首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
为探讨香樟(Cinnamomum camphora)叶肉含晶细胞超微结构的季节变化,阐明香樟叶肉中草酸钙晶体在春夏秋冬的变化规律。该研究以多年生香樟(C. camphora)叶片为材料,分别于春夏秋冬四个季节露地取样,制作超薄切片,用透射电子显微镜(TEM)观察叶肉含晶细胞超微结构的变化。结果表明:春季时香樟叶肉中只有少数细胞有草酸钙晶体,数量较少,晶体结构多为柱状晶、方晶; 夏季时香樟叶肉细胞中随机分布于液泡的草酸钙晶体明显比春季的数量多、体积大、形态丰富,晶体多为柱状晶、方晶、针晶、簇晶; 秋季时香樟叶肉细胞草酸钙晶体和夏季的类似,数量较多,形态多样,以方晶和柱状晶针晶为主,伴有晶簇; 冬季时香樟叶肉含晶细胞晶体形态为柱状晶、方晶、针晶,数量比夏季和秋季的数量略有减少。该研究结果表明在一年四季中香樟叶肉细胞液泡中均有草酸钙晶体结构存在。  相似文献   

2.
Rolf Borchert 《Planta》1990,182(3):339-347
Changes in the spacing patterns of Ca-oxalate crystals during enlargement ofCarya ovata Mill. leaves were quantified by computerized image-analysis. Single Ca-oxalate crystals form in the vacuoles of young mesophyll cells transformed into crystal cells Crystals are very small in newly induced crystal cells and increase in size throughout leaf development. Crystal patterns thus reflect both induction and relative age of crystal cells. Shortly after the emergence of young leaves from the bud, very small crystals are formed in the mesophyll at high density. As leaves expand, these crystals grow larger and become separated by increasing distances. New small crystals appear in the gaps between the older, larger crystals. Later crystal patterns consist of widely spaced, larger crystals only. Finally, clusters of small crystals are formed again in the gaps between large crystals. No crystals were observed in young leaves expanding in a moist chamber, but large numbers of crystal cells were induced experimentally in sections of immature leaves floating on 4 mM Ca-acetate. The observations support the following mechanism of crystal-pattern formation: Ca2+ carried into leaves with the transpiration stream acts as the developmental signal inducing transdifferentiation of a few mesophyll cells into crystal cells when apoplastic [Ca2+] rises. Crystal cells precipitate absorbed Ca2+ as oxalate and, acting as Ca2+ sinks, inhibit crystal-cell induction in their vicinity by depleting apoplastic Ca2+. This prevents close spacing of crystal cells. New crystal cells form in the gaps between the depletion zones of older crystal cells when these move apart during leaf expansion. Later changes in crystal patterns result from increasing sink strength of crystal cells, lowered inducibility of mesophyll cells, and increased Ca2+ influx into leaves during intensive transpiration. Throughout leaf development, spacing of crystal cells permits rapid secretion of apoplastic Ca2+ as Ca-oxalate. Dedicated to Professor Erwin Bünning, University of Tübingen, Germany, who pioneered the analysis of spacing patterns  相似文献   

3.
Summary The development and distribution of calcium oxalate crystals, stomates and hairs were studied in the first trifoliolate leaf ofRhynchosia caribaea (Leguminosae: Papilionoideae, Phaseoleae). Using light and transmission electron microscopy, the crystals were shown to occur in both bundle sheath and mesophyll cells. Crystal distribution and shapes are characteristic forRhynchosia. Crystals develop late in leaf development in contrast to the stomates and hairs. As these latter two structures decrease in number per unit area with leaf age, crystal number increases.  相似文献   

4.
R. S. Pearce  I. McDonald 《Planta》1977,134(2):159-168
Tillers of Festuca arundinacea Schreb. were subjected to-8°C in a bath of methylated spirits for three-quarters of an hour. They were thawed at room temperature and some material taken from the shoot apical meristem and leaf blade for electron microscopy. Similar material was taken from control plants for electron microscopy. Nine tillers subjected to-8°C and thawed subsequently failed to regrow. Nine control tillers regrew. All the treated meristem cells and about half the treated leaf mesophyll cells were extensively altered. Their nuclei were contracted, organelles were swollen or partly disrupted, plasmalemma and nuclear membranes were broken or absent and vacuoles were sometimes disrupted. Strongly osmiophilic material accumulated in the vicinity of membranes. About half the leaf mesophyll cells differed from the control mesophyll cells only in having more spherosomes and narrower thylakoids. Parallels with other ultrastructural studies of stress damage and the indications the results give of possible primary damaging events are discussed.Abbreviations ER endoplasmic reticulum - G golgi body - M mitochondrion - Mb microbody - N nucleus - NM nuclear membrane - No nucleolus - P plasmatemma - Pg plastoglobuli - Pp proplastid - Pr polysomes - S spherosome - SOM strongly osmiophilic material - T tonoplast - Th thylakoids - V vacuole  相似文献   

