首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel feather-degrading bacterium named CA-1 was isolated from the gut of the spider Chilobrachys guangxiensis, which degrades native whole chicken feathers within 20 h. The CA-1 was confirmed to belong to Stenotrophomonas maltophilia based on morphologic and molecular analysis. Maximum feather degradation activity of the bacterium was observed at 37 °C in basal feather medium (NaCl 0.5 g/L, KH2PO4 0.3 g/L, K2HPO4 0.4 g/L, feather powder 10.0 g/L, pH 8.0), which was inhibited when glucose and ammonium nitrate were added in the medium. Furthermore, the purified enzymes under the optimal and suppressive conditions were analyzed respectively by SDS-PAGE and LC–MS/MS. Three enzymes, namely alkaline serine protease (29.1 kDa), ABC transporter permease (27.5 kDa), and alkaline phosphatase (40.8 kDa), were isolated and identified from the supernatant of the optimal culture and were considered to play principal roles. On the other hand, the potential synergic effects of the three proteins in S. maltophilia CA-1 feather degradation system were analyzed theoretically. CA-1 may product outer-membrane vesicles comprised of membranes and periplasmic proteins in the feather medium. The newly identified CA-1 and its synergic enzymes provide a new insight into further understanding the molecular mechanism of feather degradation by microbes. They also have potential application in cost-effectively degrading feathers into feeds and fertilizers through careful optimization and engineering of the three newly identified enzymes.  相似文献   

2.
Matriptase is a type II transmembrane serine protease containing one potential site for asparagine-linked glycosylation (N-glycosylation) on the catalytic domain (Asn772). It has been found that the activation of matriptase zymogen occurs via a mechanism requiring its own activity and that the N-glycosylation site is critical for the activation. The present study aimed to determine the underlying reasons for the site requirement using Madin–Darby canine kidney cells stably expressing recombinant variants of rat matriptase. A full-length variant with glutamine substitution at Asn772 appeared to be unable to undergo activation because of its catalytic incompetence (i.e., decreased availability of the soluble catalytic domain and/or of the correctly folded domain). This was evidenced by the observations that (i) a recombinant catalytic domain of matriptase with glutamine substitution at the site corresponding to matriptase Asn772 [N772Q-CD-Myc(His)6] was not detected in the medium conditioned by transfected cells but was on the cell surface and (ii) purified N772Q-CD-Myc(His)6 exhibited markedly reduced activity toward a peptide substrate. It is concluded that N-glycosylation site at Asn772 of matriptase is required for the zymogen activation because it plays an important role in rendering this protease catalytically competent in the cellular environment.  相似文献   

3.
Corin is a membrane-bound protease essential for activating natriuretic peptides and regulating blood pressure. Human corin has 19 predicted N-glycosylation sites in its extracellular domains. It has been shown that N-glycans are required for corin cell surface expression and zymogen activation. It remains unknown, however, how N-glycans at different sites may regulate corin biosynthesis and processing. In this study, we examined corin mutants, in which each of the 19 predicted N-glycosylation sites was mutated individually. By Western analysis of corin proteins in cell lysate and conditioned medium from transfected HEK293 cells and HL-1 cardiomyocytes, we found that N-glycosylation at Asn-80 inhibited corin shedding in the juxtamembrane domain. Similarly, N-glycosylation at Asn-231 protected corin from autocleavage in the frizzled-1 domain. Moreover, N-glycosylation at Asn-697 in the scavenger receptor domain and at Asn-1022 in the protease domain is important for corin cell surface targeting and zymogen activation. We also found that the location of the N-glycosylation site in the protease domain was not critical. N-Glycosylation at Asn-1022 may be switched to different sites to promote corin zymogen activation. Together, our results show that N-glycans at different sites may play distinct roles in regulating the cell membrane targeting, zymogen activation, and ectodomain shedding of corin.  相似文献   

