首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
为评估甘蔗生物固氮量,采用15N同位素稀释法,以木薯为参比植物,进行温室桶栽试验.结果表明:甘蔗全生育期植株固氮11.3514% Ndfa,固氮量每桶0.9269 g.甘蔗根、茎、叶的固氮百分率和固氮量大小依序为叶>茎>根.叶的固氮百分率(13.2668% Ndfa)略高于植株,但两者差异不显著.甘蔗植株全氮量中来自空气氮(生物固氮)、肥料氮和土壤氮的比例分别为11.3514%、7.6857%、80.9629%.甘蔗的氮肥利用率为58.7583%.甘蔗根、茎、叶各部位均有固氮现象,生产上可以用叶代替植株来评估甘蔗的生物固氮量.  相似文献   

2.
生物固氮与有效氮的关系:从分子到群落   总被引:2,自引:0,他引:2  
在当前全球生态系统人为氮素投入激增的背景下,明确生物固氮与有效氮的关系对生态系统氮收支的估算及施肥策略的优化等具有重要的指导意义。本文综述了关于有效氮在分子、个体和群落尺度对生物固氮影响的研究,并对3个尺度的研究进行了比较。我们发现,当前分子、个体尺度的相关研究更为系统,但严重受限于固氮菌的培养;群落尺度的研究虽采用非培养技术开展,研究效率相对更高,但针对固氮基因表达的研究却十分匮乏,研究体系急待完善。据此,未来的研究应更多地关注有效氮在群落尺度对固氮基因表达的调控,并着重于完善群落尺度生物固氮的研究体系。  相似文献   

3.
固氮蓝细菌束毛藻(Tricodesmium)是海洋中丰度最高的固氮微生物,贡献了约42%的海洋生物固氮,为海洋生态系统提供了新的氮源,驱动海洋初级生产力和食物网,在海洋生物地球化学循环中发挥重要作用。作为海洋中“新氮”主要贡献者,束毛藻是一种不产生异形胞的丝状固氮蓝细菌。因为生物固氮的关键酶固氮酶对氧气十分敏感,一般固氮蓝细菌通常产生异形胞或采用夜间固氮的方式进行生物固氮,避免氧气对固氮酶的抑制作用。近年来研究发现,束毛藻具有一套独特的生物固氮体系,能够使同一藻丝在白天同时完成光合作用和生物固氮,并具有复杂的调控机制。本文综述了近年来束毛藻生物固氮策略的最新研究进展,介绍了其生物固氮和光合作用之间的精密调控机制,对拓展固氮微生物尤其是海洋蓝细菌固氮机制的认识具有借鉴意义。  相似文献   

4.
蓝藻一类固氮生物固定空气中分子氮所形成的氨的进一步同化虽然不属于生物固氮的概念和研究范畴,但是,由于氨对蓝藻固氮酶有阻抑效应,所以细胞中要不断进行固氮作用,则必须将固氮产物氨立即通过氨基酸合成蛋白质。这一过程是通过谷氨酰胺合成酶(GS)和谷氨酸合成酶(GOGAT)的偶联,以及各种氨基酸和蛋白质合成酶参与下  相似文献   

5.
海洋生物固氮因可以支持初级生产所需的氮而在全球碳氮循环中具有重要作用。从二十世纪九十年代分子生物学和15N2同位素示踪法应用于固氮研究领域以来, 逐渐发现了单细胞固氮蓝藻和异养固氮细菌的重要性, 是近年来海洋固氮研究领域的最大进展之一, 表明以前基于束毛藻为主要固氮生物估算的固氮量可能低估了生物固氮在全球海洋生物地球化学循环中的地位。另一方面, 传统的海洋生物固氮研究仅局限于热带亚热带的寡营养盐区域, 对高营养盐区域如上升流、河口等高营养盐区域较少关注, 因此有必要对这些区域的生物固氮进行重新评估和再认识。综述了国际固氮研究的最近进展, 主要包括固氮生物多样性及分布特征、生物固氮的限制性因素、研究方法以及存在的问题。同时综述了南海生物固氮方面的最新进展和问题。  相似文献   

