首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Platelets play critical roles in hemostasis and thrombosis through their aggregation following activation of integrin alphaIIbbeta3. However, the molecular mechanism of the integrin activation inside platelets remains largely unknown. Pharmacological experiments have demonstrated that protein kinase C (PKC) plays an important role in platelet aggregation. Because PKC inhibitors can have multiple substrates and given that non-PKC-phorbol ester-binding signaling molecules have been demonstrated to play important roles, the precise involvement of PKC in cellular functions requires re-evaluation. Here, we have established an assay for analyzing the Ca2+-induced aggregation of permeabilized platelets. The aggregation of platelets was inhibited by the addition of the arginine-glycine-aspartate-serine peptide, an integrin-binding peptide inhibitor of alphaIIbbeta3, suggesting that the aggregation was mediated by the integrin. The aggregation was also dependent on exogenous ATP and platelet cytosol, indicating the existence of essential cytosolic factors required for the aggregation. To examine the role of PKC in the aggregation assay, we immunodepleted PKCalpha and beta from the cytosol. The PKC-depleted cytosol lost the aggregation-supporting activity, which was recovered by the addition of purified PKCalpha. Furthermore, the addition of purified PKCalpha in the absence of cytosol did not support the aggregation, whereas the cytosol containing less PKC supported it efficiently, suggesting that additional factors besides PKC would also be required. Thus, we directly demonstrated that PKCalpha is involved in the regulation of Ca2+-induced platelet aggregation.  相似文献   

2.
alpha(2A)-Adrenergic receptor-mediated Ca(2+) signaling and integrin alpha(IIb)beta(3) exposure were investigated in human platelets under conditions where indirect, thromboxane- or ADP-mediated effects were absent. The alpha(2)-adrenergic receptor agonists, UK14304 and epinephrine (EPI), were unable to raise cytosolic levels of inositol 1,4,5-trisphosphate (InsP(3)) or Ca(2+) but potentiated the [Ca(2+)](i) rises evoked by other agonists that act through stimulation of phospholipase C (thrombin or platelet-activating factor) or stimulation of Ca(2+)-induced Ca(2+) release (CICR) in the absence of InsP(3) generation (thimerosal or thapsigargin). In addition, alpha(2)-adrenergic stimulation resulted in a 20% lowering in the cytosolic cAMP level. In platelets treated with G(salpha)-stimulating prostaglandin E(1), EPI increased the Ca(2+) signal evoked by either phospholipase C- or CICR-stimulating agonists mainly through modulation of the cAMP level. The stimulating effects of UK14304 and EPI on platelet Ca(2+) responses, and also on integrin alpha(IIb)beta(3) exposure and platelet aggregation, were abolished by pharmacological stimulation of cAMP-dependent protein kinase, and these effects were mimicked by inhibition of this activity. In permeabilized platelets, UK14304 and EPI potentiated InsP(3)-induced, CICR-mediated mobilization of Ca(2+) from internal stores in a similar way as did inhibition of cAMP-dependent protein kinase. In summary, a G(ialpha)-mediated decrease in cAMP level appears to play a major role in the platelet-activating effects of alpha(2A)-adrenergic receptor stimulation. Thus, in platelets, unlike other cell types, occupation of the G(ialpha)-coupled alpha(2A)-adrenergic receptors does not result in phospholipase C activation but rather in modulation of the Ca(2+) response by relieving cAMP-mediated suppression of InsP(3)-dependent CICR.  相似文献   

3.
Thrombin induces platelet activation through a variety of intracellular mechanisms, including Ca(2+) mobilization. The protein of the exocytotic machinery SNAP-25, but not VAMPs, is required for store-operated Ca(2+) entry, the main mechanism for Ca(2+) influx in platelets. Hence, we have investigated the role of the SNAP-25 and VAMPs in thrombin-induced platelet aggregation. Platelet stimulation with thrombin or selective activation of thrombin receptors PAR-1, PAR-4 or GPIb-IX-V results in platelet aggregation that, except for GPIb-IX-V receptor, requires Ca(2+) entry for full activation. Depletion of the intracellular Ca(2+) stores using pharmacological tools was unable to induce aggregation except when cytosolic Ca(2+) concentration reached a critical level (around 1.5 microM). Electrotransjection of cells with anti-SNAP-25 antibody reduced thrombin-evoked platelet aggregation, while electrotransjection of anti-VAMP-1, -2 and -3 antibody had no effect. These findings support a role for SNAP-25 but not VAMP-1, -2 and -3 in platelet aggregation, which is likely mediated by the regulation of Ca(2+) mobilization in human platelets.  相似文献   

