首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Assisted reproduction technologies (ART) include in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), and are common treatments for infertility. Although generally successful, ART warrant further investigations due to emerging perinatal issues, especially low birth weight. Herein we extend our previous work demonstrating higher steroid clearance in murine ART placentas by examining steroid biosynthesis and the directional flow of steroids in the maternal-placental-fetal units. The activities of the major steroidogenic enzymes 3β-hydroxysteroid dehydrogenase (3β-HSD) and cytochrome P450 17-αhydroxylase (CYP17) were assessed in maternal liver and ovaries and fetal livers as were levels of cholesterol, progesterone, estrone (E1), and estradiol (E2) in the maternal, placental and fetal units. No structural abnormalities were found in placentas from ART. Although ART increased 3β-HSD activity in maternal livers, there were no other changes in 3β-HSD- or CYP17-mediated steroidogenesis. Cholesterol levels were significantly lower in maternal livers of ICSI pregnancies and in placentas from both IVF and ICSI pregnancies but not altered in the fetal livers. Progesterone levels were higher in maternal and fetal livers in IVF and ICSI, respectively, but were significantly lowered in ICSI placentas, compared to normal fertilization. For estrogenic hormones, no differences in E1 or E2 levels were observed in maternal livers but ICSI significantly increased both E1 and E2 levels in placentas while both IVF and ICSI significantly lowered E1 but raised E2 levels in fetal livers. In summary, while steroid production was normal, steroid diffusion/flow from mother to fetus was altered in murine pregnancies conceived by ART. This appears to occur, at least in part; through placental mechanisms. Impaired cholesterol and steroid transfer may affect correct regulation of fetal growth and development.  相似文献   

2.
Preimplantation genetic diagnosis (PGD) allows identifying genetic traits in early embryos. Because in some equine breeds, like Polo Argentino, females are preferred to males for competition, PGD can be used to determine the gender of the embryo before transfer and thus allow the production of only female pregnancies. This procedure could have a great impact on commercial embryo production programs. The present study was conducted to adapt gender selection by PGD to a large-scale equine embryo transfer program. To achieve this, we studied (i) the effect on pregnancy rates of holding biopsied embryos for 7 to 10 hours in holding medium at 32 °C before transfer, (ii) the effect on pregnancy rates of using embryos of different sizes for biopsy, and (iii) the efficiency of amplification by heating biopsies before polymerase chain reaction. Equine embryos were classified by size (≤300, 300–1000, and >1000 μm), biopsied, and transferred 1 to 2 or 7 to 10 hours after flushing. Some of the biopsy samples obtained were incubated for 10 minutes at 95 °C and the rest remained untreated. Pregnancy rates were recorded at 25 days of gestation; fetal gender was determined using ultrasonography and compared with PGD results. Holding biopsied embryos for 7 to 10 hours before transfer produced pregnancy rates similar to those for biopsied embryos transferred within 2 hours (63% and 57%, respectively). These results did not differ from pregnancy rates of nonbiopsied embryos undergoing the same holding times (50% for 7–10 hours and 63% for 1–2 hours). Pregnancy rates for biopsied and nonbiopsied embryos did not differ between size groups or between biopsied and nonbiopsied embryos within the same size group (P > 0.05). Incubating biopsy samples for 10 minutes at 95 °C before polymerase chain reaction significantly increased the diagnosis rate (78.5% vs. 45.5% for treated and nontreated biopsy samples respectively). Gender determination using incubated biopsy samples matched the results obtained using ultrasonography in all pregnancies assessed (11/11, 100%); untreated biopsy samples were correctly diagnosed in 36 of 41 assessed pregnancies (87.8%), although the difference between treated and untreated biopsy samples was not significant. Our results demonstrated that biopsied embryos can remain in holding medium before being transferred, until gender diagnosis by PGD is complete (7–10 hours), without affecting pregnancy rates. This simplifies the management of an embryo transfer program willing to incorporate PGD for gender selection, by transferring only embryos of the desired sex. Embryo biopsy can be performed in a clinical setting on embryos of different sizes, without affecting their viability. Additionally, we showed that pretreating biopsy samples with a short incubation at 95 °C improved the overall efficiency of embryo sex determination.  相似文献   

