首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Host plant effects of tomato, Lycopersicon esculentum Mill., and chickweed, Stellaria media (L.) Vill., foliage infected and uninfected with Tomato spotted wilt virus (family Bunyaviridae, genus Tospovirus, TSWV) on the ovipositional preferences of western flower thrips, Frankliniella occidentalis (Pergande), and tobacco thrips, Frankliniella fusca (Hinds), were investigated for whole plants in the greenhouse. In addition, the preference for leaf disks from the same host plants was investigated under a range of temperatures, 15-30 degrees C at a photoperiod of 12:12 (L:D) h, and at three photoperiods, 6:18, 12:12, and 18:6, at 20 degrees C in no-choice and choice studies conducted in growth chambers. In a choice test, F. fusca oviposited significantly more eggs per whole plant foliage over a 7-d period than F. occidentalis by an average ratio of 3:1 over both tomato and chickweed. The optimum temperature for oviposition of F. occidentalis and F. fusca was 24.5 and 24.9 degrees C, respectively. Both species laid significantly more eggs under the longest daylight hours tested, 18:6, in the choice study. Temperature and photoperiod did not significantly interact in terms of thrips ovipositional preference. Ovipositional preference for chickweed or tomato foliage was different for each thrips species in the choice and no-choice tests. However, both thrips species laid significantly more eggs per square centimeter of leaf area in chickweed than in tomato in the whole plant choice test.  相似文献   

2.

Background

Tomato spotted wilt virus (TSWV) has a very wide host range, and is transmitted in a persistent manner by several species of thrips. These characteristics make this virus difficult to control. We show here that the over-expression of the mitochondrial alternative oxidase (AOX) in tomato and petunia is related to TSWV resistance.

Results

The open reading frame and full-length sequence of the tomato AOX gene LeAox1au were cloned and introduced into tomato 'Healani' and petunia 'Sheer Madness' using Agrobacterium-mediated transformation. Highly expressed AOX transgenic tomato and petunia plants were selfed and transgenic R1 seedlings from 10 tomato lines and 12 petunia lines were used for bioassay. For each assayed line, 22 to 32 tomato R1 progeny in three replications and 39 to 128 petunia progeny in 13 replications were challenged with TSWV. Enzyme-Linked Immunosorbent Assays showed that the TSWV levels in transgenic tomato line FKT4-1 was significantly lower than that of wild-type controls after challenge with TSWV. In addition, transgenic petunia line FKP10 showed significantly less lesion number and smaller lesion size than non-transgenic controls after inoculation by TSWV.

Conclusion

In all assayed transgenic tomato lines, a higher percentage of transgenic progeny had lower TSWV levels than non-transgenic plants after challenge with TSWV, and the significantly increased resistant levels of tomato and petunia lines identified in this study indicate that altered expression levels of AOX in tomato and petunia can affect the levels of TSWV resistance.
  相似文献   

3.
Phytoviruses including tospoviruses are known to affect the behavior and fitness of their vectors both positively and negatively. In this study, we investigated the effects of Tomato spotted wilt virus (TSWV) (family Bunyaviridae, genus Tospovirus) infection on the fitness and feeding ability of tobacco thrips, Frankliniella fusca (Hinds) (Thysanoptera: Thripidae) using peanut, Arachis hypogaea L. (Fabaceae), as a host. Potentially viruliferous F. fusca laid more eggs than non‐viruliferous F. fusca. In contrast, fewer potentially viruliferous F. fusca developed into adults and required a longer developmental time than non‐viruliferous F. fusca, indicating a direct negative effect of the virus on thrips fitness. In addition, no‐choice feeding tests indicated that non‐viruliferous F. fusca fed more rapidly than potentially viruliferous F. fusca. Typically, phytovirus infections are known to enhance the availability of vital nutrients such as free amino acids in infected host plants and to affect other important physiological processes negatively. Free amino acids are known to play a vital role in egg production and development. Further investigations in this study revealed that leaflets of infected plants had ca. 15 times more free amino acids than non‐infected leaflets. TSWV‐infected leaflets were used to rear potentially viruliferous thrips. Higher amino acid levels in TSWV‐infected leaflets than in non‐infected leaflets could have contributed to increased oviposition by potentially viruliferous F. fusca compared to non‐viruliferous F. fusca. Taken together, these results suggest that increased concentrations of free amino acids in TSWV‐infected plants might serve as an incentive for thrips feeding on otherwise unsuitable hosts, thereby facilitating TSWV acquisition and transmission.  相似文献   

