首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Bone formation is reduced in hyperglucocorticoid states, e.g. Cushing's syndrome or long-term treatment with synthetic glucocorticoids during rheumatic diseases. Possibly related to decreased sensitivity of the target to insulin-like growth factor-I (IGF-I). In this study, we have sought to identify postreceptor-mechanisms for glucocorticoid-induced resistance to insulin-like peptides in a model system. Treatment of Swiss 3T3 fibroblasts with 100 nM dexamethasone for 48 h reduced IGF-I-induced activation of mitogen-activated protein kinase (MAP kinase). The level of insulin receptor substrate-1 (IRS-1) was reduced in dexamethasone-treated cells, as measured by Western blot; however, the pattern of tyrosine-phosphorylated protein subsequent to stimulation with IGF-I (1 min) was not altered. No inhibitory effect of dexamethasone was observed on the level of phosphotyrosine in IRS-1 in extracts from IGF-I-treated cells. The amount of IGF-I-induced association of insulin receptor substrate-1 and phosphatidylinositol 3-kinase was increased in steroid treated cells. Addition of IGF-I increased the synthesis of lipid, glycogen and protein, and the reduction of a tetrazolium dye, MTS, in untreated cells. The response to IGF-I in terms of glycogen synthesis was blunted, whereas the effect of IGF-I was unaffected for the other three parameters in cells pretreated with dexamethasone. These findings indicate that the activation of MAP kinase may be dissociated from IGF-I-induced anabolic pathways and tyrosine phosphorylationof IRS-1. The results agree with the previously proposed role for the activation of MAP kinase in the regulation of glycogen synthesis. Furthermore, they suggest that dexamethasone-induced reduction of IRS-1 expression may be important for the impaired activation of MAP kinase by insulin-like peptides in steroid-treated cells.  相似文献   

2.
Insulin and insulin-like growth factor-I (IGF-I) receptors are highly homologous tyrosine kinase receptors that share many common steps in their signaling pathways and have ligands that can bind to either receptor with differing affinities. To define precisely the signaling specific to the insulin receptor (IR) or the IGF-I receptor, we have generated brown preadipocyte cell lines that lack either receptor (insulin receptor knockout (IRKO) or insulin-like growth factor receptor knockout (IGFRKO)). Control preadipocytes expressed fewer insulin receptors than IGF-I receptors (20,000 versus 60,000), but during differentiation, insulin receptor levels increased so that mature adipocytes expressed slightly more insulin receptors than IGF-I receptors (120,000 versus 100,000). In these cells, insulin stimulated IR homodimer phosphorylation, whereas IGF-I activated both IGF-I receptor homodimers and hybrid receptors. Insulin-stimulated IRS-1 phosphorylation was significantly impaired in IRKO cells but was surprisingly elevated in IGFRKO cells. IRS-2 phosphorylation was unchanged in either cell line upon insulin stimulation. IGF-I-dependent phosphorylation of IRS-1 and IRS-2 was ablated in IGFRKO cells but not in IRKO cells. In control cells, both insulin and IGF-I produced a dose-dependent increase in phosphorylated Akt and MAPK, although IGF-I elicited a stronger response at an equivalent dose. In IRKO cells, the insulin-dependent increase in phospho-Akt was completely abolished at the lowest dose and reached only 20% of the control stimulation at 10 nm. Most interestingly, the response to IGF-I was also impaired at low doses, suggesting that IR is required for both insulin- and IGF-I-dependent phosphorylation of Akt. Most surprisingly, insulin- or IGF-I-dependent phosphorylation of MAPK was unaltered in either receptor-deficient cell line. Taken together, these results indicate that the insulin and IGF-I receptors contribute distinct signals to common downstream components in response to both insulin and IGF-I.  相似文献   