5.
Summary Crystal idioblasts are cells which are specialized for accumulation of Ca2+ as a physiologically inactive, crystalline salt of oxalic acid. Using microautoradiographic, immunological, and ultrastructural techniques, the process of raphide crystal growth, and how crystal growth is coordinated with cell growth, was studied in idioblasts ofPistia stratiotes. Incorporation of45Ca2+ directly demonstrated that, relative to surrounding mesophyll cells, crystal idioblasts act as high-capacity Ca2+ sinks, accumulating large amounts of Ca2+ within the vacuole as crystals. The pattern of addition of Ca2+ during crystal growth indicates a highly regulated process with bidirectional crystal growth. In very young idioblasts,45Ca2+ is incorporated along the entire length of the needle-shaped raphide crystals, but as they mature incorporation only occurs at crystal tips in a bidirectional mode. At full maturity, the idioblast stops Ca2+ uptake, although the cells are still alive, demonstrating an ability to strictly regulate Ca transport processes at the plasma membrane. In situ hybridization for ribosomal RNA shows young idioblasts are extremely active cells, are more active than older idioblasts, and have higher general activity than surrounding mesophyll cells. Polarizing and scanning electron microscopy demonstrate that the crystal morphology changes as crystals develop and includes morphological polarity and an apparent nucleation point from which crystals grow bidirectionally. These results indicate a carefully regulated process of biomineralization in the vacuole. Finally, we show that the cytoskeleton is important in controlling the idioblast cell shape, but the regulation of crystal growth and morphology is under a different control mechanism.Abbreviation SEM scanning electron microscopy  相似文献   

6.
The structure of cells with calcium oxalate crystals and their nelghbouring cells has been studied by light and transmission electron microscopy at different stages of bean leaf development. Plants were grown with varying calcium supply to identify a possible influence of calcium nutrition on cell structure. Crystals are formed inside the vacuole of already highly vacuolated cells of bundle sheath extensions. The membrane around the crystal vacuole is continuous with the plasmalemma. The crystal vacuole contains membraneous structures. In the fully expanded leaf the crystal becomes ensheathed by wall material. Chloroplasts of bundle sheath extension cells, with or without crystals, are smaller, with fewer membranes, and with much narrower stroma regions than those of the palisade parenchyma. There is a stage in the young leaf when only the bundle sheath extension cells without crystals have starch grains in their chloroplasts. As their number is lower in plants grown with high calcium supply this means that, in this case, less cells are competent for photosynthesis.  相似文献   

7.
We investigated the leaf tissue and cellular morphology of tea (Camellia sinensis). Osmiophilic material, presumably catechins, was present in mesophyll cells, but not in epidermal cells. Electron microscopy showed that catechins were localized to restricted regions within the central vacuoles. In addition, two kinds of small vacuoles of 0.5-3 microm were present in mesophyll cells. One vacuole had catechins within its whole lumen, while the other had an electron-lucent lumen. We found fusion profiles between a large central vacuole and these small vacuoles. We propose that after catechins are synthesized, they are incorporated into small vacuoles and transported to the large central vacuoles.  相似文献   

8.
Summary Lucifer yellow CH (LY) uptake into intact leaves ofCommelina communis has been studied with conventional fluorescence microscopy as well as confocal laser scanning microscopy. LY, a highly fluorescent tracer for apoplastic transport in plants and fluid phase endocytosis in animal cells, accumulates in the vacuole of leaf cells. However, considerable differences in the ability to take up LY were observed among the various cell types. Mesophyll cells take up large amounts of the dye whereas epidermal cells, including guard and subsidiary cells, showed no fluorescence in their vacuoles. An exception to this are trichome cells which show considerable accumulation of LY. When introduced into the cytoplasm of mesophyll protoplasts ofC. communis by means of a patch-clamp pipette, LY does not enter the vacuole. This supports the contention that exogenous LY can only gain access to the vacuole via endocytosis. Differences in the capacity for LY uptake may therefore reflect differences in endocytotic activity.Abbreviations CLSM Confocal laser scanning microscopy - DIC differential interference contrast - LY Lucifer yellow CH - PM plasma membrane  相似文献   

