首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant cells frequently encounter oxidative stress, leading to oxidative damage and inactivation of proteins. We have recently demonstrated that oxidative stress induces autophagy in Arabidopsis seedlings in an AtATG18a-dependent manner and that RNAi-AtATG18a transgenic lines, which are defective in autophagosome formation, are hypersensitive to reactive oxygen species. Analysis of protein oxidation indicated that oxidized proteins are degraded in the vacuole after uptake by autophagy, and this degradation is impaired in RNAi-AtATG18a lines. Our results also suggest that in the absence of a functional autophagy pathway, plants are under increased oxidative stress, even under normal growth conditions.  相似文献   

2.
The production of free radicals and the resulting oxidative damage of cellular structures are always connected with the formation of oxidized proteins. The 20S proteasome is responsible for recognition and degradation of oxidatively damaged proteins. No detailed studies on the intracellular distribution of oxidized proteins during oxidative stress and on the distribution of the proteasome have been performed until now. Therefore, we used immunocytochemical methods to measure protein carbonyls, a form of protein oxidation products, and proteasome distribution within cells. Both immunocytochemical methods of measurement are semiquantitative and the load of oxidized proteins is increased after various oxidative stresses explored, with the highest increase in the perinuclear region of the cell. Distribution of the proteasome and the total protein content revealed the highest concentration of both in the nucleus. No redistribution of the proteasome during oxidative stress occurs. The normalized ratio of protein carbonyls to protein content was formed, indicating the highest concentration of oxidized proteins in the cytosolic region near the cell membrane. By forming the protein oxidation-to-proteasome ratio it was concluded that the highest load of oxidized proteins to the proteasome takes place in the cytosol, independent of the oxidant explored.  相似文献   

3.
4.
Degradation of oxidized extracellular proteins by microglia   总被引:11,自引:0,他引:11  
In living organisms a permanent oxidation of protein oxidation occurs. The degradation of intracellular oxidized proteins is intensively studied, but knowledge about the fate of oxidatively modified extracellular proteins is still limited. We studied the fate of exogenously added oxidized proteins in microglial cells. Both primary microglial cells and RAW cells are able to remove added oxidized laminin and myelin basic protein from the extracellular environment. Moderately oxidized proteins are degraded most efficiently, whereas strongly oxidized proteins are taken up by the microglial cells without an efficient degradation. Activation of microglial cells enhances the selective recognition and degradation of moderately oxidized protein substrates by proteases. Inhibitor studies also revealed an involvement of the lysosomal and the proteasomal system in the degradation of extracellular proteins. These studies let us conclude that microglial cells are able to remove oxidized proteins from the extracellular environment in the brain.  相似文献   

5.
Endoplasmic reticulum stress is defined as the accumulation of unfolded proteins in the endoplasmic reticulum, and is caused by conditions such as heat or agents that cause endoplasmic reticulum stress, including tunicamycin and dithiothreitol. Autophagy, a major pathway for degradation of macromolecules in the vacuole, is activated by these stress agents in a manner dependent on inositol‐requiring enzyme 1b (IRE1b), and delivers endoplasmic reticulum fragments to the vacuole for degradation. In this study, we examined the mechanism for activation of autophagy during endoplasmic reticulum stress in Arabidopsis thaliana. The chemical chaperones sodium 4–phenylbutyrate and tauroursodeoxycholic acid were found to reduce tunicamycin‐ or dithiothreitol‐induced autophagy, but not autophagy caused by unrelated stresses. Similarly, over‐expression of BINDING IMMUNOGLOBULIN PROTEIN (BIP), encoding a heat shock protein 70 (HSP70) molecular chaperone, reduced autophagy. Autophagy activated by heat stress was also found to be partially dependent on IRE1b and to be inhibited by sodium 4–phenylbutyrate, suggesting that heat‐induced autophagy is due to accumulation of unfolded proteins in the endoplasmic reticulum. Expression in Arabidopsis of the misfolded protein mimics zeolin or a mutated form of carboxypeptidase Y (CPY*) also induced autophagy in an IRE1b‐dependent manner. Moreover, zeolin and CPY* partially co‐localized with the autophagic body marker GFP–ATG8e, indicating delivery to the vacuole by autophagy. We conclude that accumulation of unfolded proteins in the endoplasmic reticulum is a trigger for autophagy under conditions that cause endoplasmic reticulum stress.  相似文献   