4.
The T helper cell-derived cytokine interleukin-17A (IL-17A) is a variably glycosylated disulfide-linked homodimer of 34–38 kDa. Its polypeptide monomer contains one canonical N-glycosylation site at Asn68, and human recombinant IL-17A was partly N-glycosylated when expressed in human kidney (HEK293) cells as a fusion protein with a melittin signal sequence and an N-terminal hexahistidine tag. Orbitrap mass analyses of the tryptic N-glycopeptide 63–69 indicated that the N-glycosylation was of the GalNAc-terminated type characteristic of cultured kidney cells. The mass spectrum of IL-17A monomer also included peaks shifted by +948 Da from the respective masses of unglycosylated and N-glycosylated polypeptides. These were caused by unpredicted partial O-glycosylation of Thr26 with the mucin-like structure -GalNAc(-NeuNAc)-Gal-NeuNAc. Identical O-glycosylation occurred in commercially sourced recombinant IL-17A also expressed in HEK293 cells but with a different N-terminal sequence. Therefore, the kidney host cell line not only imposed its characteristic pattern of N-glycosylation on recombinant IL-17A but additionally created an O-glycosylation not known to be present in the T cell-derived cytokine. Mammalian host cell lines for recombinant protein expression generally impose their characteristic patterns of N-glycosylation on the product, but this work exemplifies how a host may also unpredictably O-glycosylate a protein that is probably not normally O-glycosylated.  相似文献   

5.
Wang H  Zhang W  Zhao J  Zhang L  Liu M  Yan G  Yao J  Yu H  Yang P 《Journal of Proteomics》2012,75(4):1375-1385
The membrane glycoprotein CD82 (KAI1) has attracted increasing attention as a suppressor of cell migration, related tumor invasion, as well as metastasis. The glycosylation of CD82 has been shown to be involved in a correlative cell adhesion and motility. However, the N-glycosylation pattern of CD82 has not been described yet. In the current study, a detailed characterization of the recombinant human CD82 N-linked glycosylation pattern was conducted by employing an integrative proteomic and glycomic approach, including glycosidase and protease digestions, glycan permethylation, MS analyses, site-directed mutagenesis, and lectin blots. The results reveal three N-glycosylation sites, and further demonstrate a putative glycosylation site at Asn157 for the first time. A highly heterogeneous pattern of N-linked glycans is described, which express distinct carbohydrate epitopes, such as bisecting N-acetylglucosamine, (α-2,6) N-acetylneuraminic acid, and core fucose. These epitopes are highly associated with various biological functions, including cell adhesion and cancer metastasis, and can possibly influence the anti-cancer inhibition ability of CD82.  相似文献   

6.
N-Glycosylation can modulate enzyme structure and function. In this study, we identified two pepsin-resistant histidine acid phosphatase (HAP) phytases from Yersinia kristensenii (YkAPPA) and Yersinia rohdei (YrAPPA), each having an N-glycosylation motif, and one pepsin-sensitive HAP phytase from Yersinia enterocolitica (YeAPPA) that lacked an N-glycosylation site. Site-directed mutagenesis was employed to construct mutants by altering the N-glycosylation status of each enzyme, and the mutant and wild-type enzymes were expressed in Pichia pastoris for biochemical characterization. Compared with those of the N-glycosylation site deletion mutants and N-deglycosylated enzymes, all N-glycosylated counterparts exhibited enhanced pepsin resistance. Introduction of the N-glycosylation site into YeAPPA as YkAPPA and YrAPPA conferred pepsin resistance, shifted the pH optimum (0.5 and 1.5 pH units downward, respectively) and improved stability at acidic pH (83.2 and 98.8% residual activities at pH 2.0 for 1 h). Replacing the pepsin cleavage sites L197 and L396 in the immediate vicinity of the N-glycosylation motifs of YkAPPA and YrAPPA with V promoted their resistance to pepsin digestion when produced in Escherichia coli but had no effect on the pepsin resistance of N-glycosylated enzymes produced in P. pastoris. Thus, N-glycosylation may improve pepsin resistance by enhancing the stability at acidic pH and reducing pepsin''s accessibility to peptic cleavage sites. This study provides a strategy, namely, the manipulation of N-glycosylation, for improvement of phytase properties for use in animal feed.  相似文献   

7.
Classical swine fever virus (CSFV) outer surface E2 glycoprotein represents an important target to induce protective immunization during infection but the influence of N-glycosylation pattern in antigenicity is yet unclear. In the present work, the N-glycosylation of the E2-CSFV extracellular domain expressed in goat milk was determined. Enzymatic N-glycans releasing, 2-aminobenzamide (2AB) labeling, weak anion-exchange and normal-phase HPLC combined with exoglycosidase digestions and mass spectrometry of 2AB-labeled and unlabeled N-glycans showed a heterogenic population of oligomannoside, hybrid and complex-type structures. The detection of two Man8GlcNAc2 isomers indicates an alternative active pathway in addition to the classical endoplasmic reticulum processing. N-acetyl or N-glycolyl monosialylated species predominate over neutral complex-type N-glycans. Asn207 site-specific micro-heterogeneity of the E2 most relevant antigenic and virulence site was determined by HPLC-mass spectrometry of glycopeptides. The differences in N-glycosylation with respect to the native E2 may not disturb the main antigenic domains when expressed in goat milk.  相似文献   

