首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hypothalamic suprachiasmatic nucleus (SCN) contains a heterogeneous population of neurons, some of which are temperature sensitive in their firing rate activity. Neuronal thermosensitivity may provide cues that synchronize the circadian clock. In addition, through synaptic inhibition on nearby cells, thermosensitive neurons may provide temperature compensation to other SCN neurons, enabling postsynaptic neurons to maintain a constant firing rate despite changes in temperature. To identify mechanisms of neuronal thermosensitivity, whole cell patch recordings monitored resting and transient potentials of SCN neurons in rat hypothalamic tissue slices during changes in temperature. Firing rate temperature sensitivity is not due to thermally dependent changes in the resting membrane potential, action potential threshold, or amplitude of the fast afterhyperpolarizing potential (AHP). The primary mechanism of neuronal thermosensitivity resides in the depolarizing prepotential, which is the slow depolarization that occurs prior to the membrane potential reaching threshold. In thermosensitive neurons, warming increases the prepotential's rate of depolarization, such that threshold is reached sooner. This shortens the interspike interval and increases the firing rate. In some SCN neurons, the slow component of the AHP provides an additional mechanism for thermosensitivity. In these neurons, warming causes the slow AHP to begin at a more depolarized level, and this, in turn, shortens the interspike interval to increase firing rate.  相似文献   

2.
The experiments performed on rat brain slices have shown that cold adaptation of an animal influences the thermosensitivity of hypothalamic medial preoptical neurons. The adaptation is followed by an increase in the proportion of 38–41°C-thermoresponsive neurons and by a decrease in the proportion of 35–38°C-thermoresponsive units. In control animals, noradrenaline (NA) increased the responses of hypothalamic neurons to the action of 35–38°C temperature and decreased them to the action of 38–41°C temperature. Cold adaptation prevented the effects of NA on neuronal thermosensitivity, which suggests that their NA sensitivity is modified by cold adaptation.Neirofiziologiya/Neurophysiology, Vol. 26, No. 3, pp. 171–176, May–June, 1994.  相似文献   

3.
The rostral hypothalamus, especially the preoptic-anterior hypothalamus (POAH), contains temperature-sensitive and -insensitive neurons that form synaptic networks to control thermoregulatory responses. Previous studies suggest that the cyclic nucleotide cGMP is an important mediator in this neuronal network, since hypothalamic microinjections of cGMP analogs produce hypothermia in several species. In the present study, immunohistochemisty showed that rostral hypothalamic neurons contain cGMP, guanylate cyclase (necessary for cGMP synthesis), and CNG A2 (an important cyclic nucleotide-gated channel). Extracellular electrophysiological activity was recorded from different types of neurons in rat hypothalamic tissue slices. Each recorded neuron was classified according to its thermosensitivity as well as its firing rate response to 2-100 microM 8-bromo-cGMP (a membrane-permeable cGMP analog). cGMP has specific effects on different neurons in the rostral hypothalamus. In the POAH, the cGMP analog decreased the spontaneous firing rate in 45% of temperature-sensitive and -insensitive neurons, an effect that is likely due to cGMP-enhanced hyperpolarizing K(+) currents. This decreased POAH activity could attenuate thermoregulatory responses and produce hypothermia during exposures to cool or neutral ambient temperatures. Although 8-bromo-cGMP did not affect the thermosensitivity of most POAH neurons, it did increase the warm sensitivity of neurons in other hypothalamic regions located dorsal, lateral, and posterior to the POAH. This increased thermosensitivity may be due to pacemaker currents that are facilitated by cyclic nucleotides. If some of these non-POAH thermosensitive neurons promote heat loss or inhibit heat production, then their increased thermosensitivity could contribute to cGMP-induced decreases in body temperature.  相似文献   

4.

1. There are differences between warm sensitive and temperature insensitive neurons in the rostral hypothalamus.

2. In warm sensitive neurons, temperature affects the rate of depolarization in prepotentials that precede action potentials. Warming increases the depolarization rate, which shortens the interspike interval and increases firing rate.