9.
Rolf Borchert 《Planta》1985,165(3):301-310
For experimental induction of crystal cells (=crystal idioblasts) containing calcium-oxalate crystals, the lower epidermis was peeled from seedling leaflets of Gleditsia triacanthos L., exposing the crystal-free mesophyll and minor veins to the experimental solutions on which leaflets were floated for up to 10 d under continous light. On 0.3–2.0 mM Ca-acetate, increasing numbers of crystals, appearing 96 h after peeling, were induced. The pattern of crystal distribution changed with Ca2+-concentration ([Ca2+]): at low [Ca2+], crystals formed only in the non-green bundlesheath cells surrounding the veins, believed to have a relatively low Ca2+-extrusion capacity; at higher [Ca2+], crystals developed in up to 90% of the mesophyll cells, and at supraoptimal [Ca2+], large extracellular crystals formed on the tissue surface. By sequential treatments with solutions of different [Ca2+], the following three phases were identified in the induction of crystal cells: (1) during the initial 24-h period (adaptive aging), Ca2+ is not required and crystal induction is not possible; (2) during the following 48 h (induction period), exposure to 1–2 mM Ca-acetate induces the differentiation of mesophyll cells into crystal cells; (3) crystal growth begins 72 h after the start of induction. In intact leaflets of Albizia julibrissin Durazz., calcium-oxalate crystals are found exclusively in the bundle-sheath cells of the veins, but crystals were induced in the mesophyll of peeled leaflets floating on 1 mM Ca-acetate. Exposure to inductive [Ca2+] will thus trigger the differentiation of mature leaf cells into crystal cells; the spatial distribution of crystals is determined by the external [Ca2+] and by the structural and functional properties of the cells in the tissue.  相似文献   

10.
Georg Kaiser  Ulrich Heber 《Planta》1984,161(6):562-568
Sucrose transport has been investigated in vacuoles isolated from barley mesophyll protoplasts. Rates of sucrose transfer across the tonoplast were even higher in vitro than in vivo indicating that the sucrose transport system had not suffered damage during isolation of the vacuoles. Sucrose transport is carrier-mediated as shown by substrate saturation of transport and sensitivity to a metabolic inhibitor and to competitive substrates. A number of sugars, in particular maltose and raffinose, decreased uptake of sucrose. Sorbitol was slowly taken up but had no effect on sucrose transport. The SH-reagent p-chloromercuribenzene sulfonate inhibited sucrose uptake completely. The apparent Km of the carrier for sucrose uptake was 21 mM. Transport was neither influenced by ATP and pyrophosphate, with or without Mg2+ present, nor by protonophores and valinomycin (with K+ present). Apparently uptake was not energy dependent. Efflux experiments with preloaded vacuoles indicated that sucrose unloading from the isolated vavuoles is mediated by the same carrier which catalyses uptake. The vacuole of mesophyll cells appears to represent an intermediary storage compartment. Uptake of photosynthetic products into the vacuole during the light apparently minimizes osmotic swelling of the small cytosolic compartment of vacuolated leaf cells when photosynthetic productivity exceeds the capacity of the phloem for translocation of sugars.Abbreviations Hepes 4-(2-hydroxyethyl)-1-piperazincethane-sulfonic acid - pCMBS p-chloromercuribenzene sulfonate Dedicated to Professor Dr. W. Simonis on the occasion of his 75th birthday  相似文献   

11.
Summary The ultrastructure of zoospores of several zoosporic fungi was examined using a modified cryofixation technique. An atomizer was used to spray a zoospore suspension into the cold propane reservoir of a conventional plunge freeze-substitution apparatus. Spray-freeze fixation and freeze-substitution of zoospores porvided better fixation of vacuolar structures, membranes and the extracellular coat than that obtained with chemical fixation. The overall shape of cryofixed spores was closer to that seen in living zoospores. Two types of vacuoles were seen in cryofixed zoospores ofMonoblepharella andChytridium. One type of vacuole contained electron-opaque material within the lumen while the other type had no visible internal material in the lumen and appeared to be part of the water expulsion vacuole complex. Coated pits and coated vesicles were observed associated with both the water expulsion vacuoles and the plasma membrane inMonoblepharella andPhytophthora, suggesting that endocytosis of the plasma membrane and expulsion vacuoles is part of membrane recycling during osmoregulatory events. An extracellular coat was seen on the outer surface of cryofixed zoospores ofMonoblepharella sp.,Chytridium confervae andPhytophthora palmivora without the use of carbohydrate-specific stains. The spray-freeze method gave good and reproducible fixation of the wall-less spores in quantities greater than those obtained in previously described zoospore cryofixation studies. The technique is potentially useful for cell suspensions in that freeze damage from excess water is limited.Abbreviations ddH2O deionized distilled water - PME Pipes/MgCl2/EGTA buffer - WEV water expulsion vacuole  相似文献   

