矿化。最后,提出了进一步研究生源要素和生物因素与湿地土壤碳矿化关系需要解决的一些重要问题。  相似文献   

10.
滨海盐沼湿地有着较高的碳沉积速率和固碳能力,在缓解全球变暖方面发挥着重要作用,而盐渍土壤是滨海盐沼湿地碳收支研究中最大的有机碳库,研究其碳沉积与埋藏对于理解滨海湿地碳收支有着重要的意义.本文从滨海盐沼湿地土壤有机碳的来源、土壤有机碳库与沉积速率、盐沼湿地有机碳的埋藏机制、全球变化与滨海盐沼湿地碳封存等几方面对滨海盐沼湿地有机碳沉积与埋藏的相关研究进行综述.今后研究应侧重:1)加强对控制滨海盐沼湿地碳储存变异的基本因素的进一步研究;2)对测量滨海盐沼湿地沉积物碳储量和沉积碳埋藏速率的方法进行标准化;3)对潮汐影响下滨海盐沼湿地碳与邻近生态系统之间的横向交换通量进行量化;4)探明全球变暖的影响和生产力的提高是否可以抵消因呼吸增强而造成的有机碳降解速率的升高.确定固碳速率变化驱动因子,理解气候变化和人类活动对碳埋藏的影响机制,有助于提升我国滨海盐沼湿地的固碳能力.  相似文献   

11.
Healthy wetlands play a significant role in climate change mitigation by storing carbon that would otherwise contribute to global warming, leading to the reduction of water and food resources as well as more extreme weather phenomena. Investigating the magnitude of carbon storage potential of different freshwater wetland systems using multiple ecological indicators at varying spatial scales provides insight and justification for selective wetland restoration and conservation initiatives. We provide a holistic accounting of total carbon values for 193 wetland sites, integrating existing carbon algorithms to rapidly assess each of the following carbon pools: above-ground, below-ground, soil, woody debris, shrub cover, and herbaceous cover. Aspects of soil, vegetation, and ecosystem characteristics and stressors were measured to obtain an overall understanding of the ecosystems ability to store carbon (long-term) along a gradient of human disturbance. Based on a review of the literature, methods were prioritized based on the initial data available from field measurements as well as their practicality and ease in replicating the process in the future. Lacustrine human impounded (88.7?±?18.0 tC/ha), riverine beaver impounded (116.2?±?29.4 tC/ha), riverine upper perennial (163.3?±?11.8 tC/ha), riverine lower perennial (199.2?±?24.7 tC/ha), riverine headwater complex (159.5?±?22.2 tC/ha), perennial/seasonal depression (269.6?±?42.4 tC/ha), and slope (162.2?±?14.6 tC/ha) wetland types were compared. Overall results showed moderate variability (9.33–835.95 tC/ha) for total carbon storage values across the wetland types, with an average total carbon storage of 174.6?±?8.8 tC/ha for all wetlands. Results show that carbon storage was significantly higher (p?=?0.002) in least disturbed wetland sites. Apart from perennial/seasonal depression wetlands, all reference standard wetlands had greater carbon storage, less disturbance impact, and a greater extent of forest cover than non-reference wetlands. Carbon storage values calculated were comparable to published literature.  相似文献   

12.
Robust estimates of wetland soil organic carbon (SOC) pools are critical to understanding wetland carbon dynamics in the global carbon cycle. However, previous estimates were highly variable and uncertain, due likely to the data sources and method used. Here we used machine learning method to estimate SOC storage and their changes over time in China's wetlands based on wetland SOC density database, associated geospatial environmental data, and recently published wetland maps. We built a database of wetland SOC density in China that contains 809 samples from 181 published studies collected over the last 20 years as presented in the published literature. All samples were extended and standardized to a 1-m depth, on the basis of the relationship between SOC density data from soil profiles of different depths. We used three different machine learning methods to evaluate their robustness in estimating wetland SOC storage and changes in China. The results indicated that random forest model achieved accurate wetland SOC estimation with R2 being .65. The results showed that average SOC density of top 1 m in China's wetlands was 25.03 ± 3.11 kg C m−2 in 2000 and 26.57 ± 3.73 kg C m−2 in 2020, an increase of 6.15%. SOC storage change from 4.73 ± 0.58 Pg in 2000 to 4.35 ± 0.61 Pg in 2020, a decrease of 8.03%, due to 13.6% decreased in wetland area from 189.12 × 103 to 162.8 × 103 km2 in 2020, despite the increase in SOC density during the same time period. The carbon accumulation rate was 107.5 ± 12.4 g C m−2 year−1 since 2000 in wetlands with no area changes. Climate change caused variations in wetland SOC density, and a future warming and drying climate would lead to decreases in wetland SOC storage. Estimates under Shared Socioeconomic Pathway 1-2.6 (low-carbon emissions) suggested that wetland SOC storage in China would not change significantly by 2100, but under Shared Socioeconomic Pathway 5-8.5 (high-carbon emissions), it would decrease significantly by approximately 5.77%. In this study, estimates of wetland SOC storage were optimized from three aspects, including sample database, wetland extent, and estimation method. Our study indicates the importance of using consistent SOC density and extent data in estimating and projecting wetland SOC storage.  相似文献   