3. Inactivation of the potassium A current is temperature sensitive and contributes to the depolarizing prepotential.

4. In addition to intrinsic mechanisms, neuronal warm-sensitivity is affected by inhibitory synaptic input. Since cooling increases neuronal resistance, temperature affects the amplitude of postsynaptic inhibitory potentials, and this enhances neuronal thermosensitivity.

Author Keywords: Hypothalamus; Preoptic; Thermosensitive neuron; Synapse; GABA; Electrophysiology  相似文献   


5.
Hypothalamic mechanisms in thermoregulation   总被引:7,自引:0,他引:7  
Certain preoptic and rostral hypothalamic neurons are sensitive to changes in local preoptic temperature (Tpo). These neurons also receive much afferent input from peripheral thermoreceptors and control a variety of thermoregulatory responses. In thermode-implanted animals, preoptic warming increases the firing rate in warm-sensitive neurons and elicits heat loss responses such as panting and sweating. Preoptic cooling increases the firing rate in cold-sensitive neurons and elicits, first, heat retention responses (e.g., cutaneous vasoconstriction and thermoregulatory behavior), then heat production responses (e.g., shivering and nonshivering thermogenesis). It is likely that the preoptic thermosensitive neurons control these thermoregulatory responses because both respond similarly to changes in Tpo and skin temperature. Specifically, skin warming not only increases panting, skin blood flow, and the firing rate of warm-sensitive neurons, but also decreases the sensitivity of all these responses to Tpo changes. Skin cooling not only increases metabolic heat production, heat retention behavior, and the firing rate of cold-sensitive neurons, but also increases the hypothalamic thermosensitivity of all these responses. Low-firing warm-sensitive neurons receive little afferent input and are most sensitive to high Tpo. Many of these low-firing neurons probably serve in controlling heat loss responses. High-firing warm-sensitive neurons receive much excitatory afferent input and are usually sensitive only to low Tpo. These neurons probably exert their greatest influence on heat production responses, possibly by inhibiting and, thus, determining the thermosensitive characteristics of nearby cold-sensitive neurons.  相似文献   

6.
Maternal consumption of a fat-rich diet during pregnancy, which causes later overeating and weight gain in offspring, has been shown to stimulate neurogenesis and increase hypothalamic expression of orexigenic neuropeptides in these postnatal offspring. The studies here, using an in vitro model that mimics in vivo characteristics after prenatal high-fat diet (HFD) exposure, investigate whether these same peptide changes occur in embryos and if they are specific to neurons. Isolated hypothalamic neurons were compared with whole hypothalamus from embryonic day 19 (E19) embryos that were prenatally exposed to HFD and were both found to show similar increases in mRNA expression of enkephalin (ENK) and neuropeptide Y (NPY) compared with that of chow-exposed embryos, with no change in melanin-concentrating hormone, orexin, or galanin. Further examination using immunofluorescence cytochemistry revealed an increase in the number of cells expressing ENK and NPY. By plotting the fluorescence intensity of each cell as a probability density function, three different populations of neurons with low, medium, or high levels of ENK or NPY were found in both HFD and chow groups. The prenatal HFD shifted the density of neurons from the population containing low peptide levels to the population containing high peptide levels. This study indicates that neuronal culture is a useful in vitro system for studying diet effects on neuronal development and shows that prenatal HFD exposure alters the population of hypothalamic neurons containing ENK and NPY in the embryo. These changes may contribute to the increase in HFD intake and body weight observed in offspring.  相似文献   

7.
Using brain slices the effect of prostaglandin E2 (PGE2) on neurones from different locations of the rat hypothalamus was analysed. PGE2 (150 ng), when injected into the perfusion chamber, influences all hypothalamic neurones studied. The pattern of firing rate changes after PGE2 is variable, but the depressive effect predominates--72% of neurones decrease their firing rate in long-term experiments. PGE2 also lowers the thermosensitivity of warm sensitive neurones and increases the thermosensitivity of temperature insensitive neurones.  相似文献   

8.
Fromlatefallorearlywinteron,thehibernatorbeginsseveralcycles(hibernationbouts),eachofwhichconsistsofhibernationentrance,deephibernationandtransientarousaluntilitswakinginspring.Thebodytemperaturechangeofthehibernatorduringhibernationhastwomajorfeatures:…  相似文献   