3.
Insulin and growth hormone (GH) induce mitogenic and metabolic signals in cells, GH either directly or indirectly via IGF-I production. We have studied a spontaneous murine T-cell lymphoma (LB cells) devoid of IGF-1 receptors in which proliferation is maintained by insulin [Int. J. Cancer 50 (1992) 80], and show that GH is more potent than insulin, with both GH and insulin dose-response curves for thymidine incorporation being bell-shaped. Binding showed somatogenic rather than lactogenic GH receptors. Insulin stimulated phosphorylation of the insulin receptor and of a 160-kDa protein, identified as the IRS-4 protein. This phosphorylated IRS-4 associated with PI3-kinase, which was activated along with the downstream p70(S6) kinase, whereas the Ras-MAPK pathway was not. Using selective inhibitors, the PI3-kinase, but not p70(S6) kinase or MEK, was found to be involved in insulin-stimulated DNA synthesis. GH induced tyrosine phosphorylation of IRS-4 and nuclear translocation of STAT5. The LB cells constitute a new model for studying GH and insulin signalling without interference of IGF-1 receptors.  相似文献   

4.
The role of tyrosine phosphorylation of the insulin receptor substrate 1 (IRS-1) was studied utilizing parental CHO cells or CHO cells that overexpress IRS-1, the insulin receptor, or both IRS-1 and the insulin receptor. Insulin stimulation of these four cell lines led to progressive levels of IRS-1 tyrosine phosphorylation of one, two, four, and tenfold. Maximal insulin-stimulated IRS-1 associated Ptdlns 3′-kinase activit in these cells was 1-, 1.5-, 3-, and 3-fold, while insulin sensitivity, as determined by ED50, was 1-, 2.5-, 10-, and 10-fold. Both sensitivity and maximal response paralleled the increased level of phosphotyrosyl-IRS-1; however, the increased level of phosphotyrosyl-IRS-1 seen in CHO/IR/IRS-1 cells did not further increase these responses. Likewise, maximal insulin-stimulated MAP kinase activity in these cell lines increased in parallel with IRS-1 tyrosine phosphorylation except in the CHO/IR/IRS-1 cell lines with activity levels of one-, five-, nine-, and ninefold. However, insulin sensitivity of the MAP and S6 kinases and maximal insulin-stimulated S6 kinase activity was not changed by a twofold increase in phosphotyrosyl-IRS-1, but an increase was observed with insulin-stimulated receptor autophosphorylation and kinase activity in CHO/IR cells which led to a tenfold increase in insulin receptor autophosphorylation and a fourfold increase in IRS-1 tyrosine phosphorylation. Thus, these three kinase activities may be differentially coupled to the activation of the insulin receptor kinase activity via IRS-1 and other possible cellular substrates. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Cellular insulin stimulation generates a burst of H(2)O(2) that modulates protein-tyrosine phosphorylation in the insulin action pathway, in part by the inhibition of redox-sensitive protein-tyrosine phosphatases [J. Biol. Chem. 276 (2001) 21938]. Blocking the insulin-induced rise in H(2)O(2) with the NADPH oxidase inhibitor diphenyleneiodonium (DPI) strongly attenuated the activation of phosphatidylinositol 3' (PI 3')-kinase, Akt and GLUT4 translocation by insulin in 3T3-L1 adipocytes; however, under identical conditions, we observed a paradoxical increase in the activation of p42/p44 mitogen-activated protein (MAP) kinase. DPI inhibited the insulin-stimulated tyrosine phosphorylation of the insulin receptor and IRS-1/2, and also reduced the association of Grb2 with IRS-1, suggesting that the effect of DPI on MAP kinase activation occurred downstream of the IR and IRS proteins. DPI increased the insulin-stimulated phosphorylation of p42/p44 MAP kinase with no change in basal, and increased insulin-stimulated MAP kinase kinase (MEK) activity by a similar degree. DPI enhanced basal Grb2-Sos binding and reduced the effect of insulin to potentiate the dissociation of the Grb2-Sos complex, suggesting that the effect of DPI was mediated upstream of Raf-1. Cell treatment with dibutyryl cAMP significantly reduced the enhancement of MAP kinase activation in the presence of DPI. However, forskolin, acting in a PKA-independent manner, increased the insulin stimulation of MAP kinase and MEK, but fully abrogated the effect of DPI to enhance these insulin responses. PLCgamma inhibition with U73122 blocked the insulin stimulation of MAP kinase and MEK as well as the enhancing effect of DPI on these responses. PKC activation strongly stimulated MAP kinase and MEK activation, even in the presence of U73122, consistent with PKC acting downstream of PLCgamma. These data show that the insulin-stimulated oxidant signal differentially affects the two major downstream components of the insulin signaling pathway, PI 3'-kinase and MAP kinase, and cross-talk between insulin action, PLCgamma and, to a lesser extent, PKA modulates the net cellular effects of insulin-stimulated cellular H(2)O(2).  相似文献   