4.
The effect of tomato spotted wilt virus (TSWV) on Frankliniella occidentalis Pergande (Thysanoptera; Thripidae) following a 6-hour acquisition access period on infected plants was investigated. No statistically significant differences were observed among viruliferous, non-viruliferous and control thrips with respect to developmental time, reproduction rate and survival. Thrips larvae, exposed or non-exposed to TSWV, developed from egg to adult in 13.1 and 13.2 days, respectively. Exposed females produced an average of 28.3 larvae whereas control thrips produced 22.3 larvae and longevity was 13.4 and 12.5 days, respectively. None of these values were significantly different. Population reproductive statistics, net reproductive rate (R 0), mean generation time (T) and intrinsic rate of increase (r m) were calculated from the life fertility tables. R 0 and r m were higher for viruliferous thrips as compared to non-viruliferous and non-exposed thrips. Virus transmission studies revealed that viruliferous thrips were able to transmit virus until death and that TSWV was not transovarially transmitted.  相似文献   

5.
To quantify the transmission of tomato spotted wilt virus (TSWV) by Frankliniella occidentalis, the median acquisition access period (AAP50) and median inoculation access period (IAP50) were determined. These parameters were established using transmission rates obtained after AAPs and in IAPs which both ranged from 5 to 2560 min. An AAP50 of 106 min was found when larvae acquired virus from TSWV-infected Impatiens plants. IAP50s of 58 or 137 min, respectively, were calculated when petunia or Datura stramonium leaf disks were used to test the inoculation efficiency of viruliferous thrips. The virus could successfully be acquired or inoculated in periods of 5 min. Transmission reached an optimum after an AAP of 21.3 h (AAPopt) and in an IAP of 42.7 h (IAPopt). These results show that TSWV can be acquired and transmitted efficiently by F. occidentalis in short feeding periods.  相似文献   

6.
 The nucleocapsid protein (N) gene of tomato spotted wilt virus (TSWV) was inserted into Osteospermum ecklonis via Agrobacterium tumefaciens leaf strips co-cultivation. Sixteen primary transformant clones of two O. ecklonis genotypes were analysed. Southern blots of restricted genomic DNA demonstrated integration of the transgene and indicated the number of integrated copies. Expression of the transgene was estimated by DAS-ELISA and Western and Northern blotting. Plants were challenged with TSWV inoculation, either mechanically or by the thrips Frankliniella occidentalis; they were then monitored for symptom appearance and tested by TAS-ELISA for infection. Inoculation of the transgenic clones via the natural TSWV vector was more efficient and led to the identification of 1 clone, characterised by multiple transgene integration and no transgene expression, with improved resistance to TSWV. Received: 20 November 1999 / Revision received: 11 February 2000 / Accepted: 22 February 2000  相似文献   

7.
Wild type and corresponding transgenic tomato (Lycopersicon esculentum Miller) and two tobacco (Nicotiana spp.) plants that express high levels of a tobacco anionic peroxidase were used to determine what type of interactions occurred between peroxidase altered plant chemistry and the baculovirus Anagrapha falcifera nucleopolyhedrovirus (AfMNPV) for control of neonate corn earworms, Helicoverpa zea (Boddie). Transgenic plants expressed approximately five to 400 times higher peroxidase activity than corresponding tissues of wild type plants. The H. zea larvae typically fed 1.5 times less on transgenic compared with wild type leaf disks. There was only one experiment (of three with tomato leaves) where the larvae that fed on transgenic leaves were less susceptible to the virus based on nonoverlapping 95% confidence intervals for LC50 values. When the exposure dose was corrected for reduced feeding on the transgenic leaf disks, the insecticidal activity of the virus was not significantly different for larvae fed on transgenic versus wild type plants. Eight other experiments (with tomato and two species of tobacco) indicated either no significant effect or enhanced susceptibility (when corrected for feeding rates) to the virus of larvae fed on the transgenic leaves. These results indicate enhanced insect resistance in plants expressing high levels of a specific anionic peroxidase may be compatible with applications of AfMNPV. Potential reasons for this compatibility are discussed.  相似文献   

8.
Tomato yellow leaf curl virus (TYLCV) DNA was used as a probe to identify and analyze virus-related DNAs in the viral capside, in infected tomato plants and in the virus vector, the whitefly. In addition to the single-stranded viral genomic DNA, double-stranded virus-related DNA molecules were detected in infected plants. Not all of the virus-related DNA forms are present simultaneously in the infected plant. The double-stranded molecules, which are probably the replicative form of the viral genome, have been purified from an infected tomato plant. In the viruliferous whitefly, only the single-stranded unit-size viral genome was detected.  相似文献   