6.
非共生生物固氮微生物分子生态学研究进展   总被引:3,自引:0,他引:3  
氮是限制生态系统生产力的主要元素,生物固氮是自然生态系统中氮的主要来源.生物固氮包括共生、联合和自生固氮3种类型,其中联合固氮和自生固氮统称为非共生固氮.相对于共生固氮而言,非共生固氮速率虽然较低,但其不需要与其他生物形成共生体系就可以生存并进行固氮,在时空分布上更加广泛,因此对生态系统氮循环特别是素输入具有重要贡献.本文对近年有关非共生固氮微生物的多样性、土壤和叶际固氮微生物的分布特征及影响因素等研究进展进行了综述,并在此基础上阐述了现有研究中存在的问题和发展前景.  相似文献   

7.
外源供氮水平对大豆生物固氮效率的影响   总被引:2,自引:0,他引:2  
采用稳定性同位素15N自然丰度(15N natural abundance)技术,以小麦为参照植物,研究了盆栽条件下,在外源供氮0、0.8、2.0、4.0 mmol·L-1水平下大豆的生物固氮百分率以及生物固氮数量对植物氮的贡献.结果显示:(1)0~2.0 mmol·L-1外源供氮可显著提高大豆的生物量和固氮百分率,且于2.0 mmol·L-1处理下地上生物量最高,达104 g·m-2,比CK增加了48%;(2)在0.8 mmol·L-1的供氮水平下大豆生物固氮量最高,为1.318 g·m-2,占大豆植株总吸氮量的70.4%,而在4.0 mmol·L-1供氮水平下生物固氮量仅占植株总吸氮量的44%;随供氮水平的升高,大豆生物固氮量占总吸氮量的比重下降,说明在高水平外源氮下,大豆生物固氮能力受到抑制;(3)大豆生物固氮百分率、固氮数量及吸氮数量与地上生物量间均呈显著正相关关系.结果表明,应用稳定性15N同位素技术可以定量大豆的生物固氮效率,根瘤菌接种配合低浓度外源氮有利于大豆生物固氮潜能的释放,对提高大豆产量、减少化肥投入有积极的指导意义.  相似文献   

8.
根瘤菌在与其主植物共生过程中,具有形成根瘤和固定大气中游离氮的能力。全世界每年通过生物固氮大约可固定一亿七千五百万吨氮,而根瘤菌与豆科植物共生固氮的总量就达三千五百万吨。  相似文献   

9.
生物固氮及在可持续农业中的应用   总被引:3,自引:0,他引:3  
氮是限制农业生产的重要营养元素.生物固氮指某些原核生物能利用体内的固氮酶将空气中的氮气还原为氨,为植物生长提供氮素.自然界中存在多种具有固氮能力的微生物,依据其固氮方式分为自生固氮、共生固氮和联合固氮三种类型.联合固氮茵通过趋化定殖在植物根表,并生长、固氮.  相似文献   

10.
豆科植物一根瘤菌共生固氮在自然界中占有极其重要的地位.据估计,全球生物固氮量约为17500万吨,而现今工业上采用的Haber-Bosch法固定大气氮的无机氮量约为4500万吨,不及生物固氮量的三分之一.其中豆科植物一根瘤菌的共生固氮量为3500万吨,几乎可以与工业的无机氮相媲美(Burns和Hardy,1975).根瘤菌侵染豆科植物根而形成根瘤,由此产生了一种互通有无、共存共荣的固定空  相似文献   