6.
Continuous stimulation of cells with insulin-like growth factors (IGFs) in G(1) phase is a well established requirement for IGF-induced cell proliferation; however, the molecular components of this prolonged signaling pathway that is essential for cell cycle progression from G(1) to S phase are unclear. IGF-I activates IGF-I receptor (IGF-IR) tyrosine kinase, followed by phosphorylation of substrates such as insulin receptor substrates (IRS) leading to binding of signaling molecules containing SH2 domains, including phosphatidylinositol 3-kinase (PI3K) to IRS and activation of the downstream signaling pathways. In this study, we found prolonged (>9 h) association of PI3K with IGF-IR induced by IGF-I stimulation. PI3K activity was present in this complex in thyrocytes and fibroblasts, although tyrosine phosphorylation of IRS was not yet evident after 9 h of IGF-I stimulation. IGF-I withdrawal in mid-G(1) phase impaired the association of PI3K with IGF-IR and suppressed DNA synthesis the same as when PI3K inhibitor was added. Furthermore, we demonstrated that Tyr(1316)-X-X-Met of IGF-IR functioned as a PI3K binding sequence when this tyrosine is phosphorylated. We then analyzed IGF signaling and proliferation of IGF-IR(-/-) fibroblasts expressing exogenous mutant IGF-IR in which Tyr(1316) was substituted with Phe (Y1316F). In these cells, IGF-I stimulation induced tyrosine phosphorylation of IGF-IR and IRS-1/2, but mutated IGF-IR failed to bind PI3K and to induce maximal phosphorylation of GSK3β and cell proliferation in response to IGF-I. Based on these results, we concluded that PI3K activity bound to IGF-IR, which is continuously sustained by IGF-I stimulation, is required for IGF-I-induced cell proliferation.  相似文献   

7.
Insulin and insulin-like growth factor I (IGF-I) are known to affect cardiovascular disease. We have investigated ligand binding and the dose-response relationship for insulin and IGF-I on vascular smooth muscle cells (VSMCs) at the receptor level. VSMCs from rat thoracic aorta were serum starved, stimulated with IGF-I or insulin, lysed, immunoprecipitated, and analyzed by Western blot. d-[U-(14)C]Glucose accumulation and [6-(3)H]thymidine incorporation into DNA were also measured. Specific binding of both insulin and IGF-I was demonstrated, being higher for IGF-I. Both IGF-I receptor (IGF-IR) and insulin receptor (IR) beta-subunits were detected and coprecipitated after immunoprecipitation (IP) against either of the two. No coprecipitation was found after reduction of disulphide bonds with dithiotreitol before IP. After stimulation with 10(-10)-10(-9) M IGF-I, IP of the IGF-IR, or IR beta-subunit and immunoblot with anti-phosphotyrosine antibody, we found two distinct bands indicating phosphorylation of both the IGF-IR and the IR beta-subunit. Stimulation with 10(-10)-10(-9) M insulin and IP against the IGF-IR did not show phosphorylation of either beta-subunit, whereas after IP of the IR we found phosphorylation of the IR beta-subunit. [(14)C]Glucose accumulation and [(3)H]thymidine incorporation were elevated in cells stimulated with IGF-I at 10(-10)-10(-7) M, reaching maximum by 10(-9) M. Insulin stimulation showed measurable effects only at supraphysiological concentrations, 10(-8)-10(-7) M. In conclusion, coprecipitation of both the IGF-IR and the IR beta-subunit indicates the presence of hybrid insulin/IGF-I receptors in VSMC. At a physiological concentration, insulin activates the IR but does not affect either glucose metabolism or DNA synthesis, whereas IGF-I both activates the receptor and elicits biological effect.  相似文献   

