首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A standardized disinfectant test for Staphylococcus aureus cells in biofilms was developed. Two disinfectants, the membrane-active compound benzalkonium chloride (BAC) and the oxidizing agent sodium hypochlorite, were used to evaluate the biofilm test. S. aureus formed biofilms on glass, stainless steel, and polystyrene in a simple system with constant nutrient flow that mimicked as closely as possible the conditions used in the current standard European disinfectant test (EN 1040). The biofilm that was formed on glass contained cell clumps and extracellular polysaccharides. The average surface coverage was 60%, and most (92%) of the biofilm cells were viable. Biofilm formation and biofilm disinfection in different experiments were reproducible. For biofilms exposed to BAC and hypochlorite the concentrations needed to achieve 4-log killing were 50 and 600 times higher, respectively, than the concentrations needed to achieve this level of killing with the European phase 1 suspension test cells. Our results show that a standardized disinfectant test for biofilm cells is a useful addition to the current standard tests.  相似文献   

2.
Abstract

Although disinfection procedures are widely implemented in food environments, bacteria can survive and present increased virulence/resistance. Since little is known about these phenomena regarding biofilms, this study aimed to investigate the effect of chemical disinfection on biofilm-derived cells of Salmonella Enteritidis. Using a reference strain (NCTC 13349) and a food isolate (350), biofilm susceptibility to benzalkonium chloride (BAC), sodium hypochlorite (SH) and hydrogen peroxide (HP) was evaluated and biofilms were exposed to sub-lethal concentrations of each disinfectant. Biofilm-derived cells were characterized for their biofilm forming ability, antibiotic resistance and expression of virulence-associated genes. Except for a few instances, disinfectant exposure did not alter antibiotic susceptibility. However, SH and HP exposure enhanced the biofilm forming ability of Salmonella Enteritidis NCTC 13349. After BAC and HP exposure, biofilm-derived cells presented a down-regulation of rpoS. Exposure to BAC also revealed an up-regulation of invA, avrA and csgD on Salmonella Enteritidis NCTC 13349. The results obtained suggest that biofilm-derived cells that survive disinfection may represent an increased health risk.  相似文献   

3.
AIMS: To evaluate both the antimicrobial activity and the effectiveness of a combination of sodium hypochlorite and hydrogen peroxide (Ox-B) for killing Pseudomonas aeruginosa ATCC 19142 cells and removing P. aeruginosa biofilms on aluminum or stainless steel surfaces. METHODS AND RESULTS: Pseudomonas aeruginosa biofilms were developed in tryptic soy broth containing vertically suspended aluminium or stainless steel plates. Biofilms were exposed to a mixed sodium hypochlorite and hydrogen peroxide solution as a sanitizer for 1, 5 and 20 min. The sanitizer was then neutralized, the cells dislodged from the test surfaces, and viable cells enumerated. Cell morphologies were determined using scanning (SEM) and transmission electron microscopy (TEM). Cell viability was determined by confocal scanning laser microscopy (CSLM). Biofilm removal was monitored by Fourier transform infrared (FTIR) spectrophotometry. Cell numbers were reduced by 5-log to 6-log after 1 min exposure and by 7-log after 5 min exposure to Ox-B. No viable cells were detected after a 20 min exposure. Treatment with equivalent concentrations of sodium hypochlorite reduced viable numbers by 3-log to 4-log after 1 min exposure and by 4-log to 6-log after 5 min, respectively. A 20 min exposure achieved a 7-log reduction. Hydrogen peroxide at test concentration treatments showed no effect. FTIR analysis of treated pseudomonad biofilms on aluminium or stainless steel plates showed either a significant reduction or complete removal of biofilm material after a 5 min exposure to the mixed sodium hypochlorite and hydrogen peroxide solution. SEM and TEM images revealed damage to cell wall and cell membranes. CONCLUSIONS: A combination of sodium hypochlorite and hydrogen peroxide effectively killed P. aeruginosa cells and removed biofilms from both stainless steel and aluminium surfaces. SIGNIFICANCE AND IMPACT OF THE STUDY: The combination of sodium hypochlorite and hydrogen peroxide can be used as an alternative disinfectant and/or biofilm remover of contaminated food processing equipment.  相似文献   

