首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A previously unknown sequence of the human phelylalanine hydroxylase (PAH) gene intron 7 (GeneBank AN AF204239) has been reported. Screening of the group of phenylketonuria patients from Nobosibirsk region for polymorphic sites within intron 7 revealed single nucleotide substitutions at intron positions 332, 451, 574 and 791. Polymorphic site at intron position 791 corresponds to one of the eight restriction sites (MspI) utilized for haplotype construction. Analysis of the MspI allele frequencies in 29 phenylketonuria patients showed that the frequency of the MspI+ allele in this group was 79.4%. Polymorphic sites at nucleotide position +97 from the beginning of intron 10, and at nucleotide position –54 from the end of intron 5, were also described. The polymorphic sites revealed can be used as markers for identification of the PAH alleles in population genetic studies, and also serve for diagnostics of phenylketonuria (PKU). The presence of numerous nucleotide substitutions within the intronic sequences confirms highly polymorphic structure of the PAH gene.  相似文献   

2.
Human phenylalanine hydroxylase is a liver-specific enzyme that catalyzes the conversion of phenylalanine to tyrosine. Absence of enzymatic activity results in phenylketonuria, a genetic disorder that causes development of severe mental retardation in untreated children. In this paper we report the cloning and structure of the normal human phenylalanine hydroxylase gene, which was isolated in four overlapping cosmid clones that span more than 125 kilobases (kb) of the genetic locus. The peptide coding region of the gene is about 90 kb in length and contains 13 exons, with intron sizes ranging from 1 to 23 kb. Exons at the 3' half of the gene are compact, whereas those at the 5' half are separated by large introns. The human phenylalanine hydroxylase gene codes for a mature messenger RNA of approximately 2.4 kb, and its noncoding to coding DNA ratio is one of the highest among eukaryotic genes characterized to date. The map positions of nine polymorphic restriction sites identified within the locus were established by restriction enzyme mapping of the cloned gene fragments. Two clusters of polymorphic sites were demonstrated: (1) BglII, PvuII(a), and PvuII(b) at the 5' end of the gene and (2) EcoRI, XmnI, MspI(a), MspI(b), EcoRV, and HindIII at the 3' end. The polymorphic site distribution within this gene is a useful tool for prenatal diagnosis and carrier detection of the genetic disorder, while knowledge of normal gene structure is a prerequisite for future characterization of mutant alleles.  相似文献   

3.
We investigated the frequency, origin, and molecular basis of phenylketonuria (PKU) in U.S. blacks. On the basis of 10 years of Maryland newborn-screening data, we found the frequency to be 1/50,000, or one-third that in whites. We performed haplotype analysis of the phenylalanine hydroxylase (PAH) gene of 36 U.S. blacks, 16 from individuals with classical PKU and 20 from controls. In blacks, 20% of wild-type PAH alleles have a common Caucasian haplotype (i.e., haplotype 1), whereas 80% had a variety of haplotypes, all rare in Caucasians and Asians. One of these, haplotype 15, accounted for a large fraction (30%). Among black mutant PAH alleles, 20% have a haplotype (i.e., either haplotype 1 or haplotype 4) common in Caucasians; 40% have a haplotype rare in Caucasians and Asians, and 40% have one of two previously undescribed haplotypes. Both can be derived from known haplotypes by a single event. One of these haplotypes is characterized by a new MspI restriction site, located in intron 8, which was present in five of 16 black mutant alleles but was not present in 60 U.S. black control, 20 U.S. Caucasian control, or 20 Caucasian mutant PAH alleles. Sequence analysis of DNA from a single individual, homozygous for the new MspI associated haplotype, shows homozygosity for a C----T transition at nucleotide 896 in exon 7 of the PAH cDNA, resulting in the conversion of leucine 255 to serine (L255S).  相似文献   

