首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Axonal and axolemmal development of fibers from rat optic nerves in which gliogenesis was severely delayed by systemic injection of 5-azacytidine (5-AZ) was examined by freeze-fracture electron microscopy. In neonatal (0-2 days) rat optic nerves, all fibers lack myelin, whereas in the adult, virtually all axons are myelinated. The axolemma of neonatal premyelinated fibers is relatively undifferentiated. The P-fracture face (P-face) displays a moderate (approximately 550/micron 2) density of intramembranous particles (IMPs), whereas the E-fracture face (E-face) has few IMPs (approximately 125/micron 2) present. By 14 days of age, approximately 25% of the axons within control optic nerves are ensheathed or myelinated, with the remaining axons premyelinated. The ensheathed and myelinated fibers display increased axonal diameter compared to premyelinated axons, and these larger caliber fibers exhibit marked axonal membrane differentiation. Notably, the P-face IMP density of ensheathed and myelinated fibers is substantially increased compared to premyelinated axolemma, and, at nodes of Ranvier, the density of E-face particles is moderately high (approximately 1300/micron 2), in comparison to internodal or premyelinated E-face axolemma. In optic nerves from 14-day-old 5-AZ-treated rats, few oligodendrocytes are present, and the percentage of myelinated fibers is markedly reduced. Despite delayed gliogenesis, some unensheathed axons within 5-AZ-treated optic nerves display an increased axonal diameter compared to premyelinated fibers. Most of these large caliber fibers also exhibit a substantial increase in P-face IMP density. Small (less than 0.4 micron) diameter unensheathed axons within treated optic nerves maintain a P-face IMP density similar to that of control premyelinated fibers. Regions of increased E-face particle density were not observed. The results demonstrate that some aspects of axolemma differentiation continue despite delayed gliogenesis and the absence of glial ensheathment, and suggest that axolemmal ultrastructure is, at least in part, independent of glial cell association.  相似文献   

2.
Vestibular nerves of squirrel monkeys (Saimiri sciureus) embedded in plastics and epoxies were examined with light microscopy (LM) and transmission electron microscopy (TEM), and computerized measures were obtained and analyzed statistically. An average of 12,412 perikarya and 12,005 myelinated nerve fibers was obtained. Approximately 0.7% of the perikarya appeared unmyelinated under LM. About 500 unmyelinated fibers were counted. The cross-sectional area of 1,864 perikarya was 200-650 micron 2. The cross-sectional area of 1,346 nerve fibers was 3-11 micron 2 for the axoplasm and 11-12 micron 2 for the myelin sheath of the same fiber. Myelin thickness was directly proportional to the axoplasm cross-sectional area of the nerve fibers. The cross-sectional area of central axons and peripheral dendrites differed significantly (p less than 0.001). The initial segments of peripheral dendrites were usually smaller, but longer than the initial segments of the central axons. Both initial segments increased in diameter after the first node of Ranvier. Schmidt-Lantermann incisures were more abundant in thick and heavily myelinated fibers than in thin and lightly myelinated fibers. Larger perikarya usually had larger fibers and vice versa, within the first 100-200 micron from the first node of Ranvier. No major ultrastructural differences were found between myelinated and unmyelinated perikarya, except at the hillock region. The Nissl substance was preferentially located in the peripheral cytoplasm.  相似文献   

3.
Summary The characteristics of fibers of a cutaneous nerve supplying the wing skin of the pigeon have been investigated with electrophysiological and electron microscopic techniques.Recordings of the compound action potential showed four distinct peaks with conduction velocities of about 30 m/s, 12 m/s, 4 m/s and 0.5 m/s.From electron micrographs both fiber diameters and thickness of myelin sheath were assessed and used as criteria for segregating various fiber populations. Altogether four groups could be discerned: large thickly myelinated fibers, small thickly myelinated fibers, small thinly myelinated fibers, and unmyelinated or C-fibers. The subdivision of the thickly myelinated fibers into two populations is evidenced mainly by corresponding peaks in the compound action potential. The thinly myelinated fibers with a mean diameter of 2 m contributed about 90% of all myelinated fibers in this nerve.When comparing fiber dimensions and conduction velocities of this avian nerve with those of mammalian cutaneous nerves, the lower CV's of avian nerve fibers can be explained by smaller diameters and thinner myelin sheaths.The results of this investigation are a prerequisite for latency considerations in central somatosensory pathways in birds.Abbreviations CAP compound action potential - CV conduction velocity - D fiber diameter - d axon diameter - g ratio d/D - m thickness of myelin sheath  相似文献   