9.
Expression of the serotonin transporter protein (5-NTT) in the dorsal raphe nucleus (DNR) during the early postnatal period was investigated in laboratory Wistar rats. Immunocytochemical labeling showed that during the first 3 postnatal weeks the intensity of 5-NTT expression in DNR of control animals changes. During the earliest postnatal stages, most of DNR subnuclear neurons (dorsal, DNR-d; ventral, DNR-v; lateral, DNR-lat) were found to intensely express 5-NTT. 5-NTT localization sites were revealed on the membrane surface of neuronal cell bodies and their processes in neuropil. On P10, the number of 5-NTT expressing neurons and 5-NTT binding sites decreases. At this time, the 5-NTT binding sites were shown to undergo redistribution becoming very few on neuronal cell bodies and dendrites, but rather densely packed in the axonal membrane. The number of 5-NTT expressing neurons and density of 5-NTT localization sites in neuropil gradually increases with age. The reduction in the serotonin level in all DNR regions during prenatal development leads to the reduction both in the number of 5-NTT expressing neurons and 5-NTT localization sites during the early postnatal period. This tendency was shown to persist with age.  相似文献   

10.
The unit firing activities of neurons in the preoptic area (POA) of ground squirrel hypothalamic tissue slices were recorded and the metabolism of NA in hypothalamus was measured with high performance liquid chromatography (HPLC). Thermosensitivity, proportions, the critical temperature (Tc) and the lowest temperature (TL) of firing activity of the above-mentioned neurons, and NA metabolism in hypothalamus were compared in different seasons and hibernating phases. In comparison with that in summer euthermar, it was shown that (i) the percentage and thermosensitivity of the POA neurons varied respectively in the hibernating phases; (ii) TL and Tc of the POA neurons in winter, both euthermar and hibernation, were markedly decreased; (iii) the POA neurons in hibernation became much more sensitive to NA, and the response of cold-sensitive neurons to NA changed from inhibiting pattern in summer to exciting one in hibernation; (iv) the contents and metabolism of NA in hypothalamus decreased significantly in the entering phase and deep hibernation phase, while the metabolism of NA increased remarkably in the arousal phase. These changes might explain the regulatory mechanism how ground squirrel actively decreases body temperature (Tb) in entering into hibernation and quickly recovers body temperature in arousal phase. Project supported by the National Natural Science Foundation of China (Grant Nos. 39230060 and 39570100)  相似文献   

11.
12.
Fever is a primary disorder of thermoregulation and a common clinical sign in many diseases. It is characterized by an upward displacement in the level at which body temperature is regulated. Early attempts to study hypothalamic neuronal activity in relation to fever described the behavior of isolated single units after intravenous injections of endotoxin pyrogen. It was concluded that the thermosensitivity of many warm-sensitive units was depressed after pyrogen injections, but due to the indirect technique employed, it is not possible to distinguish whether this observation is the cause or result of fever. A decrease in hypothalamic thermosensitivity is contrary to observations made during fever in conscious animals. More specific applications of pyrogenic stimuli such as prostaglandin E1 onto individual hypothalamic neurons using the technique of microelectrophoresis have not borne out these earlier observations. A major obstacle to studying the neurophysiology of thermoregulation and fever is the absence of any obvious correlation between neuroanatomy and function in the hypothalamus. Present methods of identifying and classifying hypothalamic cells as participants in thermoregulation are patently inadequate. Until a more specific correlation between anatomy and function is established, the neurophysiological mechanisms of fever will remain obscure.  相似文献   