8.
CSF-1 is equipotent to insulin in its ability to stimulate 2-[3H]deoxyglucose uptake in 3T3-L1 adipocytes expressing the colony stimulating factor-1 receptor/insulin receptor chimera (CSF1R/IR). However, CSF-1-stimulated glucose uptake and glycogen synthesis is reduced by 50% in comparison to insulin in 3T3-L1 cells expressing a CSF1R/IR mutated at Tyr960 (CSF1R/IRA960). CSF-1-treated adipocytes expressing the CSF1R/IRA960 were impaired in their ability to phosphorylate insulin receptor substrate 1 (IRS-1) but not in their ability to phosphorylate IRS-2. Immunoprecipitation of IRS proteins followed by Western blotting revealed that the intact CSF1R/IR co-precipitates with IRS-2 from CSF-1-treated cells. In contrast, the CSF1R/IRA960 co-precipitates poorly with IRS-2. These observations suggest that Tyr960 is important for interaction of the insulin receptor cytoplasmic domain with IRS-2, but it is not essential to the ability of the insulin receptor tyrosine kinase to use IRS-2 as a substrate. These observations also suggest that in 3T3-L1 adipocytes, tyrosine phosphorylation of IRS-2 by the insulin receptor tyrosine kinase is not sufficient for maximal stimulation of receptor-regulated glucose transport or glycogen synthesis.  相似文献   

9.
Transforming growth factor beta 1 (TGF-beta 1) and insulin-like growth factor I (IGF-I) have contrasting effects on cell cycle regulation in thyroid cells and TGF-beta 1 induces a dramatic decrease in IGF-I-induced cell proliferation. The aim of the present study was to investigate the molecular mechanism of cross-talk between TGF-beta 1 and IGF-I in FRTL-5 cells. TGF-beta 1 affected IGF-I-stimulated insulin receptor substrate 1 (IRS-1) tyrosine phosphorylation and its association with Grb2 protein. Moreover, TGF-beta 1 decreased the IGF-I-induced tyrosine phosphorylation of the adaptor protein CrkII and its association with the IGF-I receptor. These results were accompanied by TGF-beta 1 inhibition of IGF-I-stimulated mitogen-activated protein kinase phosphorylation and activation. Conversely, TGF-beta 1 did not alter IGF-I-stimulated IRS-1-associated phosphatidylinositol 3-kinase activity, IGF-I-induced tyrosine phosphorylation of Shc, and its binding to Grb2. Taken together, these findings provide a molecular basis for the growth-inhibitory action of TGF-beta 1 on the IGF-I-induced mitogenic effect.  相似文献   

10.
Serine phosphorylation of insulin receptor substrate (IRS) proteins is a potential inhibitory mechanism in insulin signaling. Here we show that IRS-2 is phosphorylated by glycogen synthase kinase (GSK)-3. Phosphorylation by GSK-3 requires prior phosphorylation of its substrates, prompting us to identify the "priming kinase." It was found that the stress activator anisomycin enhanced the ability of GSK-3 to phosphorylate IRS-2. Use of a selective c-Jun NH(2)-terminal kinase (JNK) inhibitor and cells overexpressing JNK implicated JNK as the priming kinase. This allowed us to narrow down the number of potential GSK-3 phosphorylation sites within IRS-2 to four regions that follow the motif SXXXSP. IRS-2 deletion mutants enabled us to localize the GSK-3 and JNK phosphorylation sites to serines 484 and 488, respectively. Mutation at serine 488 reduced JNK phosphorylation of IRS-2, and mutation of each site separately abolished GSK-3 phosphorylation of IRS-2. Treatment of H4IIE liver cells with anisomycin inhibited insulin-induced tyrosine phosphorylation of IRS-2; inhibition was reversed by pretreatment with the JNK and GSK-3 inhibitors. Moreover, overexpression of JNK and GSK-3 in H4IIE cells reduced insulin-induced tyrosine phosphorylation of IRS-2 and its association with the p85 regulatory subunit of phosphatidylinositol 3-kinase. Finally, both GSK-3 and JNK are abnormally upregulated in the diabetic livers of ob/ob mice. Together, our data indicate that IRS-2 is sequentially phosphorylated by JNK and GSK-3 at serines 484/488 and provide evidence for their inhibitory role in hepatic insulin signaling.  相似文献   