12.
ABSTRACT. Membrane dynamics of the contractile vacuole complex of Paramecium were investigated using conventional electron microscopy of cells so that the vacuoles were serial-sectioned longitudinally and transversely. During systole, vacuolar membrane collapses first into flattened cisternae which undergo further modification into a mass of interconnected small membrane tubules. These tubules retain their connections with the radiating microtubular ribbons; consequently they are found only in the poleward hemisphere. Permanent connections between ampullae and the collapsed vacuole membrane could not be verified nor was a sphincter-like mechanism for closing such a junction observed. Membranes of the ampullae and the collecting canals also collapse to varying extents into arrays of tubules that remain bound to microtubular ribbons during diastole. Thus vacuole, ampullae, and collecting canal membranes all assume tubular forms when internal volume is at a minimum. Having failed to observe a microfilamentous encasement of the vacuole, we suggest that an alternative mechanism for the “contractile” function should be sought. One such is based on fluid volume increase and fluid flow within transiently interconnected tubular membrane systems that cycle between a tubular and a planar membrane form as internal volume is periodically increased and reduced. The driving force for this mechanism might best be sought in the molecular structure of the membranes of the contractile vacuole complex.  相似文献   

13.
Park J  Knoblauch M  Okita TW  Edwards GE 《Planta》2009,229(2):369-382
Bienertia sinuspersici Akhani has an unusual mechanism of C4 photosynthesis which occurs within individual chlorenchyma cells. To perform C4, the mature cells have two cytoplasmic compartments consisting of a central (CCC) and a peripheral (PCC) domain containing dimorphic chloroplasts which are interconnected by cytoplasmic channels. Based on leaf development studies, young chlorenchyma cells have not developed the two cytoplasmic compartments and dimorphic chloroplasts. Fluorescent dyes which are targeted to membranes or to specific organelles were used to follow changes in cell structure and organelle distribution during formation of C4-type chlorenchyma. Chlorenchyma cell development was divided into four stages: 1—the nucleus and chloroplasts occupy much of the cytoplasmic space and only small vacuoles are formed; 2—development of larger vacuoles, formation of a pre-CCC with some scattered chloroplasts; 3—the vacuole expands, cells have directional growth; 4—mature stage, cells have become elongated, with a distinctive CCC and PCC joined by interconnecting cytoplasmic channels. By staining vacuoles with a fluorescent dye and constructing 3D images of chloroplasts, and by microinjecting a fluorescence dye into the vacuole of living cells, it was demonstrated that the mature cell has only one vacuole, which is traversed by cytoplasmic channels connecting the CCC with the PCC. Immunofluorescent studies on isolated chlorenchyma cells treated with cytoskeleton disrupting drugs suspended in different levels of osmoticum showed that both microtubules and actin filaments are important in maintaining the cytoplasmic domains. With prolonged exposure of plants to dim light, the cytoskeleton undergoes changes and there is a dramatic shift of the CCC from the center toward the distal end of the cell.  相似文献   