4.
5.
Acute intermittent porphyria (AIP), the most common acute hepatic porphyria, is a low-penetrant autosomal dominant disorder caused by mutations in the porphobilinogen deaminase (PBGD) or hydroxymethylbilane synthase (HMBS) gene. Although AIP has been identified in all the main ethnic groups, little is known about PBGD gene defects in Africans, Afro-Caribbean and Afro-Americans. We have carried out PBGD gene screening among seven unrelated AIP families and 98 controls belonging to the Afro-Caribbean (French West Indies) and the sub-Saharan African (Morocco, Algeria, Cameroon, Mali, and Burkina Faso) populations. Using denaturing-gradient gel electrophoresis (DGGE) and direct sequencing we characterized six different mutations, including four novel, from the seven AIP families: three splicing defects (IVS 5+2 Ins G; IVS 7+1 G to A in two families; IVS 10-1 G to T); a small deletion (1004 Del G); and two missense mutations (R116 W; A270G). The allele frequencies of the 14 polymorphic sites, previously known in the normal Caucasian population, were similar in Africans and Afro-Caribbean control populations. Interestingly, two common new intragenic polymorphic sites, close to intron/junction boundaries, were identified only in blacks: 1) in intron 2, a single base-pair G deletion at position 3167 (G:0.88; delG:0.12); 2) in intron 10, a A/G dimorphism at position 7052 (A:0.56; G:0.44). These two single nucleotide polymorphisms (SNPs) were never encountered in 750 unrelated Caucasian subjects. The allele frequency distributions of populations within black ethnic groups (Africans and Afro-Caribbean) are similar. This study highlights differences both in PBGD gene mutations causing AIP and in SNPs between white and black peoples; the allele frequencies provided contribute to a better knowledge of the variability of these markers among the major population groups, especially in sub-Saharan West African and Afro-Caribbean populations.  相似文献   

6.
The polymorphisms of the tumor suppressor gene p53 in exon 4 (p53 BstUI) and in intron 6 (p53 MspI) have been suggested to be associated with the genetically determined susceptibility in diverse types of human cancer. In our hospital-based case-control study, we examined the allele and genotype incidence of these polymorphisms as well as their haplotype combinations in 60 brain tumor patients (27 males and 33 females) and 183 controls without malignancies. The genotype characteristics were determined by the PCR-based RFLP method using DNA extracted from peripheral blood. In this study we show that the p53 BstUI and the p53 MspI polymorphisms are not associated with increased risk of brain tumors. Thus, we conclude that the p53 BstUI and the p53 MspI polymorphic sites within the tumor suppressor gene p53 do not represent genetic determinants of susceptibility to brain tumors.  相似文献   

7.
We identified five different alleles, tentatively named ABO*O301, *0302, *R102, *R103, and *A110, in Japanese individuals possessing the blood group O phenotype. These alleles lack the guanine deletion at nucleotide position 261 which is shared by a majority of O alleles. Nucleotide sequence analysis revealed that *0301 and *0302 had single nonsynonymous substitutions compared with *A101 or *A102 responsible for the A1 phenotype. Analysis of intron 6 at the ABO gene by polymerase chain reaction-single-strand conformation polymorphism and direct sequencing revealed that *R102 and *R103 had chimeric sequences of A-02 and B-02, respectively, from exons 6 to 7. In the analysis of five other chimeric alleles detected in the same manner, we identified a total of four different recombination-breakpoints within or near intron 6. When 510 unrelated Japanese were examined, the frequency of the chimeric alleles generated by recombination in intron 6 or exon 7 was estimated to be 1.7%. In addition, we found that *O301, *A110, *C101, *A111, and 35% of *A102 had a unique A-B-A chimeric sequence at intron 6, presumed to originate from a gene conversion-like event. We had previously established that *A110 also had an A-O2-A chimeric sequence around nucleotide position 646 in exon 7. Thus this allele has an A-B-A-O2-A chimeric sequence from intron 6 to exon 7 probably generated by two different gene conversions. Similar patchwork sequences around nucleotide position 646 in exon 7 were observed in two other new alleles responsible for the Ax and B3 phenotypes. Thus, the site is presumably a hotspot for gene conversion. These results indicate that both recombination and gene conversion-like events play important roles in generating ABO gene diversity.  相似文献   