4.
Tandrup  T. 《Brain Cell Biology》2002,31(1):73-78
To test the hypothesis that a somatofugal wave of atrophy moving distally in the axon of primary sensory neurons leads to loss of myelinated nerve fibers in acrylamide neuropathy, rats (N = 18) were intoxicated with an initial dose of 75 mg acrylamide per kg body weight followed by daily treatment with 30 mg/kg for three, six and 12 days. Ten age matched saline treated rats served as controls. Numbers and mean volumes of A- and B-cell perikarya of the L5 dorsal root ganglion, numbers of myelinated axons and the mean cross sectional myelinated axon area 3 and 18 mm from the ganglion in the dorsal root and in the sural nerve were estimated using stereological techniques. After three days no changes in the number or size of primary sensory perikarya or myelinated axons were observed. However, after six days 11% of the A-cell perikarya showed signs of chromatolysis (P < 0.001). After 12 days the rats showed signs of ataxia and 23% (P < 0.001) of A-cell perikarya were chromatolytic. There was a tendency for atrophy of the mean perikaryal volume of A-cells (2P = 0.059). The size-frequency distributions of axonal area of myelinated fibers in the dorsal root 3 mm from the ganglion were displaced to the left towards smaller sizes (25–50% quartile: 2P < 0.005 and 75–100% quartile: 2P < 0.05). In conclusion, the primary structural event in acute acrylamide intoxication is chromatolysis of A-cells of the dorsal root ganglion without the occurrence of somatofugal axonal atrophy.  相似文献   

5.
Morpho-functional changes in the tectum mesencephali during degeneration after enucleation were studied inEmys orbicularis L. Comparison of amplitude-time characteristics of evoked potentials of the visual center with degenerative changes in axon terminals and fibers of the optic nerve in the same animals revealed a "light" type of degeneration of the terminals of unmyelinated axons and a "dark" type in terminals of myelinated axons. During "dark" degeneration (4–5 months after enucleation) the low-amplitude presynaptic component of the evoked potential, reflecting excitation of large myelinated fibers, disappeared and changes occurred in the characteristics of the first high-amplitude component, the appearance of which is connected with excitation of myelinated fibers of medium diameter. The last component disappeared 7 months after the operation, along with disappearance of the "dark" degeneration. During "light" degeneration (2.5–3.5 months) changes took place in the characteristics of the second high-amplitude component of the evoked potential, which reflects excitation of thin fibers, both myelinated and unmyelinated, whose ranges of diameters overlap. This component disappeared after 6–7 months, almost simultaneously with disappearance of the first high-amplitude component, as the result of simultaneous completion of degeneration of myelinated fibers of medium and small diameter.  相似文献   

6.
Particle size of airborn Cryptococcus neoformans in a tower.   总被引:2,自引:0,他引:2       下载免费PDF全文
Nearly 10(6) cells of Cryptococcus neoformans were cultured per g of pigeon droppings in a vacant tower. The air in the tower contained an average of 45 viable cells of C. neoformans per 100 liters: 60% of the cells were less than 4.7 micron in diameter. It is estimated that a human exposed to this atmosphere for 1 h would have 41 cells of c. neoformans deposited in the lungs. Sweeping resulted in the aerosolization of large numbers of cells of C. neoformans from 4.7 to 11 micron in diameter, the number of cells less than 4.7 micron remained relatively constant. One minute after sweeping, 4.4% of viable airborne cells of C. neoformans were less than 1.1 micron in diameter. We believe that this is the first report of isolating such small cells of C. neoformans from a natural site.  相似文献   

7.
Nearly 10(6) cells of Cryptococcus neoformans were cultured per g of pigeon droppings in a vacant tower. The air in the tower contained an average of 45 viable cells of C. neoformans per 100 liters: 60% of the cells were less than 4.7 micron in diameter. It is estimated that a human exposed to this atmosphere for 1 h would have 41 cells of c. neoformans deposited in the lungs. Sweeping resulted in the aerosolization of large numbers of cells of C. neoformans from 4.7 to 11 micron in diameter, the number of cells less than 4.7 micron remained relatively constant. One minute after sweeping, 4.4% of viable airborne cells of C. neoformans were less than 1.1 micron in diameter. We believe that this is the first report of isolating such small cells of C. neoformans from a natural site.  相似文献   

8.
In this article the question of what evolutionary factors guided acquisition of myelin in the nervous system is addressed. The conclusion that conduction velocity of action potentials along the axon has been the only motive force needs reformulation, as other factors may have played a central role as well. In particular, protection against firing of spontaneous action potentials which may result from the simultaneous opening of only few (less than 10) sodium channels at the nodes of small (less than 1 micron diameter) myelinated axons, may have greatly contributed to discouraging myelination of axons smaller than 1 micron.  相似文献   