9.
The influence of tray drench (TD) treatments, with and without foliar applications of the plant activator acibenzolar-S-methyl (Actigard), was examined in replicated field plots in 2000--2002. TD treatments of Actigard, imidacloprid (Admire), and these two products combined had little effect on seasonal mean thrips populations; however, thrips densities were lower in the Admire-treated plots at 4 and 5 wk after transplanting. Actigard and Admire TD treatments significantly reduced the seasonal incidence of tomato spotted wilt virus (TSWV) symptomatic plants in 2 yr in the study. The combination of both products was better in reducing TSWV than Actigard alone. Three early-season foliar sprays of Actigard had no effect on thrips population densities, but they did reduce TSWV incidence. The tobacco thrips, Frankliniella fusca (Hinds), comprised 92-95% of the thrips complex each year. Other thrips collected on tobacco foliage at very low densities included Haplothrips spp., Chirothrips spp., Limothrips cerealium (Haliday), other Frankliniella spp. and other unidentified species. Using nonstructural TSWV protein enzyme-linked immunosorbent assay, 1.5-2.3% of the F. fusca tested positive for nonstructural TSWV protein. Cured yields were higher in the TD treatments and the Actigard foliar treatments in the years with high TSWV in the untreated plots. The TD treatments and foliar Actigard had little impact on plant height or grade index; however, TD treatments with Admire had low tobacco aphid, Myzus nicotianae Blackman, populations through 10 wk after transplanting. The early-season Actigard and Admire treatment options are management decisions that can effectively reduce the risks of TSWV incidence in flue-cured tobacco.  相似文献   

10.
The effects of different isolates of the tomato spotted wilt tospovirus (TSWV), host plants, and temperatures on Frankliniella fusca (Hinds) (Thysanoptera: Thripidae), the most important vector of TSWV in North Carolina, were measured in the laboratory. Thrips were reared at either 18.3, 23.9, or 29.4 °C until adult eclosion on excised leaves of Datura stramonium L. or Emilia sonchifolia (L.). Plants were either infected with the TSWV isolates CFL or RG2, or left uninfected (control). The results revealed a positive relationship between larval survival and temperature, regardless of host plant or TSWV isolate. Both survival to adult and percentage transmission of TSWV by F. fusca were significantly affected by the interaction between host plant and TSWV isolate. The consequence of this interaction was that the cohort‐based percentage transmission from infected E. sonchifolia plants for CFL was 1.3‐fold greater than that of RG2, whereas the percentage transmission from infected D. stramonium plants for RG2 was twice that of CFL. Both host plant and TSWV isolates showed significant effects on thrips development time to adult and head capsule width of adult thrips, as well as on the incidence of thrips infection with TSWV. The infection status of these thrips was determined by ELISA for the NSs viral protein. Infected thrips reared on infected host foliage took longer to develop to adult and were smaller than non‐infected thrips which had also been reared on infected host foliage, demonstrating a direct effect of the TSWV on thrips. However, non‐infected thrips reared on non‐infected leaves took longer to develop than non‐infected thrips reared on infected leaves, suggesting an effect of the plant tissue on thrips. In addition, adult thrips reared on TSWV‐infected D. stramonium at 29.4 °C developed smaller head capsules than thrips developing on infected foliage at lower temperatures and on non‐infected leaves of D. stramonium or E. sonchifolia. Both TSWV isolates and host plants differentially affected females more than males. In conclusion, both the infection of thrips by TSWV and TSWV‐mediated changes in host plant quality were found to have significant biological effects on F. fusca.  相似文献   

11.
Tree pollen, especially Pinus spp. (Pinaceae), is shed in large quantities every spring in North America. Pine pollen deposition onto leaves was found to significantly influence the ovipositional behaviors of certain thrips species (Thysanoptera: Thripidae) in peanut and tomato leaf choice and no‐choice tests. Pine pollen (Pinus elliottii Engelm.) increased the oviposition rate 2.9‐fold for Frankliniella occidentalis (Pergande) (western flower thrips) and 1.6‐fold for Frankliniella fusca (Hinds) (tobacco thrips) in choice tests averaged over both plant species. These results support the idea that pollen has a greater impact on F. occidentalis behavior than on F. fusca behavior. The most dramatic increase was in peanut, where F. occidentalis only oviposited on leaves dusted with pollen, suggesting that the addition of pollen stimulated this flower thrips to lay eggs on a poor host‐plant part. The impact of pollen on the rate of oviposition by thrips is important because it is the early‐instar nymphs that acquire tomato spotted wilt virus (TSWV), which these two thrips species vector. In a laboratory bioassay, the addition of pine pollen to TSWV‐infected peanut foliage increased the percentage of infected F. fusca after one generation.  相似文献   