4.
AIMS: The purpose of this study was to compare the efficacy, in terms of bacterial biofilm penetration and killing, of alkaline hypochlorite (pH 11) and chlorosulfamate (pH 5.5) formulations. METHODS AND RESULTS: Two species biofilms of Pseudomonas aeruginosa and Klebsiella pneumoniae were grown by flowing a dilute medium over inclined stainless steel slides for 6 d. Microelectrode technology was used to measure concentration profiles of active chlorine species within the biofilms in response to treatment at a concentration of 1000 mg total chlorine l(-1). Chlorosulfamate formulations penetrated biofilms faster than did hypochlorite. The mean penetration time into approximately 1 mm-thick biofilms for chlorosulfamate (6 min) was only one-eighth as long as for the same concentration of hypochlorite (48 min). Chloride ion penetrated biofilms rapidly (5 min) with an effective diffusion coefficient in the biofilm that was close to the value for chloride in water. Biofilm bacteria were highly resistant to killing by both antimicrobial agents. Biofilms challenged with 1000 mg l(-1) alkaline hypochlorite or chlorosulfamate for 1 h experienced 0.85 and 1.3 log reductions in viable cell numbers, respectively. Similar treatment reduced viable numbers of planktonic bacteria to non-detectable levels (log reduction greater than 6) within 60 s. Aged planktonic and resuspended laboratory biofilm bacteria were just as susceptible to hypochlorite as fresh planktonic cells. CONCLUSION: Chlorosulfamate transport into biofilm was not retarded whereas hypochlorite transport clearly was retarded. Superior penetration by chlorosulfamate was hypothesized to be due to its lower capacity for reaction with constituents of the biofilm. Poor biofilm killing despite direct measurement of effective physical penetration of the antimicrobial agent into the biofilm demonstrates that bacteria in the biofilm are protected by some mechanism other than simple physical shielding by the biofilm matrix. SIGNIFICANCE AND IMPACT OF THE STUDY: This study lends support to the theory that the penetration of antimicrobial agents into microbial biofilms is controlled by the reactivity of the antimicrobial agent with biofilm components. The finding that chlorine-based biocides can penetrate, but fail to kill, bacteria in biofilms should motivate the search for other mechanisms of protection from killing by antimicrobial agents in biofilms.  相似文献   

5.
Aims: To compare the susceptibility of a 3‐day‐old biofilm and planktonic Salmonella to disinfectants at different exposure times. We hypothesize that Salmonella biofilms are more resilient to disinfectants compared to planktonic Salmonella. Methods and Results: The susceptibility of planktonic cells to disinfectants was tested by a modified version of the Council of Europe suspension test EN 1276. Salmonella biofilms were formed using the Calgary Biofilm Device. Results show that 3‐day‐old Salmonella biofilms are less susceptible to the disinfectants benzalkonium chloride, chlorhexidine gluconate, citric acid, quaternary ammonium compounds, sodium hypochlorite (SH) and ethanol, compared to planktonic Salmonella. Surprisingly, the results also demonstrate that low concentrations of SH were more effective against a 3‐day‐old biofilm compared to high concentrations of SH. Conclusions: While all the disinfectants evaluated were able to reduce biofilm‐associated cells at concentrations and contact times sufficient to eliminate planktonic cells, there were still sufficient viable cells remaining in the biofilm to cause further contamination and potential infection. Significance and Impact of the Study: Protocols for the use of chemical disinfectants need to include biofilm susceptibility testing. There is a requirement for an effective and standardized tool for determining the susceptibility of biofilms to disinfectants.  相似文献   

6.
The penetration ability of 12 antimicrobial agents, including antibiotics and biocides, was determined against biofilms of B. cereus and P. fluorescens using a colony biofilm assay. The surfactants benzalkonium chloride (BAC) and cetyltrimethyl ammonium bromide (CTAB), and the antibiotics ciprofloxacin and streptomycin were of interest due to their distinct activities. Erythromycin and CTAB were retarded by the presence of biofilms, whereas ciprofloxacin and BAC were not. The removal and killing efficacies of these four agents was additionally evaluated against biofilms formed in microtiter plates. The most efficient biocide was CTAB for both bacterial biofilms. Ciprofloxacin was the best antibiotic although none of the selected antimicrobial agents led to total biofilm removal and/or killing. Comparative analysis of the results obtained with colony biofilms and microtiter plate biofilms show that although extracellular polymeric substances and the biofilm structure are considered a determining factor in biofilm resistance, the ability of an antimicrobial agent to penetrate a biofilm is not correlated with its killing or removal efficiency. Also, the results reinforce the role of an appropriate antimicrobial selection as a key step in the design of disinfection processes for biofilm control.  相似文献   