4.
The plasma membrane Ca(2+)-ATPase (PMCA) plays an essential role in maintaining low cytosolic Ca(2+) in resting platelets. During platelet activation PMCA is phosphorylated transiently on tyrosine residues resulting in inhibition of the pump that enhances elevation of Ca(2+). Tyrosine phosphorylation of many proteins during platelet activation results in their association with the cytoskeleton. Consequently, in the present study we asked if PMCA interacts with the platelet cytoskeleton. We observed that very little PMCA is associated with the cytoskeleton in resting platelets but that approximately 80% of total PMCA (PMCA1b + PMCA4b) is redistributed to the cytoskeleton upon activation with thrombin. Tyrosine phosphorylation of PMCA during activation was not associated with the redistribution because tyrosine-phosphorylated PMCA was not translocated specifically to the cytoskeleton. Because PMCA b-splice isoforms have C-terminal PSD-95/Dlg/ZO-1 homology domain (PDZ)-binding domains, a C-terminal peptide was used to disrupt potential PDZ domain interactions. Activation of saponin-permeabilized platelets in the presence of the peptide led to a significant decrease of PMCA in the cytoskeleton. PMCA associated with the cytoskeleton retained Ca(2+)-ATPase activity. These results suggest that during activation active PMCA is recruited to the cytoskeleton by interaction with PDZ domains and that this association provides a microenvironment with a reduced Ca(2+) concentration.  相似文献   

5.
Outside-in signaling mediated by the integrin alpha(IIb)beta(3) (GPIIbIIIa) is critical to platelet function and has been shown to involve the phosphorylation of tyrosine residues on the cytoplasmic tail of beta(3). To identify proteins that bind directly to phosphorylated beta(3), we utilized an affinity column consisting of a peptide modeled on the tyrosine-phosphorylated cytoplasmic domain of beta(3). Tandem mass spectrometric sequencing and immunoblotting demonstrated that Shc was the primary protein binding to phosphorylated beta(3). To determine the involvement of Shc in outside-in alpha(IIb)beta(3) signaling, the phosphorylation of Shc during platelet aggregation was examined; transient Shc phosphorylation was observed when thrombin-stimulated platelets were allowed to aggregate or when aggregation was induced by an LIBS (ligand-induced binding site) antibody, D3. Moreover, Shc was co-immunoprecipitated with tyrosine-phosphorylated beta(3) in detergent lysates of aggregated platelets. Using purified, recombinant protein, it was found that the binding of Shc to monophosphorylated (C-terminal tyrosine) and diphosphorylated beta(3) peptides was direct, demonstrating Shc recognition motifs on phospho-beta(3). Aggregation-induced Shc phosphorylation was also observed to be robust in platelets from wild-type mice, but not in those from mice expressing (Y747F,Y759F) beta(3), which are defective in outside-in alpha(IIb)beta(3) signaling. Thus, Shc is the primary downstream signaling partner of beta(3) in its tyrosine phosphorylation outside-in signaling pathway.  相似文献   

6.
Upon activation, platelets release many active substances. Here, we have analyzed the mechanism governing Ca(2+)-induced secretion of von Willebrand factor stored in alpha-granules and 5-hydroxytryptamine in dense-core granules in permeabilized human platelets. Both secretions were dependent on ATP and cytosol. An essential factor for both granule secretions was purified from rat brain cytosol and identified to be protein kinase Calpha (PKCalpha) by partial amino acid sequencing. Purified PKCalpha efficiently stimulated both secretions in the presence of cytosol, whereas PKCalpha alone did not support the secretion of either type of granules, suggesting that PKCalpha is not a sufficient factor. Finally, in human platelet cytosol fractionated by a gel filtration column, the stimulatory activity for dense-core granule secretion paralleled with the concentration of PKC, suggesting that PKC could also be such a stimulatory factor in platelet cytosol. Thus, we identified PKCalpha as an essential, but not sufficient, cytosolic factor for the Ca(2+)-induced secretions of both alpha- and dense-core granules in platelets.  相似文献   