12.
Tomato spotted wilt virus (TSWV) replicates in both its plant hosts and its thrips vectors. Replication of TSWV within thrips suggests the potential for pathological effects that could affect the fitness of its vectors directly, whereas infection of the plant may alter its suitability as a host for thrips development. This study was undertaken to examine the influence of TSWV isolate, host plant, and temperature on potential direct and host-mediated effects of virus infection of the thrips and the plant on Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), an important vector of TSWV. Neonate F. occidentalis were reared to adult eclosion on excised foliage of Datura stramonium (L.) (Solanaceae) or Emilia sonchifolia (L.) (Compositae) infected with either the CFL or RG2 isolate of TSWV, or not infected. Effects of the TSWV isolates and host plants on thrips were measured at 18.3, 23.9, and 29.4 °C. Results demonstrate significantly improved survival and a small but significant decrease in development time of F. occidentalis on TSWV-infected plants. These effects resulted from the combined influence of the direct effects of the virus on infected thrips and plant-mediated effects resulting from virus infection of the thrips’ host plant. Our results extend previous findings and help to explain inconsistencies among previously published reports by demonstrating that the manifestation and magnitude of effects of TSWV on F. occidentalis are dependent on host plant, virus isolate, and temperature.  相似文献   

13.
Tomato spotted wilt virus (TSWV), a member of the Tospovirus genus within the Bunyaviridae, is an economically important plant pathogen with a worldwide distribution. TSWV is transmitted to plants via thrips (Thysanoptera: Thripidae), which transmit the virus in a persistent propagative manner. The envelope glycoproteins, G(N) and G(C), are critical for the infection of thrips, but they are not required for the initial infection of plants. Thus, it is assumed that the envelope glycoproteins play important roles in the entry of TSWV into the insect midgut, the first site of infection. To directly test the hypothesis that G(N) plays a role in TSWV acquisition by thrips, we expressed and purified a soluble, recombinant form of the G(N) protein (G(N)-S). The expression of G(N)-S allowed us to examine the function of G(N) in the absence of other viral proteins. We detected specific binding to thrips midguts when purified G(N)-S was fed to thrips in an in vivo binding assay. The TSWV nucleocapsid protein and human cytomegalovirus glycoprotein B did not bind to thrips midguts, indicating that the G(N)-S-thrips midgut interaction is specific. TSWV acquisition inhibition assays revealed that thrips that were concomitantly fed purified TSWV and G(N)-S had reduced amounts of virus in their midguts compared to thrips that were fed TSWV only. Our findings that G(N)-S binds to larval thrips guts and decreases TSWV acquisition provide evidence that G(N) may serve as a viral ligand that mediates the attachment of TSWV to receptors displayed on the epithelial cells of the thrips midgut.  相似文献   

14.
Plants can be genetically engineered for virus resistance by transformation with a viral gene. We transformed tobacco with the tomato spotted wilt virus (TSWV) nucleocapsid gene from the Hawaiian L isolate in order to obtain TSWV resistant breeding lines. Doubled-haploid lines were produced from primary transgenic plants that were selected for resistance to the virus. Several of these lines showed very high levels of resistance and were symptomless after inoculation with the Hawaiian L isolate of TSWV. The accumulation of only low levels of full-length transgene RNA and protein observed in these lines is consistent with an RNA-mediated mechanism of resistance. The lines that were highly resistant to the Hawaiian L isolate of TSWV were also found to be highly resistant to several other isolates of TSWV, while lines that were only moderately resistant to the Hawaiian L isolate were often susceptible to the other isolates. The highly resistant lines were advanced over several generations by self-pollination. Although these lines were fully homozygous, several lines lost resistance in later generations, indicating that the resistance was unstable. Selection for resistance in these unstable lines did not prevent the occurrence of susceptible progeny in subsequent generations. Therefore, testing over several generations is required to determine the stability of resistance when breeding crops with transgenic virus resistance.  相似文献   