3.
Preimplantation genetic diagnosis (PGD) is commonly performed on biopsies from 6–8-cell-stage embryos or blastocyst trophectoderm obtained on day 3 or 5, respectively. Day 4 human embryos at the morula stage were successfully biopsied. Biopsy was performed on 709 morulae from 215 ICSI cycles with preimplantation genetic screening (PGS), and 3–7 cells were obtained from each embryo. The most common vital aneuploidies (chromosomes X/Y, 21) were screened by fluorescence in situ hybridization (FISH). No aneuploidy was observed in 72.7% of embryos, 91% of those developed to blastocysts. Embryos were transferred on days 5–6. Clinical pregnancy was obtained in 32.8% of cases, and 60 babies were born. Patients who underwent ICSI/PGS treatment were compared with those who underwent standard ICSI treatment by examining the percentage of blastocysts, pregnancy rate, gestational length, birth height and weight. No significant differences in these parameters were observed between the groups. Day 4 biopsy procedure does not adversely affect embryo development in vitro or in vivo. The increased number of cells obtained by biopsy of morulae might facilitate diagnostic screening. There is enough time after biopsy to obtain PGD results for embryo transfer on day 5–6 in the current IVF cycle.  相似文献   

4.
Preimplantation genetic diagnosis (PGD) testing is the practice of obtaining a cellular biopsy sample from a developing human oocyte or embryo, acquired via a cycle of in vitro fertilization (IVF); evaluating the genetic composition of this sample; and using this information to determine which embryos will be optimal for subsequent uterine transfer. PGD has become an increasingly useful adjunct to IVF procedures. The ability to provide couples who are known carriers of genetic abnormalities the opportunity to deliver healthy babies has opened a new frontier in reproductive medicine. The purpose of the PGD is enables us to choose which embryos will be implanted into the mother. In the present study 137 families who had undergone IVF at Habib Medical Centre, were enrolled for the PGD analysis. The couple visited the clinic for the sex selection, recurrent fetal loss and with the recurrent IVF failure. 802 embryos were tested by the biopsy method and 512 are found to be normal and 290 were abnormal embryos. In this study only 24% of the embryos were transferred and the remaining was not transferred because of the abnormalities or undesired sex of the embryos. The structural and numerical abnormalities were found to be 16.8%.  相似文献   

5.
Preimplantation genetic diagnosis (PGD) is employed increasingly to allow transfer of embryos to the uterus in assisted reproduction procedures. There are three stages of biopsy: polar bodies, one or two blastomeres from the cleavage-stage embryos, and trophectoderm cells (∼5 cells) from the blastocyst-stage embryos. Validation of polymerase chain reaction (PCR)-based assays are challenging because only limited genetic material can be obtained for PGD. In the current study, we modified a valid single-cell PCR protocol for PGD using real-time PCR assay with fluorescence resonance energy transfer (FRET) hybridization probes followed by melting curve analysis. We optimized and clinically applied the protocol, permitting molecular genetic analysis to amplify a specific region on the beta-globin (HBB) gene for a couple, carriers of two mutations: c.-78A>G and c.52A>T. Among a total of eight embryos obtained after ovarian stimulation, a single blastomere per embryo at the six- to eight-cell stage was biopsied. This PGD method showed that four embryos were unaffected, two embryos were selected for transfer, and one pregnancy was achieved. Finally, a healthy male baby was delivered at 38 weeks’ gestation. The results obtained using the new method, FRET hybridization probes, were compared with findings using an existing method, primer extension minisequencing.  相似文献   