7.
Apoptosis driven by IP(3)-linked mitochondrial calcium signals   总被引:23,自引:0,他引:23       下载免费PDF全文
Increases of mitochondrial matrix [Ca(2+)] ([Ca(2+)](m)) evoked by calcium mobilizing agonists play a fundamental role in the physiological control of cellular energy metabolism. Here, we report that apoptotic stimuli induce a switch in mitochondrial calcium signalling at the beginning of the apoptotic process by facilitating Ca(2+)-induced opening of the mitochondrial permeability transition pore (PTP). Thus [Ca(2+)](m) signals evoked by addition of large Ca(2+) pulses or, unexpectedly, by IP(3)-mediated cytosolic [Ca(2+)] spikes trigger mitochondrial permeability transition and, in turn, cytochrome c release. IP(3)-induced opening of PTP is dependent on a privileged Ca(2+) signal transmission from IP(3) receptors to mitochondria. After the decay of Ca(2+) spikes, resealing of PTP occurs allowing mitochondrial metabolism to recover, whereas activation of caspases is triggered by cytochrome c released to the cytosol. This organization provides an efficient mechanism to establish caspase activation while mitochondrial metabolism is maintained to meet ATP requirements of apoptotic cell death.  相似文献   

8.
We sought to determine the mechanisms for hyperactivity and abnormal platelet Ca(2+) homeostasis in diabetes. The glycosylated Hb (HbA(1c)) level was used as an index of glycemic control. Human platelets were loaded with Ca- green-fura red, and cytosolic Ca(2+) ([Ca(2+)](i)) and aggregation were simultaneously measured. In the first series of experiments, the platelets from diabetic and normal subjects were compared for the ability to release Ca(2+) or to promote Ca(2+) influx. A potent and relatively specific inhibitor of Na(+)/Ca(2+) exchange, 5-(4-chlorobenzyl)-2',4'-dimethylbenzamil (CB-DMB), increased the second phase of thrombin-induced Ca(2+) response, suggesting that the Na(+)/Ca(2+) exchanger works in the forward mode to mediate Ca(2+) efflux. In contrast, in the platelets from diabetics, CB-DMB decreased the Ca(2+) response, indicating that the Na(+)/Ca(2+) exchanger works in the reverse mode to mediate Ca(2+) influx. In the second series of experiments we evaluated the direct effect of hyperglycemia on platelets in vitro. We found that thrombin- and collagen-induced increases in [Ca(2+)](i) and aggregation were not acutely affected by high glucose concentrations of 45 mM. However, when the platelet-rich plasma was incubated with a high glucose concentration at 37 degrees C for 24 h, the second phase after thrombin activation was inhibited by CB-DMB. In addition, collagen-stimulated [Ca(2+)](i) response and aggregation were also increased. Thus in diabetes the direction and activity of the Na(+)/Ca(2+) exchanger is changed, which may be one of the mechanisms for the increased platelet [Ca(2+)](i) and hyperactivity. Prolonged hyperglycemia in vitro can induce similar changes, suggesting hyperglycemia per se may be the factor responsible for the platelet hyperactivity in diabetes.  相似文献   

9.
Protein kinase C (PKC) isoforms regulate many platelet responses in a still incompletely understood manner. Here we investigated the roles of PKC in the platelet reactions implicated in thrombus formation as follows: secretion aggregate formation and coagulation-stimulating activity, using inhibitors with proven activity in plasma. In human and mouse platelets, PKC regulated aggregation by mediating secretion and contributing to alphaIIbbeta3 activation. Strikingly, PKC suppressed Ca(2+) signal generation and Ca(2+)-dependent exposure of procoagulant phosphatidylserine. Furthermore, under coagulant conditions, PKC suppressed the thrombin-generating capacity of platelets. In flowing human and mouse blood, PKC contributed to platelet adhesion and controlled secretion-dependent thrombus formation, whereas it down-regulated Ca(2+) signaling and procoagulant activity. In murine platelets lacking G(q)alpha, where secretion reactions were reduced in comparison with wild type mice, PKC still positively regulated platelet aggregation and down-regulated procoagulant activity. We conclude that platelet PKC isoforms have a dual controlling role in thrombus formation as follows: (i) by mediating secretion and integrin activation required for platelet aggregation under flow, and (ii) by suppressing Ca(2+)-dependent phosphatidylserine exposure, and consequently thrombin generation and coagulation. This platelet signaling protein is the first one identified to balance the pro-aggregatory and procoagulant functions of thrombi.  相似文献   