8.
A new serine protease with fibrinolytic activity from a marine invertebrate, Urechis unicinctus, was purified to electrophoretic homogeneity using column chromatography. SDS-PAGE of the purified enzyme showed a single polypeptide chain with MW ~20.8 kDa. Its N-terminal sequence was IIGGSQAAITSY. The purified enzyme, UFEIII, was stable at pH 6–10 below 60 °C with an optimum pH of 8.5 at approx. 55 °C. The enzyme activity was significantly inhibited by PMSF and SBTI suggesting that it was a serine protease. In fibrin plate assays, UFEIII was contained 1.46 × 10U (urokinase units) mg?1 total fibrinolytic activity, which consisted of 692 U mg?1 direct fibrinolytic activity and 769 U mg?1 plasminogen-activator activity. Km and Vmax values for azocasein were 1 mg ml?1 and 43 μg min?1 ml?1, respectively.  相似文献   

9.
Acetyl xylan esterase (AXE) from basidiomycete Coprinopsis cinerea Okayama 7 (#130) was functionally expressed in Pichia pastoris with a C-terminal tag under the alcohol oxidase 1 (AOX1) promoter and secreted into the medium at 1.5 mg l?1. Its molecular mass was estimated to be 65.5 kDa based on the SDS-PAGE analysis, which is higher than the calculated molecular mass of 40 kDa based on amino acid composition. In-silico analysis of the amino acid sequence predicted two potential N-glycosylation sites. Results from PNGase F deglycosylation and mass spectrum confirmed the presence of N-glycosylation on the recombinant AXE with predominant N-glycans HexNAc2Hex9–16. The recombinant AXE showed best activity at 40 °C and pH 8. It showed not only acetyl esterase activity with a Km of 4.3 mM and a Vmax of 2.15 U mg?1 for hydrolysis of 4-nitrophenyl acetate but also a butyl esterase activity for hydrolysis of 4-nitrophenyl butyrate with a Km of 0.11 mM and Vmax of 0.78 U mg?1. The presence of two additional amino acid residues at its native N-terminus was found to help stabilize the enzyme against the protease cleavages without affecting its activity.  相似文献   

10.
PGRN is a modular protein with 7 1/2 repeats of the granulin domain separated by short spacer sequences. Elevated expression of PGRN is associated with cancer growth, while mutations of PGRN cause frontotemporal lobar degeneration (FTLD), an early onset form of dementia. PGRN is a glycoprotein, containing five N-glycosylation consensus sequons, three of which fall within granulin domains. A method tailored to enable detailed analysis of the PGRN oligosaccharides and glycopeptides has been developed. The approach involves in-gel deglycosylation using peptide-N-glycosidase F (PNGase F) followed by permethylation of the released oligosaccharides. Permethylation was applied for rapid sample clean-up and to improve sensitivity of MS detection and mass spectrometric fragmentation. Reversed-phase monolithic LC–ESI–MS/MS was used for analysis of permethylated oligosaccharides, enabling structural characterization of released N-linked glycans in one chromatographic run. In-gel tryptic digestion was further applied to the gel pieces containing deglycosylated protein, for N-glycosylation site determination. In addition, glycopeptides were produced using in-solution pronase digestion to identify species of N-glycan attached at particular sites. The method developed was applied to progranulin (PGRN) to characterize the structures of the released glycans and to identify the sites of glycosylation. Glycosylation of four out of five potential PGRN N-glycosylation consensus sites was demonstrated (the final one remains undetermined), with one of the four observed to be partially occupied. Two of the observed glycosylation sites occur within granulin domains, which may have important implications for understanding the structural basis of PGRN action.  相似文献   