6.
For the last 20 years, preimplantation genetic diagnosis (PGD) has been mostly performed on cleavage stage embryos after the biopsy of 1–2 cells and PCR and FISH have been used for the diagnosis. The main indications have been single gene disorders and inherited chromosome abnormalities. Preimplantation genetic screening (PGS) for aneuploidy is a technique that has used PGD technology to examine chromosomes in embryos from couples undergoing IVF with the aim of helping select the chromosomally ‘best’ embryo for transfer. It has been applied to patients of advanced maternal age, repeated implantation failure, repeated miscarriages and severe male factor infertility. Recent randomised controlled trials (RCTs) have shown that PGS performed on cleavage stage embryos for a variety of indications does not improve delivery rates. At the cleavage stage, the cells biopsied from the embryo are often not representative of the rest of the embryo due to chromosomal mosaicism. There has therefore been a move towards blastocyst and polar body biopsy, depending on the indication and regulations in specific countries (in some countries, biopsy of embryos is not allowed). Blastocyst biopsy has an added advantage as vitrification of blastocysts, even post biopsy, has been shown to be a very successful method of cryopreserving embryos. However, mosaicism is also observed in blastocysts. There have been dramatic changes in the method of diagnosing small numbers of cells for PGD. Both array-comparative genomic hybridisation and single nucleotide polymorphism arrays have been introduced clinically for PGD and PGS. For PGD, the use of SNP arrays brings with it ethical concerns as a large amount of genetic information will be available from each embryo. For PGS, RCTs need to be conducted using both array-CGH and SNP arrays to determine if either will result in an increase in delivery rates.  相似文献   

7.
Since the early 1990s, preimplantation genetic diagnosis (PGD) has been expanding in scope and applications. Selection of female embryos to avoid X-linked disease was carried out first by polymerase chain reaction, then by fluorescence in situ hybridization (FISH), and an ever-increasing number of tests for monogenic diseases have been developed. Couples with chromosome rearrangements such as Robertsonian and reciprocal translocations form a large referral group for most PGD centers and present a special challenge, due to the large number of genetically unbalanced embryos generated by meiotic segregation. Early protocols used blastomeres biopsied from cleavage-stage embryos; testing of first and second polar bodies is now a routine alternative, and blastocyst biopsy can also be used. More recently, the technology has been harnessed to provide PGD-AS, or aneuploidy screening. FISH probes specific for chromosomes commonly found to be aneuploid in early pregnancy loss are used to test blastomeres for aneuploidy, with the aim of replacing euploid embryos and increasing pregnancy rates in groups of women who have poor IVF success rates. More recent application of PGD to areas such as HLA typing and social sex selection have stoked public controversy and concern, while provoking interesting ethical debates and keeping PGD firmly in the public eye.  相似文献   

8.
This study was designed to characterize conceptus development based on pre- and postnatal measurements of in vivo- and in vitro-derived bovine pregnancies. In vivo-produced embryos were obtained after superovulation, whereas in vitro-produced embryos were derived from established procedures for bovine IVM, IVF and IVC. Blastocysts were transferred to recipients to obtain pregnancies of single (in vivo/singleton or in vitro/singleton groups) or twin fetuses (in vitro/twins group). Ultrasonographic examinations were performed weekly, from Day 30 of gestation through term. Videotaped images were digitized, and still-frames were used for the measurement of conceptus traits. Calves and fetal membranes (FM) were examined and measured upon delivery. In vitro-produced fetuses were smaller than in vivo controls (P < 0.05) during early pregnancy (Day 37 to Day 58), but in vitro/singletons presented significantly higher weights at birth than in vivo/control and in vitro/twin calves (P < 0.05). From late first trimester of pregnancy (Day 72 to Day 93), placentomes surrounding in vitro-derived singleton fetuses were longer and thinner than controls (P < 0.05). At term, the presence of giant cotyledons in the fetal membranes in the in vitro group was associated with a larger cotyledonary surface area in the fetal horn (P < 0.05). The biphasic growth pattern seen in in vitro-produced pregnancies was characterized by conceptus growth retardation during early pregnancy, followed by changes in the development of the placental tissue. Resulting high birth weights may be a consequence of aberrant placental development due to the disruption of the placental restraint on fetal growth toward the end of pregnancy.  相似文献   