13.
14.
Miller  Michael W. 《Brain Cell Biology》1999,28(12):999-1015
The present study determines (1) whether ethanol-induced microencephaly results from reductions in neuronal acquisition (i.e., cell proliferation and neuronal migration) and/or increases in neuronal death and (2) whether ethanol exacerbates death by the same mode as that for naturally occurring or lesion-induced neuronal death. Pregnant rats were exposed to a diet containing 6.7% (v/v) ethanol or an isocaloric control diet during the last two weeks of gestation. At birth, the right infraorbital nerves of the pups were transected. The numbers of neurons in the principal sensory nucleus of the trigeminal nerve (PSN) on both sides of the pons were examined at various prenatal and early postnatal timepoints. The numbers of pyknotic and argyrophilic PSN cells were also counted. Ethanol delayed and reduced (19.9%) the prenatal acquisition of PSN neurons. The postnatal decline in neuronal number (indicative of neuronal death) was significantly increased (10.6%) by ethanol. Likewise, the numbers of pyknotic and silver-stained cells were significantly higher in ethanol-treated rats. Lesion of the infraorbital nerve induced significant transsynaptic neuronal death in the control rats. Ethanol increased the amount of death caused by the lesion; however, it altered neither the timing of the neuronal loss nor the incidence of pyknosis or silver-staining. Therefore, ethanol affects both neuronal acquisition and survival; the greater effect being on neuronal acquisition. The timing and morphology of dying cells indicate that regardless of the cause (natural processes, ethanol-induced, or lesion-induced), neurons die in the developing PSN by the same mode.  相似文献   

15.
The influence of bombesin (1 microg/0.1 ml artificial cerebrospinal fluid) on neuronal thermosensitivity of the preoptic area of the anterior hypothalamus in brain slices of 5- (n = 7 neurons) and 10-day-old (n = 36 neurons) Muscovy ducks (Cairina moschata) was investigated. Similar to adult mammals, most of the neurons investigated increased the firing rate (FR) after bombesin application. Changes in FR were not related to changes in thermal coefficient (TC). The neurons react to bombesin also under synaptic blockade. The bombesin-induced effect on TC (increase or decrease in nearly the same number of neurons, e.g. nine neurons increased and ten decreased TC in 10-day-old ducklings) in the postnatal bird neurons investigated was different from the results described in adult mammals, where the main reaction to bombesin was an increase of TC in warm-sensitive and temperature-insensitive-neurons and a transformation of temperature-insensitive-neurons into warm-sensitive ones. This may be related to the assumption that during early ontogeny, body functions react to exogenous and endogenous factors nonspecifically. It is to speculate, that later, probably at the end of embryonic development or during the early postnatal period, the reactivity of these functions changes qualitatively, so that the reaction of an individual function to different factors becomes specific (ultimately adaptive).  相似文献   

16.
Postnatal changes in the enteric nervous system (ENS) are involved in the establishment of colonic motility. In adult rats, butyrate induced neuroplastic changes in the ENS, leading to enhanced colonic motility. Whether butyrate can induce similar changes during the postnatal period remains unknown. Enemas (Na-butyrate) were performed daily in rat pups between postnatal day (PND) 7 and PND 17. Effects of butyrate were evaluated on morphological and histological parameters in the distal colon at PND 21. The neurochemical phenotype of colonic submucosal and myenteric neurons was analyzed using antibodies against Hu, choline acetyltransferase (ChAT), and neuronal nitric oxide synthase (nNOS). Colonic motility and neuromuscular transmission was assessed in vivo and ex vivo. Butyrate (2.5 mM) enemas had no impact on pup growth and histological parameters compared with control. Butyrate did not modify the number of Hu-immunoreactive (IR) neurons per ganglia. A significant increase in the proportion (per Hu-IR neurons) of nNOS-IR myenteric and submucosal neurons and ChAT-IR myenteric neurons was observed in the distal colon after butyrate enemas compared with control. In addition, butyrate induced a significant increase in both nitrergic and cholinergic components of the neuromuscular transmission compared with control. Finally, butyrate increased distal colonic transit time compared with control. We concluded that butyrate enemas induced neuroplastic changes in myenteric and submucosal neurons, leading to changes in gastrointestinal functions. Our results support exploration of butyrate as potential therapy for motility disorders in preterm infants with delayed maturation of the ENS.  相似文献   