8.
A series of radioactive catastrophes (from 1948 to 1967) in the Southern Urals in the USSR led to intensive environmental contamination. Radioactive wastes were dispersed over the 20000 km(2) territory of four provinces-Chelyabinsk, Sverdlovsk, Tyumen' and Kurgan-due to the activity of the military facility that was built in 1948 for the production of nuclear bomb plutonium. The results of 50 years of investigations into the consequences of these disasters allow a general picture of the events that occurred to be reconstructed and allow the medical consequences of the irradiation of about half a million residents to be depicted. However, due to the atmosphere of secrecy and inadequate medical procedures, the results of medical studies of radiation victims are scant. The current protocols present a unique opportunity to study the DNA damage at the nucleotide resolution level in the genome of inhabitants of the given region, who presumably received chronic doses of irradiation. Studies were conducted through the direct sequencing of genes after their PCR-amplification and preselection of allegedly mutated DNA molecules. The regions of two genes have been sequenced: D1 dopamine receptor gene (subfamily of the G-protein coupled receptor L-DOPA genes) and the intron 12 of the gene for phenylalanine hydroxylase (PAH) responsible for phenylketonuria or hyperphenylalaninemia. Six point mutations (four presumably new) were found in the D1 gene of 42 persons and five polymorphic loci (two of which are widespread and three are unique) were revealed in the PAH gene. One of two widespread mutations is a deletion, and the other four are substitutions. Mutations in the controls were not found.  相似文献   

9.
A novel restriction fragment length polymorphism in the phenylalanine hydroxylase (PAH) locus generated by the restriction endonuclease MspI was observed in a German phenylketonuria (PKU) patient. Molecular cloning and DNA sequence analyses revealed that the MspI polymorphism was created by a T to C transition in exon 9 of the human PAH gene, which also resulted in the conversion of a leucine codon to a proline codon. The effect of the amino acid substitution was investigated by creating a corresponding mutation in a full-length human PAH cDNA by site-directed mutagenesis followed by expression analysis in cultured mammalian cells. Results demonstrate that the mutation in the gene causes the synthesis of an unstable protein in the cell corresponding to a CRM- phenotype. Together with the other mutations recently reported in the PAH gene, the data support previous biochemical and clinical observations that PKU is a heterogeneous disorder at the gene level.  相似文献   

10.
The human interferon-beta 2 gene (IFNB2) product is identical to that for the B-cell stimulation factor-2 (BSF-2), the hybridoma growth factor (HGF) ("interleukin-6"), and the hepatocyte stimulating factor (HSF). Proteins derived from this gene mediate the plasma protein response to tissue injury (acute-phase response) and regulate the growth and differentiation of both B and T cells. By using the enzymes MspI, BstNI, and BglI, three polymorphic systems were detected with probes for the IFNB2 gene. The MspI and BglI polymorphisms are likely to be due to base pair substitutions; the BstNI polymorphism was revealed by nine other enzymes and is likely to be due to DNA insertions within 1 kb of the 3' flanking region of the gene. This region is rich in AT dinucleotides, and slippage at DNA replication may generate the insertions of between 0.07 and 0.23 kb that were observed. The polymorphic MspI site also lies within the vicinity of the fifth exon. The BglI polymorphic site is likely to lie in 5' flanking DNA. The three polymorphisms are separate, and a variety of haplotypes was observed. A low level of linkage disequilibrium exists between the MspI and the BglI alleles. MspI and BstNI polymorphisms were observed in Caucasoids, CAR Pygmies, Zaire Pygmies, Melanesians, and Chinese but at differing frequencies, and not all alleles were present in all populations. The BglI polymorphism was observed in Caucasoids and Africans only. Linkage studies involving the IFNB2 gene and 27 other chromosome 7 markers have localized it to between D7S135 and D7S370 at 7p22-p21.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The genetic polymorphism of an entire Bov-A2 element located in the second intron of the buffalo and bovine k-casein (CSN3) gene was investigated by amplification and sequencing of PCR products. Single nucleotide polymorphisms were detected. A PCR-RFLP method was developed to detect an A or G mutation at position 605 of bovine Bov-A2 element which creates a BfaI polymorphic site. The frequencies of the B allele, with the BfaI site, were for 0.275, 0.775, 0.750, 0.975, respectively, for Italian Holstein Friesian, Grey Alpine, Friuli Red Pied and Reggio bovine breeds. The mutation rate (substitutions and deletions/insertions per nucleotide site per year) was 2.5 x 10(-9) for Bov-A2 sequences in the second intron of CSN3. The comparison with other Bov-A2 elements suggests that this retroelement might be an important source of single nucleotide polymorphism for analysis of Bovidae genomes.  相似文献   