7.
There is a general consensus that with increasing age a biofilm shows increased resistance to antimicrobials. In this study the susceptibility of 3-, 5- and 7-day-old Salmonella enterica serovar Typhimurium biofilms to disinfectants was evaluated. It was hypothesized that 7-day-old biofilms would be more resistant to disinfectants compared to 3- and 5-day-old biofilms. Biofilms were formed using the MBEC? system and treated with six chemical disinfectants for 1 and 5 min. Four disinfectants at the highest concentration available showed 100% reduction in viable cells from all ages of biofilms after exposure for 5 min, and ethanol at 70% v/v was the least effective against biofilms, followed by chlorhexidine gluconate (CG). At the recommended user concentrations, only sodium hypochlorite showed 100% reduction in viable cells from all ages of biofilms. Benzalkonium chloride and CG were the least effective against biofilms, followed by quaternary ammonium compound which only showed 100% reduction in viable cells from 5-day-old biofilms. Overall, the results from this study do not display enhanced resistance in 7-day-old biofilms compared to 3- and 5-day-old biofilms. It is concluded that under the conditions of this study, the age of biofilm did not contribute to resistance towards disinfectants. Rather, the concentration of disinfectant and an increased contact time were both shown to play a role in successful sanitization.  相似文献   

8.
Biofilms consist of groups of bacteria attached to surfaces and encased in a hydrated polymeric matrix. Bacteria in biofilms are more resistant to the immune system and to antibiotics than their free-living planktonic counterparts. Thus, biofilm-related infections are persistent and often show recurrent symptoms. The metal chelator EDTA is known to have activity against biofilms of gram-positive bacteria such as Staphylococcus aureus. EDTA can also kill planktonic cells of Proteobacteria like Pseudomonas aeruginosa. In this study we demonstrate that EDTA is a potent P. aeruginosa biofilm disrupter. In Tris buffer, EDTA treatment of P. aeruginosa biofilms results in 1,000-fold greater killing than treatment with the P. aeruginosa antibiotic gentamicin. Furthermore, a combination of EDTA and gentamicin results in complete killing of biofilm cells. P. aeruginosa biofilms can form structured mushroom-like entities when grown under flow on a glass surface. Time lapse confocal scanning laser microscopy shows that EDTA causes a dispersal of P. aeruginosa cells from biofilms and killing of biofilm cells within the mushroom-like structures. An examination of the influence of several divalent cations on the antibiofilm activity of EDTA indicates that magnesium, calcium, and iron protect P. aeruginosa biofilms against EDTA treatment. Our results are consistent with a mechanism whereby EDTA causes detachment and killing of biofilm cells.  相似文献   

9.
There is a general consensus that with increasing age a biofilm shows increased resistance to antimicrobials. In this study the susceptibility of 3-, 5- and 7-day-old Salmonella enterica serovar Typhimurium biofilms to disinfectants was evaluated. It was hypothesized that 7-day-old biofilms would be more resistant to disinfectants compared to 3- and 5-day-old biofilms. Biofilms were formed using the MBEC? system and treated with six chemical disinfectants for 1 and 5 min. Four disinfectants at the highest concentration available showed 100% reduction in viable cells from all ages of biofilms after exposure for 5 min, and ethanol at 70% v/v was the least effective against biofilms, followed by chlorhexidine gluconate (CG). At the recommended user concentrations, only sodium hypochlorite showed 100% reduction in viable cells from all ages of biofilms. Benzalkonium chloride and CG were the least effective against biofilms, followed by quaternary ammonium compound which only showed 100% reduction in viable cells from 5-day-old biofilms. Overall, the results from this study do not display enhanced resistance in 7-day-old biofilms compared to 3- and 5-day-old biofilms. It is concluded that under the conditions of this study, the age of biofilm did not contribute to resistance towards disinfectants. Rather, the concentration of disinfectant and an increased contact time were both shown to play a role in successful sanitization.  相似文献   