6.
Degradation of oxidized proteins by the 20S proteasome   总被引:27,自引:0,他引:27  
Davies KJ 《Biochimie》2001,83(3-4):301-310
Oxidatively modified proteins are continuously produced in cells by reactive oxygen and nitrogen species generated as a consequence of aerobic metabolism. During periods of oxidative stress, protein oxidation is significantly increased and may become a threat to cell survival. In eucaryotic cells the proteasome has been shown (by purification of enzymatic activity, by immunoprecipitation, and by antisense oligonucleotide studies) to selectively recognize and degrade mildly oxidized proteins in the cytosol, nucleus, and endoplasmic reticulum, thus minimizing their cytotoxicity. From in vitro studies it is evident that the 20S proteasome complex actively recognizes and degrades oxidized proteins, but the 26S proteasome, even in the presence of ATP and a reconstituted functional ubiquitinylating system, is not very effective. Furthermore, relatively mild oxidative stress rapidly (but reversibly) inactivates both the ubiquitin activating/conjugating system and 26S proteasome activity in intact cells, but does not affect 20S proteasome activity. Since mild oxidative stress actually increases proteasome-dependent proteolysis (of oxidized protein substrates) the 20S 'core' proteasome complex would appear to be responsible. Finally, new experiments indicate that conditional mutational inactivation of the E1 ubiquitin-activating enzyme does not affect the degradation of oxidized proteins, further strengthening the hypothesis that oxidatively modified proteins are degraded in an ATP-independent, and ubiquitin-independent, manner by the 20S proteasome. More severe oxidative stress causes extensive protein oxidation, directly generating protein fragments, and cross-linked and aggregated proteins, that become progressively resistant to proteolytic digestion. In fact these aggregated, cross-linked, oxidized proteins actually bind to the 20S proteasome and act as irreversible inhibitors. It is proposed that aging, and various degenerative diseases, involve increased oxidative stress (largely from damaged and electron 'leaky' mitochondria), and elevated levels of protein oxidation, cross-linking, and aggregation. Since these products of severe oxidative stress inhibit the 20S proteasome, they cause a vicious cycle of progressively worsening accumulation of cytotoxic protein oxidation products.  相似文献   

7.
After oxidative stress, proteins that are oxidatively modified are degraded by the 20S proteasome. However, several studies have documented an enhanced ubiquitination of yet unknown proteins. Because ubiquitination is a prerequisite for degradation by the 26S proteasome in an ATP-dependent manner this raises the question whether these proteins are also oxidized and, if not, what proteins need to be ubiquitinated and degraded after oxidative conditions. By determination of oxidized and ubiquitinated proteins we demonstrate here that most oxidized proteins are not preferentially ubiquitinated. However, we were able to confirm an increase in ubiquitinated proteins 16 h after oxidative stress. Therefore, we isolated ubiquitinated proteins from hydrogen peroxide-treated cells, as well as from control cells and cells treated with lactacystin, an irreversible proteasome inhibitor, and identified some of these proteins by MALDI tandem mass spectrometry. As a result we obtained 24 different proteins that can be categorized into the following groups: chaperones, energy metabolism, cytoskeleton/intermediate filaments, and protein translation/ribosome biogenesis. The special set of identified, ubiquitinated proteins confirms the thesis that ubiquitination upon oxidative stress is not a random process to degrade the mass of oxidized proteins, but concerns a special group of functional proteins.  相似文献   

8.
A variety of debilitating diseases including diabetes, Alzheimer's, Huntington's, Parkinson's, and prion-based diseases are linked to stress within the endoplasmic reticulum (ER). Using S. cerevisiae, we sought to determine the relationship between protein misfolding, ER stress, and cell death. In the absence of ERV29, a stress-induced gene required for ER associated degradation (ERAD), misfolded proteins accumulate in the ER leading to persistent ER stress and subsequent cell death. Cells alleviate ER stress through the unfolded protein response (UPR); however, if stress is sustained the UPR contributes to cell death by causing the accumulation of reactive oxygen species (ROS). ROS are generated from two sources: the UPR-regulated oxidative folding machinery in the ER and mitochondria. Our results demonstrate a direct mechanism(s) by which misfolded proteins lead to cellular damage and death.  相似文献   