10.
MYR-1, a mammalian class I myosin, consisting of a heavy chain and 4-6 associated calmodulins, is represented by the 130-kDa myosin I (or MI(130)) from rat liver. MI(130) translocates actin filaments in vitro in a Ca(2+)-regulated manner. A decrease in motility observed at higher Ca(2+) concentrations has been attributed to calmodulin dissociation. To investigate mammalian myosin I regulation, we have coexpressed in baculovirus calmodulin and an epitope-tagged 85-kDa fragment representing the amino-terminal catalytic "motor" domain and the first calmodulin-binding IQ domain of rat myr-1; we refer to this truncated molecule here as MI(1IQ). Association of calmodulin to MI(1IQ) is Ca(2+)-insensitive. MI(1IQ) translocates actin filaments in vitro at a rate resembling MI(130), but unlike MI(130), does not exhibit sensitivity to 0.1-100 micrometer Ca(2+). In addition to demonstrating successful expression of a functional truncated mammalian myosin I in vitro, these results indicate that: 1) Ca(2+)-induced calmodulin dissociation from MI(130) in the presence of actin is not from the first IQ domain, 2) velocity is not affected by the length of the IQ region, and 3) the Ca(2+) sensitivity of actin translocation exhibited by MI(130) involves 1 or more of the other 5 IQ domains and/or the carboxyl tail.  相似文献   

11.
We have previously shown that Ca(2+) directly activates ATP-sensitive microtubule binding by a Chlamydomonas outer arm dynein subparticle containing the beta and gamma heavy chains (HCs). The gamma HC-associated LC4 light chain is a member of the calmodulin family and binds 1-2 Ca(2+) with K(Ca) = 3 x 10(-5) M in vitro, suggesting it may act as a Ca(2+) sensor for outer arm dynein. Here we investigate interactions between the LC4 light chain and gamma HC. Two IQ consensus motifs for binding calmodulin-like proteins are located within the stem domain of the gamma heavy chain. In vitro experiments indicate that LC4 undergoes a Ca(2+)-dependent interaction with the IQ motif domain while remaining tethered to the HC. LC4 also moves into close proximity of the intermediate chain IC1 in the presence of Ca(2+). The sedimentation profile of the gamma HC subunit changed subtly upon Ca(2+) addition, suggesting that the entire complex had become more compact, and electron microscopy of the isolated gamma subunit revealed a distinct alteration in conformation of the N-terminal stem in response to Ca(2+) addition. We propose that Ca(2+)-dependent conformational change of LC4 has a direct effect on the stem domain of the gamma HC, which eventually leads to alterations in mechanochemical interactions between microtubules and the motor domain(s) of the outer dynein arm.  相似文献   

12.
We have isolated and characterized EMS16, a potent and selective inhibitor of the alpha2beta1 integrin, from Echis multisquamatus venom. It belongs to the family of C-lectin type of proteins (CLPs), and its amino acid sequence is homologous with other members of this protein family occurring in snake venoms. EMS16 (M(r) approximately 33K) is a heterodimer composed of two distinct subunits linked by S-S bonds. K562 cells transfected with alpha2 integrin selectively adhere to immobilized EMS16, but not to two other snake venom-derived CLPs, echicetin and alboaggregin B. EMS16 inhibits adhesion of alpha2beta1-expressing cells to immobilized collagen I at picomolar concentrations, and the platelet/collagen I interaction in solution at nanomolar concentrations. EMS16 inhibits binding of isolated, recombinant I domain of alpha2 integrin to collagen in an ELISA assay, but not the interaction of isolated I domain of alpha1 integrin with collagen IV. Studies with monoclonal antibodies suggested that EMS16 binds to the alpha2 subunit of the integrin. EMS16 inhibits collagen-induced platelet aggregation, but has no effect on aggregation induced by other agonists such as ADP, thromboxane analogue (U46619), TRAP, or convulxin. EMS16 also inhibits collagen-induced, but not convulxin-induced, platelet cytosolic Ca(2+) mobilization. In addition, EMS16 inhibits HUVEC migration in collagen I gel. In conclusion, we report a new, potent viper venom-derived inhibitor of alpha2beta1 integrin, which does not belong to the disintegrin family.  相似文献   