11.
共生根瘤的固氮效率受外界氮素的严格调控。除固氮酶活性外, 豆血红蛋白(Lb)浓度亦是反应固氮能力的重要指标。为明确氮水平对生物固氮作用的影响, 以大豆(Glycine max)为材料, 在低氮(0.53 mmol·L-1)条件下接种根瘤菌, 30天后再进行高氮(5.3、10、20、30和40 mmol·L-1)处理7天, 分析Lb浓度、固氮酶活性及类菌体发育状态。结果表明, 随着外界氮浓度的增加, 根瘤由红变绿, 且红色Lb明显减少而绿色Lb急剧增加; 固氮酶活性显著被抑制, 类菌体中侵染细胞数目和面积显著下降, 表明高氮引起Lb形态的改变与固氮能力关系密切。利用生物信息学及公开表达谱等数据进行分析, 发现大豆根瘤中主要含有4个共生Lb基因, 即GmLb1GmLb2GmLb3GmLb4。4个GmLbs亲缘关系很近且位于进化树的同一分支。进一步分析GmLb1-4转录水平对氮的响应, 结果表明, GmLb1-4的表达显著受高氮抑制。研究结果可为揭示氮介导根瘤衰老机制及生物固氮的应用提供依据。  相似文献   

12.
一种高效研究大豆根瘤共生固氮的营养液栽培体系   总被引:2,自引:0,他引:2  
为建立一种既可高效结瘤固氮, 又具有一定产量的大豆(Glycine max)营养液栽培系统, 设计并进行了2个试验。首先在不同供氮条件下, 研究了接种根瘤菌对大豆的结瘤状况、固氮能力、生物量及产量的影响。结果表明, 供氮过高或过低, 均影响大豆生长、产量形成及根瘤固氮; 并且植物生长所需的最适供氮水平远高于生物固氮所需的最适供氮水平。此外, 大豆生物固氮活性最高的时期在生殖期第一期(R1期)之前。由此推断, 大豆R1期前, 供应较低的氮, 有利于根瘤形成及固氮; 而从R1期起, 应提高供氮水平, 以促进植物生长及产量的形成。在此基础上开展第2个试验, 对供氮条件进行了优化处理(即R1期前低氮供应、R1期开始中氮供应)。结果表明, 与持续供应高氮相比, 优化供氮处理不仅可获得较多固氮酶活性较高的大根瘤, 还能保持较好的生长、获得更高的百粒重及维持80%左右的产量。研究结果不仅可为高效研究大豆根瘤共生固氮提供营养液配方, 还可为大豆高产高效栽培提供试验依据。  相似文献   

13.
高氮抑制豆科植物结瘤固氮机制研究进展   总被引:2,自引:0,他引:2  
豆科植物通过与根瘤菌共生,形成根瘤并进行生物固氮。豆科植物的结瘤固氮作用在农业上具有减肥增效、改良土壤等重大意义。然而,高氮会抑制豆科植物结瘤固氮,形成"氮阻遏"效应。着重论述了高氮抑制豆科植物结瘤的分子机制,包括氮素通过结瘤自调控AON(Autoregulation of nodulation)信号、NLP(NIN-like protein)转录因子、植物激素信号等途径抑制根瘤数目和发育的最新进展;并探讨了高氮抑制根瘤固氮活性的假说及争议,包括亚硝酸盐毒性和碳饥饿等,以期为提高豆科植物应对"氮阻遏"效应提供理论基础。  相似文献   

14.
氮肥是粮食稳产高产的主要保证,大气中约80%是氮素,但植物本身无法直接利用,只有通过固氮微生物或者固氮微生物与植物实现共生的时候才能利用它。据估计,生物固氮约占地球氮周转率的90%以上,因此通过生物固氮途径为稻麦等粮食作物提供氮肥是很有意义  相似文献   

15.
科技信息     
共生固氮微生物与农作物固氮蓝细菌与满江红、苏铁共生,还与真菌、苔藓、裸子植物和被子植物某些种属建立共生固氮体系;此固氮蓝细菌是地球上最早的绿色自养原核生物,行光合作用和放氧;还具共生固氮(N2)功能。已从那些固氮微生物中获得固氮基因,若能通过某种分子载体转移到水稻  相似文献   