9.
Regulation of the Arabidopsis transcriptome by oxidative stress   总被引:34,自引:0,他引:34  
  相似文献   

10.
11.
12.
13.
Cell sensitivity to oxidative stress is influenced by ferritin autophagy   总被引:1,自引:0,他引:1  
To test the consequences of lysosomal degradation of differently iron-loaded ferritin molecules and to mimic ferritin autophagy under iron-overload and normal conditions, J774 cells were allowed to endocytose heavily iron loaded ferritin, probably with some adventitious iron (Fe-Ft), or iron-free apo-ferritin (apo-Ft). When cells subsequently were exposed to a bolus dose of hydrogen peroxide, apo-Ft prevented lysosomal membrane permeabilization (LMP), whereas Fe-Ft enhanced LMP. A 4-h pulse of Fe-Ft initially increased oxidative stress-mediated LMP that was reversed after another 3h under standard culture conditions, suggesting that lysosomal iron is rapidly exported from lysosomes, with resulting upregulation of apo-ferritin that supposedly is autophagocytosed, thereby preventing LMP by binding intralysosomal redox-active iron. The obtained data suggest that upregulation of the stress protein ferritin is a rapid adaptive mechanism that counteracts LMP and ensuing apoptosis during oxidative stress. In addition, prolonged iron starvation was found to induce apoptotic cell death that, interestingly, was preceded by LMP, suggesting that LMP is a more general phenomenon in apoptosis than so far recognized. The findings provide new insights into aging and neurodegenerative diseases that are associated with enhanced amounts of cellular iron and show that lysosomal iron loading sensitizes to oxidative stress.  相似文献   

14.
《Autophagy》2013,9(2):230-231
Alterations in contractile activity influence the intracellular homeostasis of muscle which results in adaptations in the performance and the phenotype of this tissue. Denervation is an effective disuse model which functions to change the intracellular environment of muscle leading to a rapid loss in mass, a decrease in mitochondrial content, and an elevation in both pro-apoptotic protein expression and myonuclear apoptosis. Recent investigations have shown that alternative degradation pathways such as autophagy are activated in conjunction with apoptosis during chronic muscle disuse. We have previously shown that 7 days of muscle disuse increases the expression of Beclin 1. Furthermore, we have also detected a significant increase in the expression of LC3-II, a known component of autophagy. In addition to its upregulation, denervation appears to induce the translocation of LC3-II to mitochondrial membranes. Collectively, these increases in protein expression suggest that autophagy signaling is upregulated in response to denervation, and that these pathways may preferentially target mitochondria for degradation in skeletal muscle.  相似文献   

15.
In the present study, we have identified new prenyllipid metabolites formed during high light stress in Arabidopsis thaliana, whose origin and function remained unknown so far. It was found that plastoquinone‐C accumulates mainly in the reduced form under high light conditions, as well as during short‐term excess light illumination both in the wild‐type and tocopherol biosynthetic vte1 mutant, suggesting that plastoquinone‐C, a singlet oxygen‐derived prenyllipid, is reduced in chloroplasts by photosystem II or enzymatically, outside thylakoids. Plastoquinone‐B, a fatty acid ester of plastoquinone‐C, was identified for the first time in Arabidopsis in high light grown wild‐type plants and during short‐time, excess light illumination of the wild‐type plants and the vte1 mutant. The gene expression analysis showed that vte2 gene is most pronouncedly up‐regulated among the prenyllipid biosynthetic genes under high light and induction of its expression is mainly caused by an increased level of singlet oxygen, as was demonstrated in experiments with D2O‐treated plants under excess light conditions.  相似文献   