12.
Transforming growth factor-beta receptor (TbetaR)-dependent signals are critical for cell growth and differentiation and are often disrupted during tumorigenesis. The entire coding region of TbetaR-I and flanking intron sequences from 30 head and neck carcinomas were examined for alterations using "Cold" SSCP and direct sequencing. No somatic point mutations were found in the TbetaR-I gene. In contrast, 14 polymorphic sequence changes were detected in TbetaR-I in 13 (43%) of the samples, including eight (27%) nucleotide alterations identified as polymorphisms in an exon-1 (GCG)(9) microsatellite repeat, a previously reported tumor susceptibility allele. A nine base pair deletion was found in 23% of the samples including five heterozygous and two homozygous deletions as well as single homozygous 12bp deletion. Additionally, six heterozygous polymorphisms in intronic sequences were determined, including one heterozygous C/A genotype at the +82 nucleotide position of the intron-5 intervening sequence (IVS), and five heterozygous G/A genotypes within intron-7 at the +24 nucleotide position. Exon-1 polymorphisms in the (GCG)(9) microsatellite region of the TbetaR-I gene and their association with head/neck cancers, suggest that development of these cancers may be a direct consequence of loss of responsiveness to TGF-beta mediated growth inhibition.  相似文献   

13.
猪H-FABP基因多态片段的序列分析   总被引:16,自引:2,他引:14  
利用PCR-RFLP方法在猪H-FABP基因内确定了3个变异酶切位点,分别为5′-上游区HinfI-RFLP、内含子2的HaeIII-RFLP和HinfI*-RFLP(HinfI和HinfI*代表不同区域的HinfI酶切反应)。对每个多态片段进行克隆测序分析,结果表明,5′-上游区HinfI-RFLP是由于1324位的碱基T→C的突变引起;在内含子2中,HaeIII-RFLP变异酶切位点在1811位,发生了C到G的突变;HinfI*-RFLP是由于1970位发生T→C的碱基替换。 Abstract:Three variant restriction sites of porcine H-FABP gene,including HinfI-RFLP in 5′-upsream,HaeIII-RFLP and HinfI*-RFLP in intron 2,were confirmed by PCR-RFLP method.The polymorphic fragments were cloned and sequenced.The results revealed a single nucleotide substitution of T→C at position 1324 for HinfI-RFLP,C→G at position 1811 for HaeIII-RFLP and T→C at position 1970 for HinfI*-RFLP,respectively.  相似文献   

14.
15.
A total of 445 domestic pigeons were genotyped for the lactate dehydrogenase (LDHA) gene. Crude DNA was isolated from blood samples and feathers. Two polymorphic sites were identified in intron 6: one near the splice donor site GT is called site H and the other near the splice acceptor site is called site B. Interestingly, the nucleotide changes of both these sites associate perfectly with the A and B alleles of HaeIII polymorphism: the A allele with nucleotide A of site H and nucleotide T of site B; while the B allele with nucleotide G of site H and nucleotide G of site B. In this study, we have identified the molecular difference between alleles A and B of the pigeon LDHA gene. The difference at site H in intron 6 explains the HaeIII polymorphism. The frequencies of LDHAAB and LDHABB genotypes between the analysed groups differ significantly (P < 0.001); the LDHAA allele was more frequent in the groups of pigeons with elevated homing performance (P < 0.001). The functional difference may be due to the change at site B, the potential splice branch site. Since LDHA activity is associated with the homing ability, it is possible that during the process of selection for the homing ability, the LDHAA allele has been selected, and is more prevalent in the top-racing groups.  相似文献   

16.
A cloned DNA segment 1.25 kilobases (kb) upstream from the joining segments of the human heavy chain immunoglobulin gene revealed extensive polymorphic variation at this locus, and the polymorphic pattern was stably transmitted to the next generation. Genomic restriction analysis showed that the polymorphism was caused by insertions/deletions within an MspI/BamHI fragment. Sequencing of one allele, 848 base pairs (bp) long, revealed eleven 50-base-pair tandem repeats. A second allele, 648 bp long, was cloned from a human genomic cosmid library, sequenced, and found to contain four fewer repeats than the first allele. A survey of 186 chromosomes from unrelated individuals of primarily northern European descent revealed at least six alleles.  相似文献   