9.
Previous studies by a number of workers have shown that the axon membrane in normal mature myelinated fibres is highly differentiated, with the nodal axolemma exhibiting characteristics different to those of the internodal axolemma. However, the development of this axolemmal heterogeneity has not been previously explored. In the present study we used cytochemical methods to examine the development of nodal axolemma during the differentiation of myelinated fibres in rat spinal roots. The staining properties characteristic of normal nodal membrane appear in the axon, at gaps between Schwann cells, before the development of mature compact myelin or well defined paranodal axon--Schwann cell specializations close to the region of nodal axolemmal differentiation. These results are consistent with the hypothesis that the axon membrane differentiates into nodal and internodal regions before, or early in the process of, myelination, and suggest that the differentiation of the axon membrane may provide a signal demarcating the region to be covered by the myelin-forming cell.  相似文献   

10.
1. Regional changes in the diameter of single myelinated afferent nerve fibres innervating the taste disc of the fungiform papillae on the bullfrog tongue were investigated morphologically and functionally. 2. The diameter of myelinated afferents in the medial lingual branch of the glossopharyngeal nerve averaged 8.4 microns at the proximal end of the tongue and gradually decreased at the rate of 0.8 micron/cm length of the fibres as they ran in the apical direction of the tongue. 3. The conduction velocity of single myelinated afferent fibres within the tongue decreased gradually as they ran peripherally. 4. Electrophysiological inspection of neural connections between the fungiform papillae suggests that a gradual centrifugal decrease in the diameter of a single myelinated afferent fibre is not due to multiple bifurcations of the fibre at various sites within the tongue, but due to a natural gradual decrease in the thickness of the myelin sheath and the diameter of axon.  相似文献   

11.
 The influence of subthreshold depolarizing prepulses on the threshold current-to-distance and the threshold current-to-diameter relationship of myelinated nerve fibers has been investigated. A nerve fiber model was used in combination with both a simple, homogeneous volume conductor model with a point source and a realistic, inhomogeneous volume conductor model of a monofascicular nerve trunk surrounded by a cuff electrode. The models predict that a subthreshold depolarizing prepulse will desensitize Ranvier nodes of fibers in the vicinity of the cathode and thus cause an increase in the threshold current of a subsequent pulse to activate these fibers. If the increase in threshold current of the excited node is large enough, the excitation will be accompanied by a strong hyperpolarization of adjacent nodes, preventing the propagation of action potentials in these fibers. As fibers close to the electrode are more desensitized by prepulses than more distant ones, it is possible to stimulate distant fibers without stimulating such fibers close to the electrode. Moreover, as larger fibers are more desensitized than smaller ones, smaller fibers have lower threshold currents than larger fibers up to a certain distance from the electrode. The realistic model has provided an additional condition for the application of this method to invert nerve fiber recruitment, i.e., real or virtual anodes should be close to the cathode. When using a cuff electrode for this purpose, in the case of monopolar stimulation the cuff length (determining the position of the virtual anodes) should not exceed twice the internodal length of the fibers to be blocked. Similarly, the distance between cathode and anodes should not exceed the internodal length of these fibers when stimulation is to be applied tripolarly. Received: 15 May 2000 / Accepted in revised form: 9 February 2001  相似文献   

12.
The number and size of myelinated nerve fibers have been determined at standard levels in the nerve to medial head of right and left gastrocnemius muscles of 24 normal rats (11 males and 13 females). The mean values of all results were comparable on right and left sides. Thus, 271 +/- 5 myelinated nerve fibers were found in the right nerve and 272 +/- 4 in the left; their mean diameter were respectively 8.1 +/- 0.1 and 8.0 +/- 0.1 micron. There were 60.1% of large nerve fibers on the right side and 59,9% on the left, their mean diameters being 10.5 and 10.6 micron. Some variations occured in all these values, depending of the weight and sex of the animals. Nevertheless, the differences between both sides of a same rat were negligible and the histograms of both nerves could be superposed. Accordingly, in the operated animals, the contralateral nerve may be used as control.  相似文献   