9.
Preimplantation genetic diagnosis (PGD), used in clinical practice, is offered to couples that may suffer from a monogenetic disorder, chromosome aneuploidy, or X-linked disease. However, blastomere biopsy, as an indispensable manipulation during the PGD procedure has not been assessed for its long term health implications. Using a mouse model, we investigated the effect of blastomere biopsy of in vitro cultured four-cell embryos on preimplantation development efficiency, postnatal growth, and physiological and behavioral activity compared with control, non-biopsied embryos. The mice generated after blastomere biopsy showed weight increase and some memory decline compared with the control group. Further protein expression profiles in adult brains were analyzed by a proteomics approach. A total of 36 proteins were identified with significant differences between the biopsied and control groups, and the alterations in expression of most of these proteins have been associated with neurodegenerative diseases. Furthermore hypomyelination of the nerve fibers was observed in the brains of mice in the biopsied group. This study suggested that the nervous system may be sensitive to blastomere biopsy procedures and indicated an increased relative risk of neurodegenerative disorders in the offspring generated following blastomere biopsy. Thus, more studies should be performed to address the possible adverse effects of blastomere biopsy on the development of offspring, and the overall safety of PGD technology should be more rigorously assessed.Preimplantation genetic diagnosis (PGD)1 has been one of the main clinical components of assisted reproductive technologies (ARTs) since 1990 (1). At present, infertile couples experiencing recurrent miscarriage or X chromosome-linked diseases are most likely to benefit from PGD.The treatment of human infertility by ARTs has gained widespread application, but it is disconcerting to many researchers that the clinical procedures used in ARTs are rapidly outpacing the underlying science. ART procedures are generally considered to be safe, but recent studies suggest a small increase in birth defects and low birth weights in ART children (2, 3). In addition, several clinical studies have reported an increased frequency of Beckwith-Wiedemann syndrome or Angelman syndrome caused by an imprinting defect among children conceived with ARTs (4, 5). These potential risks cause serious unease and justify more serious assessments of ARTs. However, moral, ethical, and legal issues complicate assessments of the genetic quality of ART-derived human conceptions, and significant genetic and demographic differences exist among couples participating in the ARTs, so a definitive assessment of the risks associated with this technology has been difficult to achieve. Therefore, appropriate animal models provide an important tool for studying potential effects of ARTs on the health and development of mammalian embryos (6).In many ART procedures, embryos are kept for a short time in a synthetic culture medium before transfer into their recipient mothers. Animal data have demonstrated that in vitro embryo culture and related procedures may be associated with epigenetic changes, perturbed genomic imprinting, and alterations in fetal growth (7). Some evidence also suggested that the culture environment may produce specific abnormalities during fetal and postnatal development (810). In the studies using mouse models, more marked changes in adult physiology, including onset of hypertension, were observed (11).As with other ARTs, the protocol required for PGD necessitates embryo manipulation and culture in vitro. However, in contrast to other ARTs, PGD involves embryo biopsy of one or two blastomeres at the eight-cell stage. Some studies have shown that blastomere biopsy does not have negative effects on embryo viability (12, 13), and offspring have been produced using embryo splitting technology, which is similar to the biopsy process, in at least six different domesticated species, including mouse (14), rabbit (15), sheep (16), bovine (17), goat (18), horse (19), pig (20), and in a preliminary non-human primate study one rhesus monkey (21). However, there is still a shortage of proof to convince the public that there is no potential risk to such animals conceived by this technology.To address this issue, we developed a mouse model to study the effects of blastomere biopsy on early embryo development and on postnatal physiological phenotype and behavior. A global proteomics method was also performed to study correlative protein expression profiles in adult brains and to indicate the possibility of neural degenerative disorders in adult conceived following biopsy technology.  相似文献   