13.
Angiopoietin-1 can promote migration, sprouting, and survival of endothelial cells through activation of different signaling pathways triggered by the Tie2 tyrosine kinase receptor. ShcA adapter proteins are targets of activated tyrosine kinases and are implicated in the transmission of activation signals to the Ras/mitogen-activated protein kinase pathway. Here we report the identification of an interaction between the adapter protein ShcA and the cytoplasmic domain of Tie2 through in vitro co-immunoprecipitation analysis. Stimulation of endogenous Tie2 in endothelial cells with its ligand angiopoietin-1 increased its association with ShcA and phosphorylation of the adapter protein. The interaction requires the SH2 domain of ShcA and the tyrosine phosphorylation of Tie2 as shown by pull-down experiments. Furthermore, Tyr-1101 of Tie2 was identified as the primary binding site for the SH2 domain of ShcA. Overexpression of a dominant-negative form of ShcA affects angiopoietin-1-induced chemotaxis and sprouting, although it has no effect on survival of endothelial cells. Furthermore, this mutant partially reduces the tyrosine phosphorylation of the regulatory p85 subunit of phosphatidylinositol 3-kinase. Together, our results identified a novel interaction between Tie2 with the adapter molecule ShcA and suggested that this interaction may play a role in the regulation of migration and three-dimensional organization of endothelial cells induced by angiopoietin-1.  相似文献   

14.
In mammals, trefoil factor family (TFF) proteins are involved in mucosal maintenance and repair, and they are also implicated in tumor suppression and cancer progression. A novel two domain TFF protein from frog Bombina maxima skin secretions (Bm-TFF2) has been purified and cloned. It activated human platelets in a dose-dependent manner and activation of integrin alpha(IIb)beta(3) was involved. Aspirin and apyrase did not largely reduce platelet response to Bm-TFF2 (a 30% inhibition), indicating that the aggregation is not substantially dependent on ADP and thromboxane A2 autocrine feedback. Elimination of external Ca(2+) with EGTA did not influence the platelet aggregation induced by Bm-TFF2, meanwhile a strong calcium signal (cytoplasmic Ca(2+) release) was detected, suggesting that activation of phospholipase C (PLC) is involved. Subsequent immunoblotting revealed that, unlike in platelets activated by stejnulxin (a glycoprotein VI agonist), PLCgamma2 was not phosphorylated in platelets activated by Bm-TFF2. FITC-labeled Bm-TFF2 bound to platelet membranes. Bm-TFF2 is the first TFF protein reported to possess human platelet activation activity.  相似文献   

15.
The use of the lipid lowering agent niacin is hampered by a frequent flush response which is largely mediated by prostaglandin (PG) D(2). Therefore, concomitant administration of the D-type prostanoid (DP) receptor antagonist laropiprant has been proposed to be a useful approach in preventing niacin-induced flush. However, antagonizing PGD(2), which is a potent inhibitor of platelet aggregation, might pose the risk of atherothrombotic events in cardiovascular disease. In fact, we found that in vitro treatment of platelets with laropiprant prevented the inhibitory effects of PGD(2) on platelet function, i.e. platelet aggregation, Ca(2+) flux, P-selectin expression, activation of glycoprotein IIb/IIIa and thrombus formation. In contrast, laropiprant did not prevent the inhibitory effects of acetylsalicylic acid or niacin on thrombus formation. At higher concentrations, laropiprant by itself attenuated platelet activation induced by thromboxane (TP) and E-type prostanoid (EP)-3 receptor stimulation, as demonstrated in assays of platelet aggregation, Ca(2+) flux, P-selectin expression, and activation of glycoprotein IIb/IIIa. Inhibition of platelet function exerted by EP4 or I-type prostanoid (IP) receptors was not affected by laropiprant. These in vitro data suggest that niacin/laropiprant for the treatment of dyslipidemias might have a beneficial profile with respect to platelet function and thrombotic events in vascular disease.  相似文献   