15.
Different polyclonal antisera and enzyme-linked immunosorbent assay (ELISA) procedures have been tested for their potential to detect tomato spotted wilt virus (TSWV). The virus could efficiently be detected in high dilutions of sap from infected plants, and at low concentrations of purified virus and nucleocapsid protein preparations in the cocktail ELISA and the double antibody sandwich ELISA (DAS-ELISA). Amounts of 1 to 3 ng of virus protein still gave positive readings using purified preparations, while sap could be diluted approximately 100,000 times. Differences in the detection level were observed using nucleocapsid protein antiserum (anti-N-serum) and the antiserum against intact virus particles (anti-TSWV-serum), but both antisera showed to be powerful sera for the detection of TSWV. Using anti-N-serum, TSWV could be detected in highly diluted extracts of different hosts, and also in leaf extracts or intact tissues stored for 30 days under different conditions. These results indicate that the TSWV nucleocapsid protein remains antigenic for long periods.  相似文献   

16.
17.
Four studies were conducted in Georgia during spring 1999, 2000, 2001, and 2002 to evaluate various management tactics for reducing thrips and thrips-vectored tomato spotted wilt virus (TSWV) in tomato and their interactions relative to fruit yield. Populations of thrips vectors of TSWV, Frankliniella occidentalis (Pergande) and Frankliniella fusca (Hinds), were determined using flower and sticky trap samples. The management practices evaluated were host plant resistance, insecticide treatments, and silver or metallic reflective mulch. Averaged over all tests, the TSWV-resistant tomato 'BHN444' on silver mulch treatment had the largest effect in terms of reducing thrips and spotted wilt and increasing marketable yield. Of the insecticide treatments tested, the imidacloprid soil treatment followed by early applications of a thrips-effective foliar insecticide treatment provided significant increase in yield over other treatments. Tomato yield was negatively correlated with the number of F. fusca and percentage of TSWV incidence. F. occidentalis per blossom was positively correlated with percentage of TSWV incidence, but not with yield. No significant interactions were observed between cultivar reflective mulch main plot treatments and insecticide subplot treatments; thus, treatment seemed to be additive in reducing the economic impact of thrips-vectored TSWV. Control tactics that manage thrips early in the growing season significantly increased tomato yield in years when the incidence of TSWV was high (>17%).  相似文献   

18.
19.
Yordanova  E.  Georgieva  K.  Gorinova  N.  Yordanov  Y. 《Photosynthetica》2001,39(2):313-316
Photosynthetic activity of leaf disks from chlortoluron (2 µmol per plant) treated and non-treated non-transgenic and transgenic (PGF-6) tobacco plants was measured from 1 up to 21 d after treatment under greenhouse conditions. PGF-6 plants, expressing the fused rat cytochrome P4501A1/yeast reductase genes were used. PGF-6 plants were much more chlortoluron-resistant than control plants. In non-transgenic tobacco plants the electron transport flow to PQ pool was strongly inhibited 1 d after treatment with herbicide whereas it was still existing in PGF-6 plants although some reduction was observed. The quantum yield of photosystem 2 (PS2) which is related to the quantum yield of whole-chain electron transfer was much more inhibited by chlortoluron than the primary PS2 photochemistry, measured by the ratio Fv/Fm. Lower PS2 activity was found for herbicide-treated non-transgenic plants up to the 9th day. Then it started to increase in both control and PGF-6 plants, but more rapidly in PGF-6 ones, and its values were near to the control level at the 21st d after chlortoluron treatment.  相似文献   

20.
Spherical viruslike particles (VLP) were found in the tissues of apparently healthy tobacco thrips, Frankliniella fusca. The particles occurred in abundance in thrips from Ontario but were absent in thrips from Oklahoma reared under identical conditions. The VLP were not transmissible to any of the seven plant hosts (in four families) of F. fusca suggesting that they may be an insect virus. Transmission of tomato spotted wilt virus (TSWV) by F. fusca, a known vector, was not affected by the presence or absence of the VLP. No TSWV particles were detected in tissues of F. fusca that transmitted TSWV to test plants. The VLP occurred in several internal organs and hemocoele of the thrips and were isolated in vitro by preparing homogenates of gut tissues. Infection of oocytes and presence of VLP in young nymphs suggested transovarial transmission of the particles. The VLP measured 62 ± 4 nm in diameter and usually occurred in dense viroplasms in the cell cytoplasm. Development of the particles within the viroplasms is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号