10.
《Reproductive biology》2020,20(3):417-423
Preimplantation genetic diagnosis (PGD) is a technique that is commonly used during assisted reproduction in the clinics to eliminate genetically abnormal embryos before implantation. The blastomere biopsy technique has risks related to the embryo, but blastocyst biopsy has not been systematically evaluated in relation to effects after birth, and the resulting offspring have not been followed up on. We designed a series of experiments to evaluate the risk of blastocyst biopsy on the resulting progeny. Mice were divided into a PGD group and a control group. The former was the progeny of mice that underwent blastocyst biopsy and the latter was delivered through a normal pregnancy without blastocyst biopsy. Each group consisted of 15 animals. We found no effects of blastocyst biopsy on reproductive capacities and weight gain. As for neurobehavioral evaluation between both groups, there were no significant differences in tail suspension test, sucrose preference test, the open field test and the elevated plus maze. Western blotting, immunohistochemistry and quantitative RT-PCR results showed that the expression levels of MBP, PRDX5 and UCHL1 in the PGD group were not significantly different compared to the control group, but SNAP-α expression in the PGD group was lower than that in control group. In summary, we concluded that blastocyst biopsy had no adverse effect on the general growth and behavior in mice. However, blastocyst biopsy effected the expression of SNAP-α. Therefore, the safety of blastocyst biopsy requires further evaluation.  相似文献   

11.
Is it necessary to analyze two blastomeres in preimplantation genetic diagnosis (PGD) by fluorescence in situ hybridization (FISH) or is one blastomere enough, as suggested by some teams? We analyzed the sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), false positives (FP), false negatives (FN), and the efficiency (Eff) of FISH performed on one (Group I) or two (Group II) blastomeres. Ninety embryos were analyzed (day 3), 19 blastocysts were replaced (day 5), 64 embryos were reanalyzed (day 5), (Group I = 23; Group II = 41). No differences were observed between the two groups for all of the parameters considered, but one false negative was observed in Group I. Furthermore, two embryos from Group II, which had a discordant diagnosis at PGD (one blastomere being normal and one abnormal), were read as abnormal after reanalysis. The accidental biopsy of the normal blastomere could have lead to the selection of these 2 embryos for transfer, causing a misdiagnosis rate of 4.8%. We conclude that embryo reanalysis is a useful tool to test the reliability of PGD in each laboratory: that PGD on two blastomeres is safer because the practice of PGD on one blastomere can result in a false-negative misdiagnosis.  相似文献   

12.
Humans have low natural fecundity, as the probability of establishing a viable conception in any one menstrual cycle is 20-25% for a healthy, fertile couple. There are numerous underlying causes for this low rate of human fertility, not the least of which are intrinsic abnormalities within the oocyte and/or embryo, which likely account for greater than 50% of failed conceptions. During assisted reproduction technology (ART) interventions, controlled ovarian stimulation is used to obtain several oocytes in attempts to increase the likelihood of having at least one developmentally competent embryo available for transfer. However, current techniques for identifying the competent embryo(s) are by no means perfect. These limitations, coupled with pressures to maximize the chance of pregnancy, typically result in the transfer of multiple embryos. Not surprisingly, this practice has resulted in an unacceptably high rate of multiple pregnancies arising from ART. During the last few years, concerted efforts have focused on reducing these rates. Programs for ART are developing patient-specific policies, restricting the number of embryos to transfer. In addition, strategies are being adopted to improve the accuracy for selecting viable embryos for transfer. One such strategy involves further refinement of morphological criteria associated with improved viability by considering, for example, pronuclei disposition, nucleolar organization, and identification of the fast-cleaving embryos with only mononucleate blastomeres. Another strategy employs pre-implantation genetic diagnosis (PGD) whereby a biopsied blastomere is tested for ploidy using fluorescence in situ hybridization (FISH). A final strategy involves extending the duration of culture to the blastocyst stage, thereby allowing self-selection of those embryos capable of proceeding to blastulation and exclusion of those less viable embryos that succumb to developmental arrest. Together, these strategies are enabling fewer embryos of higher quality to be transferred. Accordingly, the overall pregnancy rate from ART continues to increase, while the rate of triplet and higher order multiple births continues to decline. Nevertheless, the high incidence of intrinsic developmental anomalies in human oocytes inevitably will continue to result in a high degree of embryonic loss in ART.  相似文献   