16.
Ca(v)beta subunits support voltage gating of Ca(v)1.2 calcium channels and play important role in excitation-contraction coupling. The common central membrane-associated guanylate kinase (MAGUK) region of Ca(v)beta binds to the alpha-interaction domain (AID) and the IQ motif of the pore-forming alpha(1C) subunit, but these two interactions do not explain why the cardiac Ca(v)beta(2) subunit splice variants differentially modulate inactivation of Ca(2+) currents (I(Ca)). Previously we described beta(2Deltag), a functionally active splice variant of human Ca(v)beta(2) lacking MAGUK. By deletion analysis of beta(2Deltag), we have now identified a 41-amino acid C-terminal essential determinant (beta(2)CED) that stimulates I(Ca) in the absence of Ca(v)beta subunits and conveys a +20-mV shift in the peak of the I(Ca)-voltage relationship. The beta(2)CED is targeted by alpha(1C) to the plasma membrane, forms a complex with alpha(1C) but does not bind to AID. Electrophysiology and binding studies point to the calmodulin-interacting LA/IQ region in the alpha(1C) subunit C terminus as a functionally relevant beta(2)CED binding site. The beta(2)CED interacts with LA/IQ in a Ca(2+)- and calmodulin-independent manner and need LA, but not IQ, to activate the channel. Deletion/mutation analyses indicated that each of the three Ca(v)beta(2)/alpha(1C) interactions is sufficient to support I(Ca). However, beta(2)CED does not support Ca(2+)-dependent inactivation, suggesting that interactions of MAGUK with AID and IQ are crucial for Ca(2+)-induced inactivation. The beta(2)CED is conserved only in Ca(v)beta(2) subunits. Thus, beta(2)CED constitutes a previously unknown integrative part of the multifactorial mechanism of Ca(v)beta(2)-subunit differential modulation of the Ca(v)1.2 calcium channel that in beta(2Deltag) occurs without MAGUK.  相似文献   

17.
The ubiquitous calpain isoforms (mu- and m-calpain) are Ca(2+)-dependent cysteine proteases that require surprisingly high Ca(2+) concentrations for activation in vitro ( approximately 50 and approximately 300 microm, respectively). The molecular basis of such a high requirement for Ca(2+) in vitro is not known. In this study, we substantially reduced the concentration of Ca(2+) required for the activation of m-calpain in vitro through the specific disruption of interdomain interactions by structure-guided site-directed mutagenesis. Several interdomain electrostatic interactions involving lysine residues in domain II and acidic residues in the C(2)-like domain III were disrupted, and the effects of these mutations on activity and Ca(2+) sensitivity were analyzed. The mutation to serine of Glu-504, a residue that is conserved in both mu- and m-calpain and interacts most notably with Lys-234, reduced the in vitro Ca(2+) requirement for activity by almost 50%. The mutation of Lys-234 to serine or glutamic acid resulted in a similar reduction. These are the first reported cases in which point mutations have been able to reduce the Ca(2+) requirement of calpain. The structures of the mutants in the absence of Ca(2+) were shown by x-ray crystallography to be unchanged from the wild type, demonstrating that the increase in Ca(2+) sensitivity was not attributable to conformational change prior to activation. The conservation of sequence between mu-calpain, m-calpain, and calpain 3 in this region suggests that the results can be extended to all of these isoforms. Whereas the primary Ca(2+) binding is assumed to occur at EF-hands in domains IV and VI, these results show that domain II-domain III salt bridges are important in the process of the Ca(2+)-induced activation of calpain and that they influence the overall Ca(2+) requirement of the enzyme.  相似文献   

