首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 541 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Although the vast majority of genomic DNA is tightly compacted during mitosis, the promoter regions of a number of genes remain in a less compacted state throughout this stage of the cell cycle. The decreased compaction of these promoter regions, which is referred to as gene bookmarking, is thought to be important for the ability of cells to express these genes during the following interphase. Previously, we reported a role for the DNA-binding protein heat shock factor (HSF2) in bookmarking the stress-inducible 70,000-Da heat shock protein (hsp70) gene. In this report, we have extended those studies and found that during mitosis, HSF2 is bound to the HSE promoter elements of other heat shock genes, including hsp90 and hsp27, as well as the proto-oncogene c-fos. The presence of HSF2 is important for expression of these genes because blocking HSF2 levels by RNA interference techniques leads to decreased levels of these proteins. These results suggest that HSF2 is important for constitutive as well as stress-inducible expression of HSE-containing genes.  相似文献   

11.
12.
13.
14.
15.
Activation of heat shock factor (HSF) 1-DNA binding and inducible heat shock protein (hsp) 70 (also called hsp72) expression enables cells to resist various forms of stress and survive. Fas, a membrane-bound protein, is a central proapoptotic factor; its activation leads to a cascade of events, resulting in programmed cell death. These two mechanisms with contradictory functions, promoting either cell survival or death, were examined for their potential to inhibit each other's activation. Induction of FAS-mediated signaling was followed by a rapid decrease in HSF1-DNA binding and inducible hsp70 expression. Inhibition of HSF1-DNA binding was demonstrated to be based on absent hyperphosphorylation of HSF1 during FAS signaling. These effects of FAS activation on the HSF1/hsp70 stress response were blocked by ICE (caspase 1) inhibitors, suggesting an ICE-mediated process. Furthermore, inhibition of HSF1/hsp70 was accompanied by an increase in apoptosis rates from 20% to 50% in response to heat stress. When analyzing the effects of HSF1/hsp70 activation on Fas-mediated apoptosis, protection from apoptosis was seen in cells with induced hsp70 protein levels, but not in cells that were just induced for HSF1-DNA binding. Thus, we conclude that inhibition of HSF1/hsp70 stress response during Fas-mediated apoptosis and vice versa may facilitate a cell to pass a previously chosen pathway, stress resistance or apoptosis, without the influence of inhibitory signals.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号