10.
Traba C  Liang JF 《Biofouling》2011,27(7):763-772
Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this study, the susceptibility of Staphylococcus aureus biofilms to discharge gas generated from plasma was tested. It was found that despite distinct chemical/physical properties, discharge gases from oxygen, nitrogen, and argon demonstrated very potent and almost the same anti-biofilm activity. The bacterial cells in S. aureus biofilms were killed (>99.9%) by discharge gas within minutes of exposure. Under optimal experimental conditions, no bacteria and biofilm re-growth from discharge gas treated biofilms was found. Further studies revealed that the anti-biofilm activity of the discharge gas occurred by two distinct mechanisms: (1) killing bacteria in biofilms by causing severe cell membrane damage, and (2) damaging the extracellular polymeric matrix in the architecture of the biofilm to release biofilm from the surface of the solid substratum. Information gathered from this study provides an insight into the anti-biofilm mechanisms of plasma and confirms the applications of discharge gas in the treatment of biofilms and biofilm related bacterial infections.  相似文献   

11.
Aims:  To evaluate the use of the modified Robbins device (MRD) to test disinfection strategies against biofilms that form on oral medical devices and to test the biofilm removal efficacy of NitrAdineTM, a disinfectant for the maintenance of oral medical devices.
Methods and Results:  Biofilms were grown on discs using the MRD and biofilms formed in this system were used to evaluate the efficacy of NitrAdineTM and to determine the optimal disinfection conditions. Our data indicate that the use of the MRD allows for the rapid and reproducible formation of high-density biofilms. Determination of the efficacy of NitrAdineTM revealed high activity against biofilms tested (e.g. >3 log reduction for Candida albicans and Staphylococcus aureus ) and allowed the determination of the optimal conditions for its use.
Conclusion:  The high reproducibility and flexibility of the MRD make it an excellent candidate for standardized testing of disinfectants aimed at reducing biofilms on oral medical devices. Using this system, we were able to demonstrate that NitrAdineTM exhibits high activity against biofilms formed by the micro-organisms tested.
Significance and Impact of the Study:  Our data suggest that our procedure is appropriate for standardized testing of disinfectants aimed at reducing biofilms on oral medical devices.  相似文献   

12.
Biofilm formation on surfaces has serious economic and environmental implications. Growth of biofilm within a water distribution system can lead to problems such as biocorrosion and biofouling accumulation. To prevent and control these occurrences, it is necessary to use suitable biocides to remove the biofilm and kill biofilm cells. In this study, the genera Actinobacillus, Branhamella, Bacillus, Micrococcus and Acinetobacter were isolated from biofilms formed on brass coupons exposed to a cooling water system. It was shown by the microtiter plate test that a mixed culture of the isolates and a single culture of Acinetobacter sp(2) produced high levels of biofilm formation. A microwell plate technique was applied for assessment of the ability of various biocides to remove and kill mixed-culture biofilm cells and Acinetobacter sp(2), the latter as a single-species biofilm with a high rate of biofilm production. The results showed that the mixed-culture biofilm cells had more resistance to removal and killing by some biocides, such as hydrogen peroxide and sulfathiazole, than the single-species biofilm cells (Acinetobacter sp(2)). Oxidising biocides, such as sodium hypochlorite and hydrogen peroxide, demonstrated a higher potential for biofilm removal and killing compared with non-oxidising biocides (sulfathiazole and glutaraldehyde).  相似文献   