18.
Sphingosine 1-phosphate (S1P) is accumulated in platelets and released on stimulation by thrombin or Ca(2+). Thrombin-stimulated S1P release was inhibited by staurosporin, whereas Ca(2+)-stimulated release was not. When the platelet plasma membrane was permeabilized with streptolysin O (SLO), S1P leaked out with cytosol markers, whereas granular markers remained in the platelets. The SLO-induced S1P leakage required BSA, probably for solubilization of S1P in the medium. These results indicate that S1P is localized in the inner leaflet of the plasma membrane and that its release is a carrier-mediated process. We also used alpha-toxin (ATX), which makes smaller pores in the plasma membrane than SLO and depletes cytosolic ATP without BSA-dependent S1P leakage. The addition of ATP drove S1P release from ATX platelets. The ATP-driven S1P release from ATX platelets was greatly enhanced by thrombin. An ATP binding cassette transporter inhibitor, glyburide, prevents ATP- and thrombin-induced S1P release from platelets. Ca(2+) also stimulated S1P release from ATX platelets without ATP, whereas the Ca(2+)-induced release was not inhibited by glyburide. Our results indicate that two independent S1P release systems might exist in the platelet plasma membrane, an ATP-dependent system stimulated by thrombin and an ATP-independent system stimulated by Ca(2+).  相似文献   

19.
Alpha-synuclein (alpha-syn) is a 140-residue protein that aggregates in intraneuronal inclusions called Lewy bodies in Parkinson's disease (PD). It is composed of an N-terminal domain with a propensity to bind lipids and a C-terminal domain rich in acidic residues (the acidic tail). The objective of this study was to examine the effect of Ca(2+) on the acidic tail conformation in lipid-bound alpha-syn. We exploit the extreme sensitivity of the band III fluorescence emission peak of the pyrene fluorophore to the polarity of its microenvironment to monitor subtle conformational response of the alpha-syn acidic tail to Ca(2+). Using recombinant human alpha-syn bearing a pyrene to probe either the N-terminal domain or the acidic tail, we noted that lipid binding resulted in an increase in band III emission intensity in the pyrene probe tagging the N-terminal domain but not that in the acidic tail. This suggests that the protein is anchored to the lipid surface via the N-terminal domain. However, addition of Ca(2+) caused an increase in band III emission intensity in the pyrene tagging the acidic tail, with a corresponding increased susceptibility to quenching by quenchers located in the lipid milieu, indicative of lipid interaction of this domain. Taken together with the increased beta-sheet content of membrane-associated alpha-syn in the presence of Ca(2+), we propose a model wherein initial lipid interaction occurs via the N-terminal domain, followed by a Ca(2+)-triggered membrane association of the acidic tail as a potential mechanism leading to alpha-syn aggregation. These observations have direct implications in the role of age-related oxidative stress and the attendant cellular Ca(2+) dysregulation as critical factors in alpha-syn aggregation in PD.  相似文献   

20.
Rhodnius prolixus aggregation inhibitor 1 (RPAI-1), a 19-kDa protein isolated from the salivary gland of R. prolixus, was purified by strong cation exchange and reverse-phase high performance liquid chromatographies. Based on 49 amino-terminal amino acid sequences of RPAI-1, primers were produced to generate probes to screen an R. prolixus salivary gland cDNA library. A phage containing the full-length clone of RPAI-1 codes for a mature protein of 155 amino acids. RPAI-1 shows sequence homology to triabin and pallidipin, lipocalins from Triatoma pallidipennis. The cDNA sequence was cloned in Pet17B Escherichia coli expression vector, producing an active peptide. RPAI-1 inhibits human platelet-rich plasma aggregation triggered by low concentrations of ADP, collagen, arachidonic acid, thromboxane A(2) mimetics (U46619), and very low doses of thrombin and convulxin. Here we show that ADP is the target of RPAI-1 since (i) RPAI-1 inhibits ADP-dependent large aggregation formation and secretion triggered by U46619, without affecting Ca(2+) increase and shape change; (ii) ADP restored the inhibition of U46619-induced platelet aggregation by RPAI-1, (iii) PGE(1)-induced increase of cAMP (which is antagonized by U46619 in an ADP-dependent manner) was restored by RPAI-1, (iv) RPAI-1 inhibits low concentrations of ADP-mediated responses of indomethacin-treated platelets, and (v) RPAI-1 binds to ADP, as assessed by large zone chromatography. RPAI-1 affects neither integrin alpha(2)beta(1)- nor glycoprotein VI-mediated platelet responses. We conclude that RPAI-1 is the first lipocalin described that inhibits platelet aggregation by a novel mechanism, binding to ADP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号