11.
The extracellular loop 3 (EL-3) of SLC4 Na+-coupled transporters contains 4 highly conserved cysteines and multiple N-glycosylation consensus sites. In the electrogenic Na+-HCO3 cotransporter NBCe1-A, EL-3 is the largest extracellular loop and is predicted to consist of 82 amino acids. To determine the structural-functional importance of the conserved cysteines and the N-glycosylation sites in NBCe1-A EL-3, we analyzed the potential interplay between EL-3 disulfide bonding and N-glycosylation and their roles in EL-3 topological folding. Our results demonstrate that the 4 highly conserved cysteines form two intramolecular disulfide bonds, Cys583-Cys585 and Cys617-Cys642, respectively, that constrain EL-3 in a folded conformation. The formation of the second disulfide bond is spontaneous and unaffected by the N-glycosylation state of EL-3 or the first disulfide bond, whereas formation of the first disulfide bond relies on the presence of the second disulfide bond and is affected by N-glycosylation. Importantly, EL-3 from each monomer is adjacently located at the NBCe1-A dimeric interface. When the two disulfide bonds are missing, EL-3 adopts an extended conformation highly accessible to protease digestion. This unique adjacent parallel location of two symmetrically folded EL-3 loops from each monomer resembles a domain-like structure that is potentially important for NBCe1-A function in vivo. Moreover, the formation of this unique structure is critically dependent on the finely tuned interplay between disulfide bonding and N-glycosylation in the membrane processed NBCe1-A dimer.  相似文献   

12.
N-Glycosylation is a common form of protein post-translational modification in Pichia pastoris and greatly affects folding and secretion. The propeptide of the Pseudomonas aeruginosa elastase (PAE) is indispensable for proper folding and secretion of the enzyme. We have studied the effect of introducing N-glycosylation sites to the propeptide of the recombinant elastase (rPAE) on its expression levels in P. pastoris. Addition of N-glycosylation sites to the propeptide at N51 or N93 enhanced rPAE production levels by 104 or 57 %, respectively, while addition at N11 or N127 led to a 25 or 50 % decrease, respectively. The introduced N-glycosylation sites in the propeptide at these four sites exerted a null effect on the N-glycosylation degree of mature rPAE.  相似文献   

13.
A divalent cation-independent 16 kDa d-galactose binding lectin (AKL-2) was isolated from eggs of sea hare, Aplysia kurodai. The lectin recognized d-galactose and d-galacturonic acid and had a 32 kDa dimer consisting of two disulfide-bonded 16 kDa subunits. Eighteen N-terminus amino acids were identified by Edman degradation, having unique primary structure. Lectin blotting analysis with horseradish peroxidase-conjugated lectins has shown that AKL-2 was a glycoprotein with complex type oligosaccharides with N-acetyl d-glucosamine and mannose at non-reducing terminal. Two protein bands with 38 and 36 kDa in the crude extract of sea hare eggs after purification of the lectin was isolated by AKL-2-conjugated Sepharose column and elution with 0.1 M lactose containing buffer. It suggested that the lectin binds with an endogenous ligand in the eggs. AKL-2 kept extreme stability on haemagglutination activity if it was treated at pH 3 and 70 °C for 1 h. Glycan binding profile of AKL-2 by frontal affinity chromatography technology using 15 pyridylamine labeled oligosaccharides has been appeared that the lectin uniquely recognized globotriose (Galα1-4Galβ1-4Glc; Gb3) in addition to bi-antennary complex type N-linked oligosaccharides with N-acetyllactosamine. Surface plasmon resonance analysis of AKL-2 against a neo-glycoprotein, Gb3-human serum albumin showed the k ass and k diss values are 2.4 × 103 M?1 s?1 and 3.8 × 10?3 s?1, respectively. AKL-2 appeared cytotoxicity against both Burkitt’s lymphoma Raji cell and erythroleukemia K562. The activity to Raji by the lectin was preferably cancelled by the co-presence of melibiose mimicing Gb3. On the other hand, K562 was cancelled effectively by lactose than melibiose. It elucidated that AKL-2 had cytotoxic ability mediated glycans structure to cultured cells.  相似文献   

14.
Pocillopora verrucosa is a branching, reef-building coral, and a simultaneous hermaphrodite that reproduces sexually and asexually by fragmentation. In the Gulf of California, local P. verrucosa populations have mixed modes of reproduction which vary in frequency by site. Sexual and asexual reproductions were assessed using multi-locus genotypes deriving from six microsatellite loci at every location. Clone frequencies varied from 0.30 at Loreto to 0.96 in the San Lorenzo Channel. Isla Espíritu Santo and the San Lorenzo Channel were mostly asexual subpopulations, presented the lowest genotypic richness (N g /N = 0.1–0.12) and genotypic diversity (G o /G e  = 0.04), and were dominated by one or two multi-loci genotypes (G o /N g  = 0.35–0.45). Loreto, El Portugués, and Cabo Pulmo were mostly sexual with high Ng/N (0.80–0.74) and G o /G e (0.52–0.58) and did not show domination by a single multi-locus genotype (G o /N g  = 0.70–0.74). There was a significant relationship (P < 0.05) between tropical storm frequency and the genotypic indexes of richness and diversity modeling an inverted U-shape, which indicates that the sites where storm frequencies were the highest had mostly clonal populations; sites exposed to intermediate or low storm frequencies had mostly sexual populations. The study included a restored area (San Lorenzo Channel) where genotypic analyses showed a high level of clonality similar to natural conditions occurring in a nearby subpopulation (Isla Espíritu Santo), which demonstrates the low natural genetic diversity of the area. This study showed that a species with mixed reproduction modes has different maintenance strategies at a regional and even local level among populations indicating the crucial role that storms play in population structure.  相似文献   