13.
The Loess Plateau of China has the highest soil erosion rate in the world where billion tons of soil is annually washed into Yellow River. In recent decades this region has experienced significant climate change and policy-driven land conversion. However, it has not yet been well investigated how these changes in climate and land use have affected soil organic carbon (SOC) storage on the Loess Plateau. By using the Dynamic Land Ecosystem Model (DLEM), we quantified the effects of climate and land use on SOC storage on the Loess Plateau in the context of multiple environmental factors during the period of 1961–2005. Our results show that SOC storage increased by 0.27 Pg C on the Loess Plateau as a result of multiple environmental factors during the study period. About 55% (0.14 Pg C) of the SOC increase was caused by land conversion from cropland to grassland/forest owing to the government efforts to reduce soil erosion and improve the ecological conditions in the region. Historical climate change reduced SOC by 0.05 Pg C (approximately 19% of the total change) primarily due to a significant climate warming and a slight reduction in precipitation. Our results imply that the implementation of “Grain for Green” policy may effectively enhance regional soil carbon storage and hence starve off further soil erosion on the Loess Plateau.  相似文献   

14.
Nontidal wetlands are estimated to contribute significantly to the soil carbon pool across the globe. However, our understanding of the occurrence and variability of carbon storage between wetland types and across regions represents a major impediment to the ability of nations to include wetlands in greenhouse gas inventories and carbon offset initiatives. We performed a large‐scale survey of nontidal wetland soil carbon stocks and accretion rates from the state of Victoria in south‐eastern Australia—a region spanning 237,000 km2 and containing >35,000 temperate, alpine, and semi‐arid wetlands. From an analysis of >1,600 samples across 103 wetlands, we found that alpine wetlands had the highest carbon stocks (290 ± 180 Mg Corg ha?1), while permanent open freshwater wetlands and saline wetlands had the lowest carbon stocks (110 ± 120 and 60 ± 50 Mg Corg ha?1, respectively). Permanent open freshwater sites sequestered on average three times more carbon per year over the last century than shallow freshwater marshes (2.50 ± 0.44 and 0.79 ± 0.45 Mg Corg ha?1 year?1, respectively). Using this data, we estimate that wetlands in Victoria have a soil carbon stock in the upper 1 m of 68 million tons of Corg, with an annual soil carbon sequestration rate of 3 million tons of CO2 eq. year?1—equivalent to the annual emissions of about 3% of the state's population. Since European settlement (~1834), drainage and loss of 260,530 ha of wetlands may have released between 20 and 75 million tons CO2 equivalents (based on 27%–90% of soil carbon converted to CO2). Overall, we show that despite substantial spatial variability within wetland types, some wetland types differ in their carbon stocks and sequestration rates. The duration of water inundation, plant community composition, and allochthonous carbon inputs likely play an important role in influencing variation in carbon storage.  相似文献   

15.
胶州湾滨海湿地土壤有机碳时空分布及储量   总被引:1,自引:1,他引:0  
訾园园  郗敏  孔范龙  李悦  杨玲 《生态学杂志》2016,27(7):2075-2083
在胶州湾选取芦苇、碱蓬、光滩及大米草4种典型滨海湿地类型,分季节和层次采集土壤样品,测定土壤有机碳含量,分析滨海湿地土壤有机碳的时空分布及储量.结果表明: 垂直方向上,除光滩湿地沿剖面呈先减小后稍有上升的趋势外,其他湿地均随土壤深度的增加而减小;水平方向上,湿地土壤有机碳含量表现为大米草湿地>光滩湿地>碱蓬湿地>芦苇湿地;季节上,湿地土壤有机碳含量表现为春季>夏季>秋季>冬季.土壤有机碳含量与土壤含盐量、含水率、TN及C/N呈正相关,与土壤容重、pH值呈负相关.不同类型湿地土壤剖面有机碳密度表现为光滩湿地>芦苇湿地>碱蓬湿地,湿地类型对土壤有机碳含量和有机碳密度分布的影响存在一定差异.因储碳层厚度及储碳层内有机碳密度的差异,光滩湿地单位面积有机碳储量明显高于碱蓬和芦苇湿地,具有较大的储碳潜能,对研究区滨海湿地起到一定的碳汇作用.  相似文献   