13.
Comparative evaluation of biofilm disinfectant efficacy tests   总被引:1,自引:0,他引:1  
Regulatory agencies are receiving registration applications for unprecedented, antibiofilm label claims for disinfectants. Reliable, practical, and relevant laboratory biofilm test methods are required to support such claims. This investigation describes the influence of fluid dynamics on the relevancy of a laboratory test. Several disinfectant formulations were tested using three different biofilm testing systems run side-by-side: the CDC biofilm reactor system that created turbulent flow (Reynolds number between 800 and 1850), the drip flow biofilm reactor system that created slow laminar flow (Reynolds number between 12 and 20), and the static biofilm system that involved no fluid flow. Each comparative experiment also included a dried surface carrier test and a dried biofilm test. All five disinfectant tests used glass coupons and followed the same steps for treatment, neutralization, viable cell counting, and calculating the log reduction (LR). Three different disinfectants, chlorine, a quaternary ammonium compound, and a phenolic, were each applied at two concentrations. Experiments were conducted separately with Pseudomonas aeruginosa and Staphylococcus aureus and every experiment was independently repeated. The results showed that biofilm grown in the CDC reactor produced the smallest LR, the static biofilm produced the largest LR, and biofilm grown in the drip flow reactor produced an intermediate LR. The differences were large enough to be of practical importance. The dried surface test often produced a significantly higher LR than the tests against hydrated or dried biofilm. The dried biofilm test produced LR values similar to those for the corresponding hydrated biofilm test. These results show that the efficacy of a disinfectant must be measured by using a laboratory method where biofilm is grown under fluid flow conditions similar to the environment where the disinfectant will be applied.  相似文献   

14.
Although the detachment of cells from biofilms is of fundamental importance to the dissemination of organisms in both public health and clinical settings, the disinfection efficacies of commonly used biocides on detached biofilm particles have not been investigated. Therefore, the question arises whether cells in detached aggregates can be killed with disinfectant concentrations sufficient to inactivate planktonic cells. Burkholderia cepacia and Pseudomonas aeruginosa were grown in standardized laboratory reactors as single species and in coculture. Cluster size distributions in chemostats and biofilm reactor effluent were measured. Chlorine susceptibility was assessed for planktonic cultures, attached biofilm, and particles and cells detached from the biofilm. Disinfection tolerance generally increased with a higher percentage of larger cell clusters in the chemostat and detached biofilm. Samples with a lower percentage of large clusters were more easily disinfected. Thus, disinfection tolerance depended on the cluster size distribution rather than sample type for chemostat and detached biofilm. Intact biofilms were more tolerant to chlorine independent of species. Homogenization of samples led to significantly increased susceptibility in all biofilm samples as well as detached clusters for single-species B. cepacia, B. cepacia in coculture, and P. aeruginosa in coculture. The disinfection efficacy was also dependent on species composition; coculture was advantageous to the survival of both species when grown as a biofilm or as clusters detached from biofilm but, surprisingly, resulted in a lower disinfection tolerance when they were grown as a mixed planktonic culture.  相似文献   

15.
In this study, a versatile method was developed to assess biocide efficacy against Escherichia coli biofilm growth on carriers made of five different materials. The glucuronidase activity of live E. coli on a fluorogenic substrate (4-methylumbellyferyl-β-d-glucuronide, MUG) was used as a viability test. Fluorescence emissions from cellular suspensions of E. coli in the test range displayed a linear response with a MUG concentration of 10 μg ml−1. A glucuronidase activity curve with cellular suspensions of E. coli calculated as colony-forming units per milliliter showed a good correlation (0.9487 and 0.917 for 1 and 18 h of incubation, respectively), with counts obtained from biofilm containing this organism; E. coli cultures in suspension were used as standard. Three agents commonly used as disinfectants, sodium hypochlorite, hydrogen peroxide, and ethanol, were tested at use concentrations and at one-half and decimal dilutions. At decimal dilutions, ethanol at 70% proved to be the least active disinfectant on E. coli biofilm. Unlike other methods, our method permits the testing of disinfectant efficacy against biofilm growth on different materials. In preliminary assays, glass, polyvinyl chloride, polypropylene, polycarbonate, and silicon were tested. Because they gave the lowest E. coli counts after 24 and 48 h, glass and polypropylene were the two materials to which biofilm adhered least strongly.  相似文献   