15.
This study reports the purification and characterization of an extracellular haloalkaline serine protease from the moderately halophilic bacterium, Bacillus iranensis, strain X5B. The enzyme was purified to homogeneity by acetone precipitation, ultrafiltration and carboxymethyl (CM) cation exchange chromatography, respectively. The purified protease was a monomeric enzyme with a relative molecular mass of 48–50 kDa and it was inhibited by PMSF indicating that it is a serine-protease. The optimum pH, temperature and NaCl concentration were 9.5, 35 °C and 0.98 M, respectively. The enzyme showed a significant tolerance to salt and alkaline pH. It retained approximately 50 % of activity at 2.5 M NaCl and about 70 % of activity at highly alkaline pH of 11.0; therefore, it was a moderately halophilic and also can be activated by metals, especially by Ca2+. The specific activity of the purified protease was measured to be 425.23 μmol of tyrosine/min per mg of protein using casein as a substrate. The apparent K m and V max values were 0.126 mM and 0.523 mM/min, respectively and the accurate value of k cat was obtained as 3.284 × 10?2 s?1. These special and important characteristics make this serine protease as valuable tool for industrial applications.  相似文献   

16.
Cholera toxin B subunit (CTB) is widely used as a carrier molecule and mucosal adjuvant and for the expression of fusion proteins of interest. CTB-fusion proteins are also expressed in plants, but the N-glycan structures of CTB have not been clarified. To gain insights into the N-glycosylation and N-glycans of CTB expressed in plants, we expressed CTB in rice seeds with an N-terminal glutelin signal and a C-terminal KDEL sequence and analyzed its N-glycosylation and N-glycan structures. CTB was successfully expressed in rice seeds in two forms: a form with N-glycosylation at Asn32 that included both plant-specific N-glycans and small oligomannosidic N-glycans and a non-N-glycosylated form. N-Glycan analysis of CTB showed that approximately 50 % of the N-glycans had plant-specific M3FX structures and that almost none of the N-glycans was of high-mannose-type N-glycan even though the CTB expressed in rice seeds contains a C-terminal KDEL sequence. These results suggest that the CTB expressed in rice was N-glycosylated through the endoplasmic reticulum (ER) and Golgi N-glycosylation machinery without the ER retrieval.  相似文献   

17.
Neutral protease was immobilized on chitosan (CS), carboxymethyl chitosan (CMCS), and N-succinyl chitosan (NSCS) hydrogel beads. And the biocatalysts obtained were used to prepare low molecular weight chitosan (LMWC) and chitooligomers. Weight-average molecular weight of LMWC produced by neutral protease immobilized on CS, CMCS and NSCS hydrogel beads were 3.4 kDa, 3.2 kDa and 1.9 kDa, respectively. The effects of immobilization support and substrate on enzymatic reaction were analyzed by measuring classical Michaelis-Menten kinetic parameters. The FT-IR, XRD and potentiometric determination results indicated decrease of molecular weight led to transformation of crystal structure, but the degree of N-deacetylation and chemical structures of residues were not changed compared to initial chitosan. The degree of polymerization of chitooligomers was mainly from 2 to 7. We observed a strong dependence of the immobilized enzyme properties on the chemical nature of the supports, which leads to different microenvironment of neutral protease and changes the hydrolyzing process.  相似文献   