11.
We have previously shown that endogenous IGF-I regulates growth of human intestinal smooth muscle cells by stimulating proliferation and inhibiting apoptosis. In active Crohn's disease, expression of IGF-I and the alpha(v)beta(3)-integrin receptor ligands fibronectin and vitronectin is increased. The aim of the present study was to determine whether occupation of the alpha(v)beta(3)-receptor influences IGF-I receptor tyrosine kinase activation and function in human intestinal smooth muscle cells. In untreated cells, IGF-I elicited time-dependent tyrosine phosphorylation of its cognate receptor that was maximal within 2 min and sustained for 30 min. In the presence of the alpha(v)beta(3)-ligand fibronectin, IGF-I-stimulated IGF-I receptor activation was augmented. Conversely, in the presence of the alpha(v)beta(3)-specific disintegrin echistatin, IGF-I-stimulated IGF-I receptor tyrosine kinase phosphorylation was inhibited. IGF-I-stimulated IGF-I receptor activation was accompanied by recruitment of the adapter protein IRS-1, activation of Erk1/2, p70S6 kinase, and proliferation. These effects were augmented by fibronectin and attenuated by echistatin. IGF-I also elicited time-dependent recruitment of protein tyrosine phosphatase SHP-2 that coincided with dephosphorylation of the tyrosine phosphorylated IGF-I receptor tyrosine kinase. The alpha(v)beta(3)-disintegrin echistatin accelerated the rate of SHP-2 recruitment and deactivation of the IGF-I receptor tyrosine kinase. The results show that occupancy of the alpha(v)beta(3)-integrin receptor modulates IGF-I-induced IGF-I receptor activation and function in human intestinal muscle cells. We hypothesize that the concomitant increases in the expression of alpha(v)beta(3)-ligands and of IGF-I in active Crohn's disease may contribute to muscle hyperplasia and stricture formation by acting in concert to augment IGF-I-stimulated IGF-I receptor tyrosine kinase activity and IGF-I-mediated muscle cell growth.  相似文献   

12.
Integrin-induced focal adhesion kinase (FAK) phosphorylation as well as insulin-like growth factor-I (IGF-I) and insulin activate MAP kinase. Since IGF-I or insulin have been suggested to affect FAK phosphorylation, we analyzed the role of FAK in IGF-I- or insulin-induced MAP kinase activation. Although MAP kinase was stimulated by IGF-I or insulin, FAK tyrosine phosphorylation remained unchanged in fibroblasts expressing normal or transiently elevated levels of IGF-I and insulin receptors. Further analysis in FAK deficient fibroblasts suggested that FAK impedes MAP kinase activation by IGF-I or insulin.  相似文献   

13.
Tumor necrosis factor-alpha (TNFalpha) has been implicated as a contributing mediator of insulin resistance observed in pathophysiological conditions such as obesity, cancer-induced cachexia, and bacterial infections. Previous studies have demonstrated that TNFalpha confers insulin resistance by promoting phosphorylation of serine residues on insulin receptor substrate 1 (IRS-1), thereby diminishing subsequent insulin-induced tyrosine phosphorylation of IRS-1. However, little is known about which signaling molecules are involved in this process in adipocytes and about the temporal sequence of events that ultimately leads to TNFalpha-stimulated IRS-1 serine phosphorylation. In this study, we demonstrate that specific inhibitors of the MAP kinase kinase (MEK)1/2-p42/44 mitogen-activated protein (MAP) kinase pathway restore insulin signaling to normal levels despite the presence of TNFalpha. Additional experiments show that MEK1/2 activity is required for TNFalpha-induced IRS-1 serine phosphorylation, thereby suggesting a mechanism by which these inhibitors restore insulin signaling. We observe that TNFalpha requires 2.5-4 h to markedly reduce insulin-triggered tyrosine phosphorylation of IRS-1 in 3T3-L1 adipocytes. Although TNFalpha activates p42/44 MAP kinase, maximal stimulation is observed within 10-30 min. To our surprise, p42/44 activity returns to basal levels well before IRS-1 serine phosphorylation and insulin resistance are observed. These activation kinetics suggest a mechanism of p42/44 action more complicated than a direct phosphorylation of IRS-1 triggered by the early spike of TNFalpha-induced p42/44 activity. Chronic TNFalpha treatment (> 72 h) causes adipocyte dedifferentiation, as evidenced by the loss of triglycerides and down-regulation of adipocyte-specific markers. We observe that this longer term TNFalpha-mediated dedifferentiation effect utilizes alternative, p42/44 MAP kinase-independent intracellular pathways. This study suggests that TNFalpha-mediated insulin resistance, but not adipocyte dedifferentiation, is mediated by the MEK1/2-p42/44 MAP kinase pathway.  相似文献   