13.
Observations with the electron microscope of longitudinal sections of the sciatic nerves of infant mice during the period of early myelin formation are described. These observations are interpreted in relation to previous studies of transverse sections, and a general picture of the formation of an internodal length of the myelin sheath in three dimensions is formulated. In general, an internodal length of myelin sheath is attained by the spiral wrapping of the infolded Schwann cell surface; the increase in length of the internode during maturation is at least partially explained by the increased length of axon covered by the overlapping of successive layers during the wrapping of the infolded Schwann cell surface; and the nodes of Ranvier refer to the structure complex at the junctions of adjacent non-syncytial Schwann cells. The fact that the mode of formation of myelin brings each of its layers into intimate contact with the axon surface at the nodes is emphasized because of the possible functional significance of this arrangement. The manner of origin of Schmidt-Lantermann clefts remains obscure. Certain isolated observations provide evidence for the possibility that occasional internodes of myelin may form from several small segments of myelin within a single Schwann cell.  相似文献   

14.
For the morphometric light microscopic study of myelinated fibers in mouse trigeminal root, it was necessary to write: (1) an entirely automatic analysis program for the myelinated axons inside the myelin sheath, based on the detection of the myelin sheaths, and (2) an interactive analysis program for the myelinated fibers outside the myelin sheath, due to the high density of compactness of the myelinated fibers based on an indirect fiber individualization by reconstructing them from their axons. In the latter, a semiautomatic correction method (drawing the profile contours with a light pen) allowed compensation for the failures of the automatic method, except for the smallest fibers, which represented 8% of the total. Using these programs, 95% of the axons could be measured and 92% of the myelinated fibers whose axons were analyzed could be measured. The area-equivalent diameter was independent of the detection method; it is a correct-size measurement parameter for axons and fibers that is unrelated to their shape. The projected diameter, an estimation of the perimeter obtained by measurement of the profile projections, depended upon the detection method because the profile contour was influenced by the detection method; it thus takes into account the profile shape. For myelinated fibers, whose analysis program used two detection methods (automatic and semiautomatic), there was an average difference of 16% between the projected diameters obtained with these two methods, whereas the equivalent diameter value was the same. The fiber circularity factor could not be precisely estimated because of the detection error; the axon circularity factor was more reliable since the axon detection was completely automatic.  相似文献   

15.
Biochemical and morphological studies were done on a new trembling mutant hamster CBB. The yield of myelin from the mutant was 30 and 40% of the control at 46 and 140 days of age, respectively, but myelin composition and 2',3'-cyclic nucleotide-3'-phosphohydrolase (CNPase) activity were normal. Morphologically, about 18% of the axons were myelinated in the mutant optic nerve at 46 days of age, in which the myelinated fibers were those with larger diameters (more than 0.6 micron), while the control had a peak at 0.4 micron in diameter. The ultrastructure and thickness of compact myelin lamellae in the mutant were normal. Myelination and the structure of peripheral nerve myelin appeared normal. The results indicate that the essential defect is the delay and arrest of myelination in the CNS, which is probably caused by either a decreased rate of synthesis of myelin components in oligodendrocytes or a defect in the oligodendrocyte-axon recognition in smaller axons.  相似文献   

16.
Summary The electrocyte fibers in the gymnotid Sternarchus albifrons are highly differentiated myelinated axons which exhibit several types of nodes of Ranvier and characteristically short internode lengths. In the present study, regeneration of the electrocyte fibers following removal of the tail was examined by electron microscopy. By 36 days following extirpation, the regenerating electrocyte axons exhibit Type I nodes of Ranvier, with a normal morphology, and Type II nodes of Ranvier with a large nonmyelinated gap and a polypoid elaboration of the axon surface. Moreover, in the regenerating axons the internode length diameter ratios are quite small. Thus, relatively normal axon-Schwann cell relations and a relatively normal differentiation of the axon surface are achieved during regeneration of the Sternarchus electrocyte fibers.Supported in part by the Medical Research Service, Veterans Administration and by grants from the National Institutes of Health and the Paralyzed Veterans of America  相似文献   

17.
Optical measurement of conduction in single demyelinated axons   总被引:1,自引:0,他引:1       下载免费PDF全文
Demyelination was initiated in Xenopus sciatic nerves by an intraneural injection of lysolecithin over a 2-3-mm region. During the next week macrophages and Schwann cells removed all remaining damaged myelin by phagocytosis. Proliferating Schwann cells then began to remyelinate the axons, with the first few lamellae appearing 13 d after surgery. Action potentials were recorded optically through the use of a potential-sensitive dye. Signals could be detected both at normal nodes of Ranvier and within demyelinated segments. Before remyelination, conduction through the lesion occurred in only a small fraction of the fibers. However, in these particular cases we could demonstrate continuous (nonsaltatory) conduction at very low velocities over long (greater than one internode) lengths of demyelinated axons. We have previously found through loose patch clamp experiments that the internodal axolemma contains voltage-dependent Na+ channels at a density approximately 4% of that at the nodes. These channels alone, however, are insufficient for successful conduction past the transition point between myelinated and demyelinated regions. Small improvements in the passive cable properties of the axon, adequate for propagation at this site, can be realized through the close apposition of macrophages and Schwann cells. As the initial lamellae of myelin appear, the probability of success at the transition zone increases rapidly, though the conduction velocity through the demyelinated segment is not appreciably changed. A detailed computational model is used to test the relative roles of the internodal Na+ channels and the new extracellular layer. The results suggest a possible mechanism that may contribute to the spontaneous recovery of function often seen in demyelinating disease.  相似文献   