17.
The goal of the study is to investigate the GABAergic action on firing rate (FR) and temperature coefficient (TC) on hypothalamic neurons in the juvenile chicken. Extracellular recordings were obtained from 37 warm-sensitive, 32 cold-sensitive and 56 temperature-insensitive neurons in brain slices to determine the effect of GABA(A)-receptor agonist muscimol, GABA(A)-receptor antagonist bicuculline, GABA(B)-receptor agonist baclofen and GABA(B)-receptor antagonist CGP 35348. Muscimol and baclofen in equimolar concentrations (1 microM) significantly inhibited FR of the neurons, regardless of their type of thermosensitivity. In contrast, bicuculline, as well as CGP 35348 (10 microM) increased FR of the majority of the neurons. The TC of most chick hypothalamic neurons could not be estimated during muscimol application because FR was completely inhibited. GABA(B)-receptor agonist specifically increased TC. This effect was restricted to cold-sensitive neurons, which were determined in a high number. The TC was significantly increased (p<0.05) by baclofen and significantly decreased (p<0.05) by CGP 35348. The effects of muscimol and baclofen on FR and TC were prevented by co-perfusion of the appropriate antagonists bicuculline and CGP 35348. The results suggest that the fundamental mechanisms of GABAergic influence on temperature sensitive and insensitive neurons in the chicken PO/AH are conserved during evolution of amniotes.  相似文献   

18.
为了探讨出生后钾离子通道在下丘脑神经元热敏感分化过程中的作用,采用膜片钳技术研究出生一个月内SD大鼠急性分离神经元的温度效应,结果表明IK电流密度在出生后一个月内变化不大(P>0.05),而IA电流密度则呈现为升高趋势(P<0.05).同时升高温度,不同出生日期的钾通道NPo都有不同程度的升高,但相较P1d的神经元来说,温度对P18d的电压依赖性影响更大一些.同时温度对IK和IA的影响是不一样的,IA的Q10>2,所有这些显示IA通道在神经元温度敏感性的发育分化过程中起着重要的作用.  相似文献   

19.
Neuropeptides, acting on structures within the central nervous system influence body temperature. Non-opioid peptides induce hypothermia usually, while opioid peptides are mostly hyperthermic. Neuropeptides exert their effect only when injected into specific brain areas.

Hypo- Or hyperthermic effect of neuropeptides may be either due to changes in threshold body temperatures for induction of thermoregulatory effectors or due to changes in hypothalamic thermosensitivity.

At the cellular level the opioid peptides also act differently than the non-opioid peptides. The opioid peptides mostly inhibit spontaneous neuronal firing, while the non-opioid peptides usually stimulate it. Neuropeptides exert their influence on all neurones in the hypothalamus, independently on their temperature characteristics.

Neuropeptides may play a role in the regulation of body temperature under stressful conditions and during fever or hibernation, in particular. Some neuropeptides, namely AVP, -MSH and ACTH, act as natural antipyretic substances by lowering the threshold for cold thermogenesis.

Neuropeptides also modulate food intake, reproduction and many other functions which are substantially changed during hibernation. There appears to be a correlation between the effect of peptides on the control of food intake and on the control of body temperature. Opioid peptides, which increase food intake, induce hyperthermia, while non-opioid peptides, which are appetite inhibiting, induce hypothermia. The exact role o neuropeptides in the regulation of body temperature, food intake and gonadal activity of hibernators remains unclear, however.  相似文献   


20.
Studies of neuronal activity are often performed using neurons from rodents less than 2 months of age due to the technical difficulties associated with increasing connective tissue and decreased neuronal viability that occur with age. Here, we describe a methodology for the dissociation of healthy hypothalamic neurons from adult-aged mice. The ability to study neurons from adult-aged mice allows the use of disease models that manifest at a later age and might be more developmentally accurate for certain studies. Fluorescence imaging of dissociated neurons can be used to study the activity of a population of neurons, as opposed to using electrophysiology to study a single neuron. This is particularly useful when studying a heterogeneous neuronal population in which the desired neuronal type is rare such as for hypothalamic glucose sensing neurons. We utilized membrane potential dye imaging of adult ventromedial hypothalamic neurons to study their responses to changes in extracellular glucose. Glucose sensing neurons are believed to play a role in central regulation of energy balance. The ability to study glucose sensing in adult rodents is particularly useful since the predominance of diseases related to dysfunctional energy balance (e.g. obesity) increase with age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号