14.
Ser/Thr phosphorylation of insulin receptor substrate IRS-1 regulates insulin signaling, but the relevant phosphorylated residues and their potential functions during insulin-stimulated signal transduction are difficult to resolve. We used a sequence-specific polyclonal antibody directed against phosphorylated Ser(302) to study IRS-1-mediated signaling during insulin and insulin-like growth factor IGF-I stimulation. Insulin or IGF-I stimulated phosphorylation of Ser(302) in various cell backgrounds and in murine muscle. Wortmannin or rapamycin inhibited Ser(302) phosphorylation, and amino acids or glucose stimulated Ser(302) phosphorylation, suggesting a role for the mTOR cascade. The Ser(302) kinase associates with IRS-1 during immunoprecipitation, but its identity is unknown. The NH(2)-terminal c-Jun kinase did not phosphorylate Ser(302). Replacing Ser(302) with alanine significantly reduced insulin-stimulated tyrosine phosphorylation of IRS-1 and p85 binding and reduced insulin-stimulated phosphorylation of p70(S6K), ribosomal S6 protein, and 4E-BP1; however, this mutation had no effect on insulin-stimulated Akt or glycogen synthase kinase 3beta phosphorylation. Replacing Ser(302) with alanine reduced insulin/IGF-I-stimulated DNA synthesis. We conclude that Ser(302) phosphorylation integrates nutrient availability with insulin/IGF-I signaling to promote mitogenesis and cell growth.  相似文献   

15.
Cellular chromium enhances activation of insulin receptor kinase   总被引:3,自引:0,他引:3  
Wang H  Kruszewski A  Brautigan DL 《Biochemistry》2005,44(22):8167-8175
Chromium has been recognized for decades as a nutritional factor that improves glucose tolerance by enhancing in vivo insulin action, but the molecular mechanism is unknown. Here we report pretreatment of CHO-IR cells with chromium enhances tyrosine phosphorylation of the insulin receptor. Different chromium(III) compounds were effective at enhancing insulin receptor phosphorylation in intact cells, but did not directly activate recombinant insulin receptor kinase. The level of insulin receptor phosphorylation in cells can be increased by inhibition of the opposing protein tyrosine phosphatase (PTP1B), a target for drug development. However, chromium did not inhibit recombinant human PTP1B using either p-nitrophenyl phosphate or the tyrosine-phosphorylated insulin receptor as the substrate. Chromium also did not alter reversible redox regulation of PTP1B. Purified plasma membranes exhibited insulin-dependent kinase activity in assays using substrate peptides mimicking sites of Tyr phosphorylation in the endogenous substrate IRS-1. Plasma membranes prepared from chromium-treated cells had higher specific activity of insulin-dependent kinase relative to controls. We conclude that cellular chromium potentiates insulin signaling by increasing insulin receptor kinase activity, separate from inhibition of PTPase. Our results suggest that nutritional and pharmacological therapies may complement one another to combat insulin resistance, a hallmark of type 2 diabetes.  相似文献   