14.
Calcium (Ca) oxalate crystals occur in many plant species and in most organs and tissues. They generally form within cells although extracellular crystals have been reported. The crystal cells or idioblasts display ultrastructural modifications which are related to crystal precipitation. Crystal formation is usually associated with membranes, chambers, or inclusions found within the cell vacuole(s). Tubules, modified plastids and enlarged nuclei also have been reported in crystal idioblasts. The Ca oxalate crystals consist of either the monohydrate whewellite form, or the dihydrate weddellite form. A number of techniques exist for the identification of calcium oxalate. X-ray diffraction, Raman microprobe analysis and infrared spectroscopy are the most accurate. Many plant crystals assumed to be Ca oxalate have never been positively identified as such. In some instances, crystals have been classified as whewellite or weddellite solely on the basis of their shape. Certain evidence indicates that crystal shape may be independent of hydration form of Ca oxalate and that the vacuole crystal chamber membranes may act to mold crystal shape; however, the actual mechanism controlling shape is unknown. Oxalic acid is formed via several major pathways. In plants, glycolate can be converted to oxalic acid. The oxidation occurs in two steps with glyoxylic acid as an intermediate and glycolic acid oxidase as the enzyme. Glyoxylic acid may be derived from enzymatic cleavage of isocitric acid. Oxaloacetate also can be split to form oxalate and acetate. Another significant precursor of oxalate in plants is L-ascorbic acid. The intermediate steps in the conversion of L-ascorbic acid to oxalate are not well defined. Oxalic acid formation in animals occurs by similar pathways and Ca oxalate crystals may be produced under certain conditions. Various functions have been attributed to plant crystal idioblasts and crystals. There is evidence that oxalate synthesis is related to ionic balance. Plant crystals thus may be a manifestation of an effort to maintain an ionic equilibrium. In many plants oxalate is metabolized very slowly or not at all and is considered to be an end product of metabolism. Plant crystal idioblasts may function as a means of removing the oxalate which may otherwise accumulate in toxic quantities. Idioblast formation is dependent on the availability of both Ca and oxalate. Under Ca stress conditions, however, crystals may be reabsorbed indicating a storage function for the idioblasts for Ca. In addition, it has been suggested that the crystals serve purely as structural supports or as a protective device against foraging animals. The purpose of this review is to present an overview of plant crystal idioblasts and Ca oxalate crystals and to include the most recent literature.  相似文献   

15.
David G. Fisher  Ray F. Evert 《Planta》1982,155(5):377-387
Both the mesophyll and bundle-sheath cells associated with the minor veins in the leaf of Amaranthus retroflexus L. contain abundant tubular endoplasmic reticulum, which is continuous between the two cell types via numerous plasmodesmata in their common walls. In bundle-sheath cells, the tubular endoplasmic reticulum forms an extensive network that permeates the cytoplasm, and is closely associated, if not continuous, with the delimiting membranes of the chloroplasts, mitochondria, and microbodies. Both the number and frequency of plasmodesmata between various cell types decrease markedly from the bundle-sheath — vascular-parenchyma cell interface to the sicve-tube member — companion-cell interface. For plants taken directly from lighted growth chambers, a stronger mannitol solution (1.4 M) was required to plasmolyze the companion cells and sieve-tube members than that (0.6 M) necessary to plasmolyze the mesophyll, bundle-sheath, and vascular-parenchyma cells. Placing plants in the dark for 48 h reduced the solute concentration in all cell types. Judging from the frequency of plasmodesmata between the various cell types of the vascular bundles, and from the solute concentrations of the various cell types, it appears that assimilates are actively accumulated by the sieve-tube — companion-cell complex from the apoplast.  相似文献   

16.
Summary Light and electron-microscope observations were made of the crystal idioblasts in the leaves of Canavalia. The crystal-containing cells occur as pairs in which the crystals, nuclei, and the majority of the chloroplasts are symmetrically arranged with regard to the common wall. The chloroplasts are found in the cytoplasm along this wall.The crystals originate in a vacuole. The space in which the young crystal develops is delimited by a membrane. One to several additional membranes surround the crystal inside the vacuole. Numerous vesicles are distributed between these vacuolar membranes. Dense groups of tubules or fibrils are oriented toward a portion of the crystal surface, suggesting that the material forming the crystal might be transported to the surface by these structures.The cytoplasm of the young idioblasts contains many mitochondria and dictyosomes with associated vesicles. Concentrations of what is assumed to be protein are present in the cytoplasm. These protein accumulations are not seen in neighboring cells, suggesting that protein synthesis is especially high in the idioblasts.In older crystal cells, layers of wall material are deposited on the wall between the two crystals of the pair and towards the cell wall adjacent to the mesophyll. Not only does the original wall become thickened but a new wall develops at the border of the crystal vacuole. Eventually this wall material becomes continuous and the crystal becomes, on two sides, directly connected with the wall.  相似文献   