13.
IVF cycles utilizing the ICSI technique for fertilization have been rising over the 25 years since its introduction, with indications now extending beyond male factor infertility. We have performed ICSI for 87% of cases compared with the ANZARD average of 67%. This retrospective study reports on the outcomes of 1547 autologous ART treatments undertaken over a recent 3-year period. Based on various indications, cases were managed within 3 groupings - IVF Only, ICSI Only or IVF-ICSI Split insemination where oocytes were randomly allocated. Overall 567 pregnancies arose from mostly single embryo transfer procedures up to December 2016, with 402 live births, comprising 415 infants and a low fetal abnormality rate (1.9%) was recorded. When the data was adjusted for confounders such as maternal age, measures of ovarian reserve and sperm quality, it appeared that IVF-generated and ICSI-generated embryos had a similar chance of both pregnancy and live birth. In the IVF-ICSI Split model, significantly more ICSI-generated embryos were utilised (2.5 vs 1.8; p?<?0.003) with productivity rates of 67.8% for pregnancy and 43.4% for livebirths per OPU for this group. We conclude that ART clinics should apply the insemination method which will maximize embryo numbers and the first treatment for unexplained infertility should be undertaken within the IVF-ICSI Split model. Whilst ICSI-generated pregnancies are reported to have a higher rate of fetal abnormalities, our data is consistent with the view that the finding is not due to the ICSI technique per se.  相似文献   

14.
Individuals carrying translocations suffer from reduced fertility or spontaneous abortions and seek help in form of assisted reproductive technology (ART) and preimplantation genetic diagnosis (PGD). While most translocations are relatively easy to detect in metaphase cells, the majority of embryonic cells biopsied in the course of in vitro fertilization (IVF) procedures are in interphase. These nuclei are thus unsuitable for analysis by chromosome banding or painting using fluorescence in situ hybridization (FISH). Thus several methods have been devised to detect translocation imbalance through FISH in single cells for purpose of PGD, among them polar body chromosome painting, interphase FISH with combination of subtelomeric and centromeric probes, breakpoint spanning probes, and cell conversion. Results with PGD indicate a significant decrease in spontaneous abortions, from 81% before PGD to 13% after PGD. They also indicate very high rates of chromosome abnormalities in embryos from translocation carriers, 72% for Robertsonian translocations and 82% for reciprocal translocations. Sperm analysis was found to be a good predictor of IVF and PGD outcome, with samples with more than 60% abnormal forms indicating poor prognosis. Similarly, the predictability from first PGD cycle results for future cycles was 90%. In summary, PGD can help translocation carriers to achieve viable pregnancies, but the success of the process is conversely related to the baseline of unbalanced gametes.  相似文献   