16.
Coastal wetlands play an important but complex role in the global carbon cycle, contributing to the ecosystem service of greenhouse gas regulation through carbon sequestration. Although coastal wetlands occupy a small percent of the total US land area, their potential for carbon storage, especially in soils, often exceeds that of other terrestrial ecosystems. More than half of the coastal wetlands in the US are located in the northern Gulf of Mexico, yet these wetlands continue to be degraded at an alarming rate, resulting in a significant loss of stored carbon and reduction in capacity for carbon sequestration. We provide estimates of surface soil carbon densities for wetlands in the northern Gulf of Mexico coastal region, calculated from field measurements of bulk density and soil carbon content in the upper 10–15 cm of soil. We combined these estimates with soil accretion rates derived from the literature and wetland area estimates to calculate surface soil carbon pools and accumulation rates. Wetlands in the northern Gulf of Mexico coastal region potentially store 34–47 Mg C ha?1 and could potentially accumulate 11,517 Gg C year?1. These estimates provide important information that can be used to incorporate the value of wetlands in the northern Gulf of Mexico coastal region in future wetland management decisions related to global climate change. Estimates of carbon sequestration potential should be considered along with estimates of other ecosystem services provided by wetlands in the northern Gulf of Mexico coastal region to strengthen and enhance the conservation, sustainable management, and restoration of these important natural resources.  相似文献   

17.
中国西北干旱区高寒湿地生态系统呼吸的季节和日变化及其环境控制湿地储存了大量的碳,在全球碳循环和区域生态系统服务中发挥着重要作用。了解湿地碳交换动态对评估碳收支和预测其未来演变至关重要。虽然关于气候变化对生态系统碳循环的影响已经进行了大量的研究,但对中国西北干旱区高寒湿地碳排放的研究相对较少。本研究利用自动箱法(LI-8100A)对中国西北干旱区巴音布鲁克高寒湿地生态系统呼吸(ER)进行测量。结果显示,ER呈显著的“双峰”型日变化,峰值分别出现在北京时间的16:30和23:30。ER也呈明显的季节性变化规律,ER最大 值(19.38 μmol m−2 s−1)出现在8月,最小值(0.11 μmol m−2 s−1)出现在12月。2018年生态系统的年排放量为678 g C m−2,其中非生长季的排放量占全年总排放量的13%。非线性回归表明土壤5 cm处温度和水分含量的变化是控制ER季节变化的主要因素。ER的日变化主要受空气温度和太阳辐射的共同影响。在较低的土壤温度和中等土壤水分含量(25% ≤ SWC ≤ 40%)条件下,生态系统温度敏感性(Q10)较高。本研究加深了我们对高寒湿地生态系统CO2排放的理解,并有助于评估干旱地区高寒湿地的碳收支。  相似文献   

18.
黄河口湿地有机碳来源及其对碳埋藏提升策略的启示   总被引:6,自引:0,他引:6  
滨海湿地是地球上具有多种独特功能的生态系统,是地球上重要的碳库之一,其在全球碳循环中的作用在近年来越来越受到人们的重视。总结了用C/N、稳定碳同位素和生物标志物等方法追踪黄河口湿地有机碳来源的研究成果,并据此探讨了黄河口湿地的固碳提升策略。黄河口湿地是我国典型的滨海湿地,碳来源复杂,但各种示踪方法均表明有机碳的来源中陆源输入较海源输入优势明显,而且陆源输入以地表径流和植被为主,但海源输入从内陆向近海逐渐增强,碳的来源有明显的时空变化并且受到人类活动的强烈干扰。从有机质来源看,提升黄河口湿地的碳埋藏能力应该从合理调配河流淡水资源、保护植被、加快植物群落演替等方面入手。目前有机碳来源的研究还存在覆盖区域有限、碳源区分粗略、影响因子研究较少等问题,缺乏系统性,多限于观测,对机制的理解十分薄弱,因此难以对碳埋藏能力的提升提供定量化的指导。今后的研究要从以下几个方面加强:1)不同区域和不同环境条件之间的比较研究;2)探寻更具特异性的生物指标、优化数据模型,使来源区分更细致;3)不同来源有机质在沉积物中埋藏效率的对比研究;4)构建湿地碳埋藏能力评估体系,综合考虑各方面因素研发和集成能够最大限度提高滨海湿地碳埋藏能力的技术。  相似文献   

19.
To clarify the effects of artifical disturbances on the soil microbial respiration (SMR) of existed tidal wetlands, the SMR of three typical areas in Chongming Dongtan and Jiuduansha of the Yangtze River Estuary, China, were evaluated. The causes of the differences in the SMR were also evaluated by analyzing the microbial activity factors and community structure, as well as the physical-chemical characteristics of the different wetland soils. The results showed that the SMR of the existed wetlands in the area of siltation promotion was significantly higher (P < 0.01) than that of the natural area. Different agricultural practices on the inner land also affected the SMR of the tidal wetlands. Overall, the results indicated that the difference in soil microbial characteristics between the artificially disturbed and natural tidal wetlands may be the primary cause of their different SMR. Path analysis indicated that the correlation between soil bacterial diversity and SMR were especially strong. Phylogenetic analysis showed that the bacterial microbial community structure in wetland soil that had been subject to artificial disturbance was changed due to the alteration of the soil physicochemical characteristics, and Pseudomonas sp., Bacillus sp., Uncultured Lactococcus sp. and Streptococcus sp., which have high heterotrophic metabolism or stress tolerance capability, became the dominant bacterial flora in the artificially disturbed wetland soil, ultimately strengthening the SMR. This may be the essential cause of the higher SMR in wetland soils that have been subjected to artificial disturbance, resulting in a low organic carbon accumulation capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号