16.
This investigation examined the effects of common aqueous biocides and disinfectant foams derived from them on Pseudomonas aeruginosa biofilms. Biofilms were grown on stainless steel coupons under standardised conditions in a reactor supplemented with low concentrations of organic matter to simulate conditions prevalent in industrial systems. Five-day-old biofilms formed under ambient conditions with continuous agitation demonstrated a low coefficient of variation (5.809%) amongst viable biofilm bacteria from independent trials. Scanning electron microscopy revealed biofilms on coupons with viable biofilm bacteria observed by confocal microscopy. An aqueous solution of a common foaming agent amine oxide (AO) produced negligible effects on bacterial viability in biofilms (p>0.05). However, significant biofilm inactivation was noted with aqueous solutions of common biocides (peracetic acid, sodium hypochlorite, sodium ethylenediaminetetraacetic acid) with or without AO (p<0.05). Aereation of a mixture of AO with each of these common biocides resulted in significant reductions in the viability of biofilm bacteria (p<0.05). In contrast, limited effects were noted by foam devoid of biocides. A relationship between microbial inactivation and the concentration of biocide in foam (ranging from 0.1-0.5%) and exposure period were noted (p<0.05). Although, lower numbers of viable biofilm bacteria were recovered after treatment with the disinfectant foam than by the cognate aqueous biocide, significant differences between these treatments were not evident (p>0.05). In summary, the studies revealed significant biofilm inactivation by biocidal foam prepared with common biocides. Validation of foam disinfectants in controlled trials at manufacturing sites may facilitate developments for clean in place applications. Advantages of foam disinfectants include reductions in the volumes of biocides for industrial disinfection and in their disposal after use.  相似文献   

17.
The increased viscosity observed in biofilms, adherent communities of bacterial cells embedded in a polymeric matrix, was hypothesized to induce increased tolerance of bacteria to antibiotics. To test this concept, planktonic Staphylococcus aureus cells were grown and exposed to vancomycin in media brought to specific viscosities in order to mimic the biofilm extracellular polymeric matrix. A viscous environment was observed to decrease the vancomycin susceptibility of planktonic S. aureus to levels seen for biofilms. Both planktonic S. aureus at a viscosity of 100 mPa s and staphylococcal biofilms were able to survive at >500 times the levels of the antibiotic effective against planktonic populations in standard medium. Time-dependent and dose-dependent viability curves revealed that more than one mechanism was involved in high S. aureus tolerance to vancomycin in viscous media. Increased viscosity affects antibiotic susceptibility by reducing diffusion and the mass transfer rate; this mechanism alone, however, cannot explain the increased tolerance demonstrated by S. aureus in viscous media, suggesting that viscosity may also alter the phenotype of the planktonic bacteria to one more resistant to antimicrobials, as seen in biofilms. However, these latter changes are not yet understood and will require further study.  相似文献   

18.
Listeria monocytogenes is an important cause of human foodborne infections and its ability to form biofilms is a serious concern to the food industry. To reveal the effect of glucose conditions on biofilm formation of L. monocytogenes, 20 strains were investigated under three glucose conditions (0.1, 1.0, and 2.0% w v–1) by quantifying the number of cells in the biofilm and observing the biofilm structure after incubation for 24, 72, and 168 h. In addition, the biofilms were examined for their sensitivity to sodium hypochlorite. It was found that high concentrations of glucose reduced the number of viable cells in the biofilms and increased extracellular polymeric substance production. Moreover, biofilms formed at a glucose concentration of 1.0 or 2.0% were more resistant to sodium hypochlorite than those formed at a glucose concentration of 0.1%. This knowledge can be used to help design the most appropriate sanitation strategy.  相似文献   

19.
20.
Staphylococcus epidermidis has become a significant pathogen causing infections due to biofilm formation on surfaces of indwelling medical devices. Biofilm-associated bacteria exhibit enhanced resistance to many conventional antibiotics. It is therefore, important to design novel antimicrobial reagents targeting S. epidermidis biofilms. In a static chamber system, the bactericidal effect of two leading compounds active as YycG inhibitors was assessed on biofilm cells by confocal laser scanning microscopy combined with viability staining. In young biofilms (6-h-old), the two compounds killed the majority of the embedded cells at concentrations of 100 microM and 25 microM, respectively. In mature biofilms (24-h-old), one compound was still effectively killing biofilm cells, whereas the other compound mainly killed cells located at the bottom of the biofilm. In contrast, vancomycin was found to stimulate biofilm development at the MBC (8 microg mL(-1)). Even at a high concentration (128 microg mL(-1)), vancomycin exhibited poor killing on cells embedded in biofilms. The two compounds exhibited faster and more effective killing of S. epidermidis planktonic cells than vancomycin at the early stage of exposure (6 h). The data suggest that the new inhibitors can serve as potential agents against S. epidermidis biofilms when added alone or in concert with other antimicrobial agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号