16.
In response to insulin, tyrosine kinase activity of the insulin receptor is stimulated, leading to autophosphorylation and tyrosine phosphorylation of proteins including insulin receptor subunit (IRS)-1, IRS-2, and Shc. Phosphorylation of these proteins leads to activation of downstream events that mediate insulin action. Insulin receptor kinase activity is requisite for the biological effects of insulin, and understanding regulation of insulin receptor phosphorylation and kinase activity is essential to understanding insulin action. Receptor tyrosine kinase activity may be altered by direct changes in tyrosine kinase activity, itself, or by dephosphorylation of the insulin receptor by protein-tyrosine phosphatases. After 1 min of insulin stimulation, the insulin receptor was tyrosine phosphorylated 8-fold more and Shc was phosphorylated 50% less in 32D cells containing both IRS-1 and insulin receptors (32D/IR+IRS-1) than in 32D cells containing only insulin receptors (32D/IR), insulin receptors and IRS-2 (32D/IR+IRS-2), or insulin receptors and a form of IRS-1 that cannot be phosphorylated on tyrosine residues (32D/IR+IRS-1F18). Therefore, IRS-1 and IRS-2 appeared to have different effects on insulin receptor phosphorylation and downstream signaling. Preincubation of cells with pervanadate greatly decreased protein-tyrosine phosphatase activity in all four cell lines. After pervanadate treatment, tyrosine phosphorylation of insulin receptors in insulin-treated 32D/IR, 32D/ IR+IRS-2, and 32D/IR+IRS-1F18 cells was markedly increased, but pervanadate had no effect on insulin receptor phosphorylation in 32D/IR+IRS-1 cells. The presence of tyrosine-phosphorylated IRS-1 appears to increase insulin receptor tyrosine phosphorylation and potentially tyrosine kinase activity via inhibition of protein-tyrosine phosphatase(s). This effect of IRS-1 on insulin receptor phosphorylation is unique to IRS-1, as IRS-2 had no effect on insulin receptor tyrosine phosphorylation. Therefore, IRS-1 and IRS-2 appear to function differently in their effects on signaling downstream of the insulin receptor. IRS-1 may play a major role in regulating insulin receptor phosphorylation and enhancing downstream signaling after insulin stimulation.  相似文献   

17.
Insulin stimulates phosphatidylinositol-3-kinase (PI3K) and extracellular signal-regulated kinases (ERK) in various mammalian cells. To study the role of PI3K in insulin stimulation of ERK, we employed PI3K inhibitor LY294002 and mouse embryonic R- fibroblasts lacking IGF-1 receptors. In these R- cells, PI3K inhibition by LY294002 enhanced insulin stimulation of ERK phosphorylation whereas LY294002 inhibited insulin stimulation of Akt phosphorylation. The enhanced insulin stimulation of ERK phosphorylation was accompanied by increased IRS-1 tyrosine phosphorylation. Insulin stimulation of insulin receptor tyrosine phosphorylation was not altered. PI3K inhibition increased IRS-1-Grb2 complex formation and ras activity following insulin treatment of cells. Increased insulin stimulation of ERK by PI3K inhibition was mediated by the MEK/ERK pathway, but did not involve inhibitory Ser259 phosphorylation of raf that was reported to be mediated by Akt. In summary, PI3K inhibition in R- cells enhanced insulin stimulation of ERK phosphorylation by mechanisms involving enhancement of IRS-1 tyrosine phosphorylation, IRS-1-Grb2 complex formation and the ras/MEK/ERK pathway.  相似文献   