15.
Parturition in the pregnant sheep is preceded by an abrupt alteration in placental steroid metabolism causing a shift from progesterone to estrogen production. This change is believed to be a consequence of the prepartum rise in cortisol in the fetal circulation and involves increases in activities of the enzymes steroid 17 alpha-hydroxylase (cytochrome P-450(17)alpha), steroid C-17,20-lyase, and possibly aromatase. We have investigated the activity levels of aromatase and 17 alpha-hydroxylase in placental microsomes in late pregnancy and dexamethasone-induced labor. Over the gestational period of 118-140 days basal levels of placental aromatase were relatively constant [mean value (+/- SD) of 5.6 +/- 1.6 pmol min-1 mg microsomal protein-1 (n = 10)]. Steroid 17 alpha-hydroxylase activity was undetectable [less than 0.5 pmol min-1 mg microsomal protein-1 (n = 7)]. In six animals in labor induced with infusion of dexamethasone into the fetus, placental aromatase activity had a mean value of 14.0 +/- 2.5 pmol min-1 mg protein-1; placental steroid 17 alpha-hydroxylase, measured in four of the animals, had a mean (+/- SD) activity of 319 +/- 58 pmol min-1 mg microsomal protein-1. Immunoblotting of placental microsomal preparations with specific antibodies to cytochrome P-450(17)alpha and NADPH-cytochrome P-450-reductase indicated that the glucocorticoid-induced activity of 17 alpha-hydroxylase was associated with increased content of cytochrome P-450(17)alpha. Northern blotting with a cDNA probe for cytochrome P-450(17)alpha showed that glucocorticoid increased the levels of mRNA for the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Chromosome breakage is a fairly widespread phenomenon in preimplantation embryos affecting at least 10% of day 3 cleavage stage embryos. It may be detected during preimplantation genetic diagnosis (PGD). For carriers of structural chromosomal abnormalities, PGD involves the removal and testing of single blastomeres from cleavage stage embryos, aiming towards an unaffected pregnancy. Twenty-two such couples were referred for PGD, and biopsied blastomeres on day 3 and untransferred embryos (day 5/6) were tested using fluorescence in situ hybridisation (FISH) with appropriate probes. This study investigated whether chromosome breakage (a) was detected more frequently in cases where the breakpoint of the aberration was in the same chromosomal band as a fragile site and (b) was influenced by maternal age, sperm parameters, reproductive history, or the sex of the carrier parent. The frequency of breakage seemed to be independent of fragile sites, maternal age, reproductive history, and sex of the carrier parent. However, chromosome breakage was very significantly higher in embryos from male carriers with poor sperm parameters versus embryos from male carriers with normal sperm parameters. Consequently, embryos from certain couples were more prone to chromosome breakage, fragment loss, and hence chromosomally unbalanced embryos, independently of meiotic segregation.  相似文献   

17.
Data on biopsied, sexed and cryopreserved in vitro produced (IVP) bovine embryos, and their in vivo developmental competence are very limited. Two preliminary studies were conducted before the primary study. In Experiment 1, post-thaw in vitro developmental competence of biopsied and vitrified IVP embryos was evaluated using re-expansion as an endpoint. In Experiment 2, the pregnancy rates of biopsied fresh, frozen or vitrified embryos following single embryo transfer were compared. Since vitrified embryos resulted in a higher pregnancy rate than frozen-thawed embryos, in the primary study (Experiment 3), all IVP embryos were vitrified following biopsy and sexing (by DNA fingerprinting). In Experiment 3, we compared pregnancy initiation and calving results of heifers in the following treatments: 1) artificial insemination (AI); 2) AI plus contralateral transfer of a single embryo (AI + SET); 3) ipsilateral transfer of single embryo (SET); or 4) bilateral transfer of two embryos (DET). Birth weights, gestation lengths and dystocia scores were recorded. In Experiment 1, post-thaw re-expansion rate of biopsied and vitrified embryos was 85% (70/82). In Experiment 2, pregnancy rates (90 d) were 44% (7/16), 23% (3/13), and 50% (7/14) for vitrified, frozen and fresh embryos, respectively (P < 0.10). In Experiment 3, pregnancy rates of AI and SET were 65% (20/31) and 40% (16/40), respectively (P < 0.05). The pregnancy rate of AI + SET was 75% (27/36) with 11 carrying twins, and the pregnancy rate of DET was 72% (26/36) with 10 carrying twins. All AI fetuses were carried to term, but only half the SET fetuses were carried to term. Similar calving rates were observed in the AI + SET and DET groups, 76 and 70%, respectively, of those pregnant at Day 40. Mean birth weight, dystocia score and gestation length of AI calves were not different from those of SET calves. Mean birth weight and dystocia score of single-born calves were greater than those of twin born calves (P < 0.05). These data demonstrate that biopsied IVP bovine embryos can be successfully cryopreserved by vitrification and following post-thaw embryo transfer, acceptable rates of offspring with normal birth weights can be obtained without major calving difficulties.  相似文献   