17.
NaCl对齿肋赤藓叶肉细胞超微结构的影响   总被引:3,自引:0,他引:3  
刘卫国  丁俊祥  邹杰  林喆  唐立松 《生态学报》2016,36(12):3556-3563
齿肋赤藓(Syntrichia caninervis)是古尔班通古特沙漠苔藓结皮层中的优势物种,对荒漠生态系统的稳定性及功能多样性具有十分重要的意义。利用透射电镜技术对不同浓度Na Cl胁迫下齿肋赤藓叶肉细胞超微结构进行了观察。结果表明:齿肋赤藓叶肉细胞在未胁迫(0 mmol/L)处理下排列疏松,各种细胞结构完整,叶绿体基质排列均匀且叶绿体内含少量淀粉粒和脂质球。在轻度盐Na Cl胁迫(100 mmol/L)下,齿肋赤藓叶肉细胞结构依然保持完整,叶绿体基质均匀,叶肉细胞超微结构仅有较小变化。在中度盐Na Cl胁迫(200、300 mmol/L)下,齿肋赤藓叶肉细胞发生质壁分离,出现晶体结构,且中央大液泡发生破裂;叶绿体由梭形变成椭球形或圆球状,出现空泡化并伴随有轻微的解体;叶绿体类囊体肿胀,脂质球数量增加。在高度Na Cl胁迫(400、500 mmol/L)下,齿肋赤藓细胞的质壁分离加剧,叶肉细胞出现大量泡状结构和膜片层,叶肉细胞死亡;叶绿体片层结构消失,空泡化加重,脂质球数量增加且体积变大,叶绿体内外膜消失,叶绿体大部分解体,在叶肉细胞中几乎看不到叶绿体的存在。上述结果表明,叶绿体膜结构的损伤与盐胁迫下叶肉细胞死亡有密切关系。  相似文献   

18.
Summary Microscopy techniques were used to identify the pathway of transport of soybean leaf vegetative storage proteins (VSP/ and VSP94) to the vacuoles of a specialized cell type, the paraveinal mesophyll (PVM), where they accumulate. PVM cells are enriched in endoplasmic reticulum and Golgi bodies relative to surrounding mesophyll cells. The margins of medial and trans Golgi cisternae had attached or closely associated noncoated vesicles with densely staining membranes and lumenal contents of the same appearance as material that accumulated in the vacuole. These vesicles appeared to be transported preferentially to the tonoplast, where fusion with the membrane released the granular contents into the vacuole. Cytochemical staining with phosphotungstic acid and silver methenamine supported this interpretation as both the Golgi vesicles and the tonoplast stained intensely with these reagents, unlike the tonoplast of mesophyll cells which do not accumulate VSP. Immunocytochemical localization for VSP/ labeled the Golgi bodies and associated vesicles, and vacuolar material in PVM cells, but not in mesophyll. Similar labeling was seen in PVM of another legume species previously found to accumulate antigenically similar VSPs. Immunolocalization for VSP94, a lipoxygenase, labeled the PVM cytosol and material in the PVM vacuole, but not the Golgi or vesicles. The results of this study demonstrate that the Golgi pathway is utilized for transport of VSP/ in the PVM, which follows the mechanism of deposition demonstrated for certain seed storage proteins. VSP94 appeared to follow a separate path for accumulation in PVM vacuoles.Abbreviations LOX lipoxygenase - PVM paraveinal mesophyll - RER rough endoplasmic reticulum - TEM transmission electron  相似文献   

19.
Summary Extramatrical mycelium and outer hyphae of the sheath ofEucalyptus pilularis-Pisolithus tinctorius mycorrhizas contain abundant motile tubular vacuoles which accumulate the carboxyfluorescein analogue Oregon Green 488 carboxylic acid. The fluorochrome accumulates in a system of small vacuoles, tubules, and larger vacuoles, which are interlinked, motile, and pleiomorphic, in external hyphae, cords, and hyphae of the outer sheath. There is often a difference in fluorescence between two neighbouring cells, indicating that the dolipore septum exercises control on the movement of material between cells. Generally the motile tubular vacuole system in mycorrhizas resembles that previously found in isolated mycelium. The majority of fungal cells in the sheath contain no fluorochrome even after long exposure of the mycorrhiza to the solution, but with differential interference optics the cells are clearly seen to be alive and to contain vacuoles resembling those in the outer hyphae. In translocation experiments, long-distance transport of the fluorochrome is slow and slight, or even nonexistent in some cases.Abbreviations carboxy-DFF Oregon Green 488 carboxylic acid - carboxy-DFFDA Oregon Green 488 carboxylic acid diacetate - DIC differential interference contrast Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

20.
During the leaf movements of Albizzia julibrissin Durazzini, volume changes in the motor cells of the pulvinule (tertiary pulvinus) are closely correlated with a reversible reorganization of the vacuolar compartment. Motor cells have central vacuoles when expanded, but become multivacuolate during the time the cell volume decreases. The central vacuole reforms — apparently by fusion of small vacuoles — during motor-cell expansion. The volume changes of the vacuolar compartment account for all of the change in the size of the protoplast, while the cytoplasmic volume remains constant during the leaf movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号