18.
IGF-I plays an important role in smooth muscle cell proliferation and migration. In vascular smooth muscle cells cultured in 25 mm glucose, IGF-I stimulated a significant increase in Src homology 2 domain containing protein tyrosine phosphatase substrate-1 (SHPS-1) phosphorylation compared with 5 mm glucose and this increase was required for smooth muscle cell proliferation. A proteome-wide screen revealed that carboxyl-terminal SRC kinase homologous kinase (CTK) bound directly to phosphotyrosines in the SHPS-1 cytoplasmic domain. Because the kinase(s) that phosphorylates these tyrosines in response to IGF-I is unknown, we determined the roles of IGF-I receptor (IGF-IR) and CTK in mediating SHPS-1 phosphorylation. After IGF-I stimulation, CTK was recruited to IGF-IR and subsequently to phospho-SHPS-1. Expression of an IGF-IR mutant that eliminated CTK binding reduced CTK transfer to SHPS-1, SHPS-1 phosphorylation, and cell proliferation. IGF-IR phosphorylated SHPS-1, which provided a binding site for CTK. CTK recruitment to SHPS-1 resulted in a further enhancement of SHPS-1 phosphorylation. CTK knockdown also impaired IGF-I-stimulated SHPS-1 phosphorylation and downstream signaling. Analysis of specific tyrosines showed that mutation of tyrosines 428/452 in SHPS-1 to phenylalanine reduced SHPS-1 phosphorylation but allowed CTK binding. In contrast, the mutation of tyrosines 469/495 inhibited IGF-IR-mediated the phosphorylation of SHPS-1 and CTK binding, suggesting that IGF-IR phosphorylated Y469/495, allowing CTK binding, and that CTK subsequently phosphorylated Y428/452. Based on the above findings, we conclude that after IGF-I stimulation, CTK is recruited to IGF-IR and its recruitment facilitates CTK's subsequent association with phospho-SHPS-1. This results in the enhanced CTK transfer to SHPS-1, and the two kinases then fully phosphorylate SHPS-1, which is necessary for IGF-I stimulated cellular proliferation.  相似文献   

19.
Clinical evidence suggests a relationship between hypertension and insulin resistance, and cross-talk between angiotensin II (Ang II) and insulin signaling pathways may take place. We now report the effect of Ang II on insulin-induced glucose uptake and its intracellular mechanisms in vascular smooth muscle cells (VSMC). We examined the translocation of glucose transporter-4 (GLUT-4) and glucose uptake in rat aortic smooth muscle cells (RASMC). Mitogen-activated protein (MAP) kinases and Akt activities, and phosphorylation of insulin receptor substrate-1 (IRS-1) at the serine and tyrosine residues were measured by immunoprecipitation and immunoblotting. As a result, Ang II inhibited insulin-induced GLUT-4 translocation from cytoplasm to the plasma membrane in RASMC. Ang II induced extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-terminal kinase (JNK) activation and IRS-1 phosphorylation at Ser307 and Ser616. Ang II-induced Ser307 and Ser616 phophorylation of IRS-1 was inhibited by a MEK inhibitor, PD98059, and a JNK inhibitor, SP600125. Ang II inhibition of insulin-stimulated IRS-1 tyrosyl phophorylation and Akt activation were reversed by PD98059 but not by SP600125. Ang II inhibited insulin-induced glucose uptake, which was also reversed by PD98059 but not by SP600125. It is shown that Ang II-induced ERK1/2 activation inhibits insulin-dependent glucose uptake through serine phophorylation of IRS-1 in RASMC.  相似文献   

20.
Insulin signals are mediated through tyrosine phosphorylation of specific proteins such as insulin receptor substrate 1 (IRS-1) and Shc by the activated insulin receptor (IR). Phosphorylation of both proteins is nearly abolished by an alanine substitution at Tyr-960 (A960) in the beta-subunit of the receptor. However, overexpression of IRS-1 in CHO cells expressing the mutant receptor (A960 cells) restored sufficient tyrosine phosphorylation of IRS-1 to rescue IRS-1/Grb-2 binding and phosphatidylinositol 3' kinase activation during insulin stimulation. Shc tyrosine phosphorylation and its binding to Grb-2 were impaired in the A960 cells and were unaffected by overexpression of IRS-1. Although overexpression of IRS-1 increased IRS-1 binding to Grb-2, ERK-1/ERK-2 activation was not rescued. These data suggest that signaling molecules other than IRS-1, perhaps including Shc, are critical for insulin stimulation of p21ras. Interestingly, overexpression of IRS-1 in the A960 cells restored insulin-stimulated mitogenesis and partially restored insulin stimulation of glycogen synthesis. Thus, IRS-1 tyrosine phosphorylation is sufficient to increase the mitogenic response to insulin, whereas insulin stimulation of glycogen synthesis appears to involve other factors. Moreover, IRS-1 phosphorylation is either not sufficient or not involved in insulin stimulation of ERK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号