18.
This paper reports the birth of the first fourteen infants conceived after preimplantation genetic diagnosis (PGD) in our unit. Fifty-nine couples were enrolled between January 2000 and July 2001. They had a total of 71 oocyte pick-up cycles. The collected oocytes were inseminated by intracytoplasmic sperm injection. The resulting embryos were biopsied on the third day of development and genetic analysis was performed on the same day. Most of the embryo transfers were carried out on the fourth day. The 71 oocyte pick-up cycles yielded 872 oocytes of which 731 were suitable for intacytoplasmic sperm injection. Among the 505 embryos obtained, 421 embryos were biopsied and genetic diagnosis was performed for 312 (74%) of them. 127 embryos were transferred during 58 transfer procedures. There were 18 biochemical and 12 ongoing (7 singles, 4 twins and 1 triple) pregnancies. Sixteen infants have been born and 2 are expected. PGD now constitutes an alternative for couples at risk of transmission of a serious and incurable genetic disease.  相似文献   

19.
OBJECTIVE: To assess how nutrient intakes of mothers in early and late pregnancy influence placental and fetal growth. DESIGN: Prospective observational study. SETTING: Princess Anne Maternity Hospital, Southampton. SUBJECTS: 538 mothers who delivered at term. MAIN OUTCOME MEASURES: Placental and birth weights adjusted for the infant''s sex and duration of gestation. RESULTS: Mothers who had high carbohydrate intakes in early pregnancy had babies with lower placental and birth weights. Low maternal intakes of dairy and meat protein in late pregnancy were also associated with lower placental and birth weights. Placental weight fell by 49 g(95% confidence interval 16 g to 81 g; P=0.002) for each log g increase in intake of carbohydrate in early pregnancy and by 1.4 g (0.4 g to 2.4 g; P=0.005) for each g decrease in intake of dairy protein in late pregnancy. Birth weight fell by 165 g (49 g to 282 g; P=0.005) for each log g increase in carbohydrate intake in early pregnancy and by 3.1 g (0.3 g to 6.0 g; P=0.03) for each g decrease in meat protein intake in late pregnancy. These associations were independent of the mother''s height and body mass index and of strong relations between the mother''s birth weight and the placental and birth weights of her offspring. CONCLUSION: These findings suggest that a high carbohydrate intake in early pregnancy suppresses placental growth, especially if combined with a low dairy protein intake in late pregnancy. Such an effect could have long term consequences for the offspring''s risk of cardiovascular disease.  相似文献   

20.
ObjectiveTo investigate the relations of maternal diet and smoking during pregnancy to placental and birth weights at term.DesignProspective cohort study.SettingDistrict general hospital in the south of England.Participants693 pregnant nulliparous white women with singleton pregnancies who were selected from antenatal booking clinics with stratified random sampling.ResultsPlacental and birth weights were unrelated to the intake of any macronutrient. Early in pregnancy, vitamin C was the only micronutrient independently associated with birth weight after adjustment for maternal height and smoking. Each ln mg increase in vitamin C was associated with a 50.8 g (95% confidence interval 4.6 g to 97.0 g) increase in birth weight. Vitamin C, vitamin E, and folate were each associated with placental weight after adjustment for maternal characteristics. In simultaneous regression, however, vitamin C was the only nutrient predictive of placental weight: each ln mg increase in vitamin C was associated with a 3.2% (0.4 to 6.1) rise in placental weight. No nutrient late in pregnancy was associated with either placental or birth weight.ConclusionsConcern over the impact of maternal nutrition on the health of the infant has been premature. Maternal nutrition, at least in industrialised populations, seems to have only a small effect on placental and birth weights. Other possible determinants of fetal and placental growth should be investigated.

Key messages

  • Placental and infant birth weights were not associated with the intake of any macronutrient early or later in pregnancy
  • After adjustment for the effects of maternal height and smoking, only vitamin C independently predicted birth weight. The expected mean difference in birth weight for infants with mothers in the upper and lower thirds of intake was about 70 g
  • Vitamin C was the only nutrient that independently predicted placental weight, but again this relation was of doubtful clinical significance
  • Among relatively well nourished women in industrialised countries, maternal nutrition seems to have only a marginal impact on infant and placental size. Other causes of variation in the size of clinically normal infants should now be investigated
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号