18.
P Prakash  G S Rao 《Acta anatomica》1978,101(2):110-119
In the buffalo, the left aortic nerve ramifies in the periarterial connective tissue between the ventral surface of the aortic arch and the truncus pulmonalis. The right aortic nerve ramifies over the dorsal and right aspects of the aorta ascendens near its origin. The histograms of myelinated fibres of both left and right aortic nerve are distinctly unimodal with peak around 4-6 micron (64.2-67.8%). The left aortic body is situated in the periarterial connective tissue between the ventral surface of the aortic arch and the truncus pulmonalis, while the right aortic body is located in the tunica adventitia of the dorsal and right aspects of the aorta ascendens near its origin. The greatest sagittal section area of the left aortic body is 0.102 +/- 0.009 mm2 and that of the right aortic body is 0.041 +/- 0.002 mm2. The organ is highly vascular. The mean size of the glomus cells from the left aortic body is 7.68 +/- 0.9 micron x 9.37 +/- 0.13 micron (short diameter x long diameter), whereas the corresponding value for the right aortic body is 7.84 +/- 0.14 micron x 9.86 +/- 0.21 micron; and their density values are (11,417 +/- 301.7)/mm2 and (9,839 +/- 213.3)/mm2 respectively.  相似文献   

19.
For myelinated fibers, it is experimentally well established that spike conduction velocity is proportional to fiber diameter. However no really satisfactory theoretical treatment has been proposed. To treat this problem a theoretical axon was described consisting of lengths of passive leaky cable (internode) regularly interrupted by short isopotential patches of excitable membrane (node). The nodal membrane was assumed to obey the Frankenhaeuser-Huxley equations. The explicit diameter dependencies of the various parameters were incorporated into the equations. The fiber diameter to axon diameter ratio was taken to be constant, and the internode length was taken to be proportional to the fiber diameter. Both these conditions reflect the situation that exists in real, experimental fibers. Dimensional analysis shows that these anatomical conditions are equivalent to Rushton's (1951) assumption of corresponding states. Hence, conduction velocity will be proportional to fiber diameter, in complete agreement with the experimental findings. Digital computer solutions of these equations were made in order to compute a set of actual velocities. Computations made with constant internode length or constant myelin thickness (i.e., nonconstant fiber diameter to axon diameter ratio) did not show linearity of the velocity-diameter relation.  相似文献   

20.
A combined electron microscopic and electrophysiological study of the superior laryngeal nerve (SLN) was undertaken in postnatal kittens ranging in age from 1–63 days. The superior laryngeal nerve is predominantly a sensory nerve innervating the upper respiratory tract, and could play a potential role in the modulation of respiration, particularly in the infant animal. Distribution of fibers in the developing SLN indicates that within the first postnatal month, 75% of the fibers are unmyelinated, and by 42 days, the myelinated fibers increase in number to approximately 50%. Of the myelinated fibers present in the one day old kitten, 3–4% of those exceeded 4 μm in total diameter, which is the minimum diameter for normal conduction velocity of action potentials. The distribution of the diameter sizes of the myelinated fibers is bell-shaped within the first 45 days after which the curve becomes skewed to the right (43–61 days; mean 2.6 μm, range 0.5–8.0 μm) to resemble the adult distribution of myelinated fibers (mean 4.2 μm, range 1.6–13.0 μm). Two variable plots of myelin width to axon diameter suggest a steeper slope for developing fibers as compared to that of the adult fibers. Electrical stimulation of the sectioned SLN indicates that evoked potentials could be recorded from the recurrent laryngeal nerve innervating the laryngeal intrinsic muscles and from the hypoglossal nerve to the tongue musculature in the youngest kittens tested (i.e., age 9 days). Stimulation at selected frequencies of 3 and 30/sec readily evoked apnea in the youngest kitten studied (i.e., age 5 days), while swallowing was more readily evoked at 28–30 days when using electrical stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号