17.
The mutD (dnaQ) gene of Escherichia coli codes for the epsilon subunit of the DNA polymerase III holoenzyme which is involved in 3'----5' exonuclease proofreading activity. We determined the mutational specificity of the mutator allele, mutD5, in the lacI gene of E. coli. The mutD5 mutation preferentially produces single base substitutions as judged from the enhanced fraction of lacI nonsense mutations and the spectrum of sequenced dominant lacI (lacId) and constitutive lacO (lacOc) mutations which were predominantly (69/71) single nucleotide substitutions. The distribution of amber lacI and sequenced lacId mutations revealed that transitions occur more frequently than transversions. A . T----G . C and G . C----A . T transitions were equally frequent and, with one major exception, evenly distributed among numerous sites. Among the transversions, A . T----T . A events were the most common, A . T----C . G substitutions were rare, and G . C----C . G changes were not detected. Transversions were unequally distributed among a limited number of sites with obvious hotspots. All 11 sequenced transversions had a consensus neighboring sequence of 5'-C-C-(mutated G or A)-C-3'. Although no large deletions or complex mutational events were recovered, sequencing revealed that mutD5 induced single nucleotide deletions within consecutive G X C sequences. An extraordinary A . T----G . C transition hotspot occurred at nucleotide position +6 in the lac operator region; the mutD5 mutation frequency of this single base pair was calculated to be 1.2 X 10(-3).  相似文献   

18.

Background  

There is accumulating evidence that polymorphism in Toll-like receptor (TLR) genes might be associated with disease resistance or susceptibility traits in livestock. Polymorphic sites affecting TLR function should exhibit signatures of positive selection, identified as a high ratio of non-synonymous to synonymous nucleotide substitutions (ω). Phylogeny based models of codon substitution based on estimates of ω for each amino acid position can therefore offer a valuable tool to predict sites of functional relevance. We have used this approach to identify such polymorphic sites within the bovine TLR2 genes from ten Bos indicus and Bos taurus cattle breeds. By analysing TLR2 gene phylogeny in a set of mammalian species and a subset of ruminant species we have estimated the selective pressure on individual sites and domains and identified polymorphisms at sites of putative functional importance.  相似文献   

19.
Summary Eight polymorphic restriction enzyme sites at the phenylalanine hydroxylase (PAH) locus were analyzed from the parental chromosomes in 33 Danish nuclear families with at least one phenylketonuric (PKU) child. Determination of haplotypes of 66 normal chromosomes and 66 chromosomes bearing mutant allele (S) demonstrated that there are at least two haplotypes which occur predominantly on PKU chromosomes and rarely otherwise. Overall, the relative frequencies of the various haplotypes are significantly different on PKU-and normal-allele bearing chromosomes, even though there is no predominantly occurring unique haplotype which can characterize the PKU chromosomes. In addition, no significant association (linkage disequilibrium) between any single polymorphic site and the mutant allele (s) was observed. The results suggest that either the phenylketonuric mutation was very ancient so that the polymorphic sites and the mutation have reached linkage equilibrium or the mutant allele (s) are the results of multiple mutations in the phenylalanine hydroxylase gene in man. Furthermore, a crude relationship between standardized linkage disequilibria and physical map distances of the polymorphic sites indicates that there is no apparent recombination hot-spot in the human phenylalanine hydroxylase gene, since the recombination rate within the locus apears to be uniform and likely to be occurring at a rate similar to that within the HLA gene cluster. The limitations of this later analysis are discussed in view of the sampling errors of disequilibrium measure used, and the potential untility of the PAH haplotypes for prenatal diagnosis and detection of PKU carriers is established.  相似文献   

20.
We report a mutation within the phenylalanine hydroxylase (PAH) gene that causes aberrant splicing of the mRNA and that is in tight association with chromosomal haplotypes 6, 10, and 36. Because of the high frequency of these particular haplotypes in Bulgaria, Italy, and Turkey, it appears to be one of the more frequent defects in the PAH gene causing classical phenylketonuria in this part of Europe. The mutation is a G to A transition at position 546 in intron 10 of the PAH gene, 11 bp upstream from the intron 10/exon 11 boundary. It activates a cryptic splice site and results in an in-frame insertion of 9 nucleotides between exon 10 and exon 11 of the processed mRNA. Normal amounts of liver PAH protein are present in homozygous patients, but no catalytic activity can be detected. This loss of enzyme activity is probably caused by conformational changes resulting from the insertion of three additional amino acids (Gly-Leu-Gln) between the normal sequences encoded by exon 10 and exon 11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号