18.
An acid-tolerant α-galactosidase (CVGI) was isolated from the fruiting bodies of Coriolus versicolor with a 229-fold of purification and a specific activity of 398.6 units mg?1. It was purified to electrophoretic homogeneity by ion exchange chromatography and gel filtration chromatography. The purified enzyme gave a single band corresponding to a molecular mass of 40 kDa in SDS-PAGE and gel filtration. The α-galactosidase was identified by MALDI-TOF-MS and its inner peptides were sequenced by ESI-MS/MS. The optimum temperature and pH of the enzyme were determined as 60 °C and 3.0, respectively. The enzyme was very stable at a temperature range of 4–50 °C and at a pH range of 2–5. Among the metal ions tested, Cu2+, Cd2+ and Hg2+ ions have been shown to partially inhibit the activity of α-galactosidase, while the activity of CVGI was completely inactivated by Ag+ ions. N-bromosuccinamide inhibited enzyme activity by 100 %, indicating the importance of tryptophan residue(s) at or near the active site. CVGI had wide substrate specificity (p-nitrophenyl galactoside, melidiose, raffinose and stachyose). After treatment with CVGI, raffinose family oligosaccharide was hydrolyzed effectively to yield galactose and sucrose. The results showed that the general properties of the enzyme offer potential for use of this α-galactosidase in several production processes.  相似文献   

19.
Yeast is capable of performing posttranslational modifications, such as N- or O-glycosylation. It has been demonstrated that N-glycans play critical biological roles in therapeutic glycoproteins by modulating pharmacokinetics and pharmacodynamics. However, N-glycan sites on recombinant glycoproteins produced in yeast can be underglycosylated, and hence, not completely occupied. Genomic homology analysis indicates that the Pichia pastoris oligosaccharyltransferase (OST) complex consists of multiple subunits, including OST1, OST2, OST3, OST4, OST5, OST6, STT3, SWP1, and WBP1. Monoclonal antibodies produced in P. pastoris show that N-glycan site occupancy ranges from 75–85 % and is affected mainly by the OST function, and in part, by process conditions. In this study, we demonstrate that N-glycan site occupancy of antibodies can be improved to greater than 99 %, comparable to that of antibodies produced in mammalian cells (CHO), by overexpressing Leishmania major STT3D (LmSTT3D) under the control of an inducible alcohol oxidase 1 (AOX1) promoter. N-glycan site occupancy of non-antibody glycoproteins such as recombinant human granulocyte macrophage colony-stimulating factor (rhGM-CSF) was also significantly improved, suggesting that LmSTT3D has broad substrate specificity. These results suggest that the glycosylation status of recombinant proteins can be improved by heterologous STT3 expression, which will allow for the customization of therapeutic protein profiles.  相似文献   

20.
l-Homoarginine (hArg) has recently emerged as a novel cardiovascular risk factor and to herald a poor prognosis in heart failure patients. Here, we report on the development and thorough validation of gas chromatography–mass spectrometry (GC–MS) and gas chromatography–tandem mass spectrometry (GC–MS/MS) methods for the quantitative determination of hArg in biological samples, including human plasma, urine and sputum. For plasma and serum samples, ultrafiltrate (10 µL; cutoff, 10 kDa) was used. For urine samples, native urine (10 µL) was used. For sputum, protein precipitation by acetone was performed. hArg is derivatized to its methyl ester tri(N-pentafluoropropionyl) derivative; de novo synthesized trideutero-methyl ester hArg is used as the internal standard (IS). Alternatively, [guanidino-15N2]-arginine can be used as an IS. Quantitative analyses were performed after electron-capture negative-ion chemical ionization by selected-ion monitoring in GC–MS and selected-reaction monitoring in GC–MS/MS. We obtained very similar hArg concentrations by GC–MS and GC–MS/MS, suggesting that GC–MS suffices for accurate and precise quantification of hArg in biological samples. In plasma and serum samples of the same subjects very close hArg concentrations were measured. The plasma-to-serum hArg concentration ratio was determined to be 1.12 ± 0.21 (RSD, 19 %), suggesting that blood anticoagulation is not a major preanalytical concern in hArg analysis. In healthy subjects, the creatinine-corrected urinary excretion of hArg varies considerably (0.18 ± 0.22 µmol/mmol, mean ± SD, n = 19) unlike asymmetric dimethylarginine (ADMA, 2.89 ± 0.89 µmol/mmol). In urine, hArg correlated with ADMA (r = 0.475, P = 0.040); in average, subjects excreted in the urine about 17.5 times more ADMA than hArg. In plasma of healthy humans, the concentration of hArg is of the order of 2 µM. hArg may be a low-abundance constituent of human plasma proteins. The GC–MS and GC-MS/MS methods we report in this article are useful to study the physiology and pathology of hArg in experimental and clinical settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号