16.
The cell walls in the new white roots of jack pine (Pinus banksiana Lamb.) were observed to constrict around the shrinking protoplast of osmotically stressed roots, and pressure was maintained via an apparent adjustment of cell-wall size and elasticity. These elastic alterations of the cell wall permitted the root cells to maintain full turgor despite the loss of most of the water in the tissue. The constriction of the root cell wall around the dehydrating protoplasts to maintain turgor may reflect changes in cell wall structure. We found that these shrinking root cells synthesize and secrete into the intercellular fluid a set of proteins. These proteins become tightly associated (i.e. guanidine HCl- and sodium dodecyl sulfate-insoluble) with the cell wall but can be released from the matrix, after briefly boiling in 0.1% sodium dodecyl sulfate, by the combination of guanidine HCl, CaCl2 and dithiothreitol. However, these cell-wall proteins became insoluble with time. The proteins could subsequently be destructively extracted from the wall with acid NaClO2 treatments. After these proteins were incorporated into the cell walls, the roots adopted a new, smaller maximal tissue volume and elastic coefficients returned to normal levels. Received: 8 July 1998 / Accepted: 19 November 1998  相似文献   

17.
18.
Proper removal of oxidized proteins is an important determinant of success when evaluating the ability of cells to handle oxidative stress. The ubiquitin/proteasome system has been considered the main responsible mechanism for the removal of oxidized proteins, as it can discriminate between normal and altered proteins, and selectively target the latter ones for degradation. A possible role for lysosomes, the other major intracellular proteolytic system, in the removal of oxidized proteins has been often refused, mostly on the basis of the lack of selectivity of this system. Although most of the degradation of intracellular components in lysosomes (autophagy) takes place through “in bulk” sequestration of complete cytosolic regions, selective targeting of proteins to lysosomes for their degradation is also possible via what is known as chaperone-mediated autophagy (CMA). In this work, we review recent evidence supporting the participation of CMA in the clearance of oxidized proteins in the forefront of the cellular response to oxidative stress. The consequences of an impairment in CMA activity, observed during aging and in some age-related disorders, are also discussed.  相似文献   

19.
Protein phosphorylation plays a pivotal role in the regulation of many cellular events; increasing evidences indicate that this post-translational modification is involved in plant response to various abiotic and biotic stresses. Since phosphorylated proteins may be present at low abundance, enrichment methods are generally required for their analysis. We here describe the quantitative changes of phosphoproteins present in Arabidopsis thaliana leaves after challenging with elicitors or treatments mimicking biotic stresses, which stimulate basal resistance responses, or oxidative stress. Phosphoproteins from elicited and control plants were enriched by means of metal oxide affinity chromatography and resolved by 2D electrophoresis. A comparison of the resulting proteomic maps highlighted phosphoproteins showing quantitative variations induced by elicitor treatment; these components were identified by MALDI-TOF peptide mass fingerprinting and/or nanoLC-ESI-LIT-MS/MS experiments. In total, 97 differential spots, representing 75 unique candidate phosphoproteins, were characterized. They are representative of different protein functional groups, such as energy and carbon metabolism, response to oxidative and abiotic stresses, defense, protein synthesis, RNA processing and cell signaling. Ascertained protein phosphorylation found a positive confirmation in available Arabidopsis phosphoproteome database. The role of each identified phosphoprotein is here discussed in relation to plant defense mechanisms. Our results suggest a partial overlapping of the responses to different treatments, as well as a communication with key cellular functions by imposed stresses.  相似文献   

20.
Mammalian peroxisomes are ubiquitous organelles that possess a comprehensive ensemble of more than 50 enzymes. Cells regulate the number of organelles through dynamic interplay between biogenesis and degradation. Under basal conditions, approximately 30% of the peroxisomal pool is turned over daily. Recycling of peroxisomes is necessary for preservation of their functional competence, and correctly functioning autophagic/lysosomal pathways play a central role. In this study, we investigated (1) how lipopolysaccharide (LPS) influences peroxisomal dynamics and functions; and (2) how a superimposed lysosomal dysfunction affects pexophagy and modifies peroxisomal responses to LPS. We demonstrated that a transiently increased autophagic degradation of peroxisomes, pexophagy, followed by increased proliferation of peroxisomes is a default response to endotoxic stress. Impairment of autophagy due to lysosomal dysfunction, however, abolishes the above peroxisomal dynamics and results in accumulation of functionally compromised peroxisomes. These exhibit an imbalance between preserved hydrogen peroxide (H2O2)-generating acyl-CoA oxidase (ACOX) and dysfunctional/inactivated catalase (CAT), which leads to intra-peroxisomal redox disequilibrium. This metabolic-oxidative mismatch causes further worsening of peroxisomal functions, peroxisomal burnout, with the consequence of enhanced oxidative stress and aggravated organ injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号