16.
根瘤菌是能侵入合适寄主植物根部并形成根瘤的一类细菌。由于在根瘤中,根瘤菌可以大量固定大气中的氮,因而在生物固氮研究中具有重要地位。过去十年中,由于分子生物学技术的进展使我们对根瘤菌遗传的各个方面有了许多了解。在一些根瘤菌中,成功地识别、分离了与共生固氮有关的基因。这些基因中有一类是与根瘤菌固氮能力有关的,统称为固氮基因(Fix基因)其中偏码固氮酶的结构基因nif HDK在所有已检查过的固氮微生物中具  相似文献   

17.
乙炔还原法测定固氮作用的限制因素   总被引:2,自引:0,他引:2  
樊惠   《微生物学通报》1995,22(4):235-238
乙炔还原法测定固氮作用的限制因素樊惠(中国农业科学院土壤肥料研究所,北京100081)测定固氮生物固氮量的直接方法主要有全氮法、N ̄(15)示踪法。前者曾在生物固氮早期的研究中成功地被应用,但其灵敏空较低。后者是固氮量测定的准确、可靠的方法;但由于费...  相似文献   

18.
为了提高高等农业院校有关教师的理论水平,掌握固氮生物化学及固氮微生物分子遗传学的研究方法和技术,北京农大农业生物学院生物固氮组,受农牧渔业部教育司的委托,于1985年5月13日至6月19日举办全国高等农业院校生物固氮师资讲习班。讲习班由北京农大李季伦教授主持,邀请国内外生物固氮专家、教授和近几年出国进修的教师讲  相似文献   

19.
固氮蓝藻能为水生态系统输入新氮,生物固氮对水体氮的贡献观点不一。人工湿地中固氮蓝藻输入的新氮对除氮效率的影响仍不明晰。本研究通过连续监测,比较了北京野生动物救护中心水禽栖息的人工湖和净化其水质的人工湿地中的浮游植物组成、颗粒物有机氮(PON)和水体固氮速率(Rn),分析固氮蓝藻鱼腥藻属(Anabaena)和非固氮蓝藻微囊藻属(Microcystis)藻细胞密度的季节变化,及其与水体PON和Rn相关性。通过IsoSource软件分析15N自然丰度,计算了各个来源(大气N_2、鸟粪、沉积物和水体硝酸盐)对人工湖和人工湿地中PON的贡献率。结果显示,人工湖中鱼腥藻和微囊藻交替爆发,Rn与PON和鱼腥藻细胞密度均呈正相关(P0.05),说明鱼腥藻输入的新氮可能被微囊藻利用转化为PON。大气N_2对生长季人工湖和人工湿地PON贡献率分别为0.5%~82.0%和50.0%~86.0%,9月水体固氮速率达到最高时大气N_2对PON贡献率可达80%以上。本研究表明,人工湖中的鱼腥藻固氮能为微囊藻提供可利用氮,可能是人工湖夏季微囊藻水华的原因之一。由于浮游植物在表流人工湿地较难沉淀和吸附,浮游植物增多使人工湿地去除PON的能力降低,因此鱼腥藻固氮可能间接降低人工湿地除氮能力。  相似文献   

20.
基于土壤氮素在农业生产中的重要性,化肥的生产量又远远赶不上日益增长的生产需要,生物固氮的研究已成为世界上的重点研究课题。自六十年代以后人们对固氮机理的研究日趋深入,探索根瘤菌或自生固氮菌在土壤中如何将分子态氮还原为氨。对于生物固氮中的电子传递早期的研究只限于巴氏梭菌等嫌气菌,研究认为由于丙酮酸的磷酸裂解作用提供了该菌固氮时所需的还原性电子与ATP。这种磷酸裂解作用在自生固氮菌与根瘤类菌体等好气菌中是不存在的。连二亚硫酸钠作为非生理性电子供体较为理想,但是这些好气菌的内生生  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号