首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.

Background

The substantially large bread wheat genome, organized into highly similar three sub-genomes, renders genomic research challenging. The construction of BAC-based physical maps of individual chromosomes reduces the complexity of this allohexaploid genome, enables elucidation of gene space and evolutionary relationships, provides tools for map-based cloning, and serves as a framework for reference sequencing efforts. In this study, we constructed the first comprehensive physical map of wheat chromosome arm 5DS, thereby exploring its gene space organization and evolution.

Results

The physical map of 5DS was comprised of 164 contigs, of which 45 were organized into 21 supercontigs, covering 176 Mb with an N50 value of 2,173 kb. Fifty-eight of the contigs were larger than 1 Mb, with the largest contig spanning 6,649 kb. A total of 1,864 molecular markers were assigned to the map at a density of 10.5 markers/Mb, anchoring 100 of the 120 contigs (>5 clones) that constitute ~95 % of the cumulative length of the map. Ordering of 80 contigs along the deletion bins of chromosome arm 5DS revealed small-scale breaks in syntenic blocks. Analysis of the gene space of 5DS suggested an increasing gradient of genes organized in islands towards the telomere, with the highest gene density of 5.17 genes/Mb in the 0.67-0.78 deletion bin, 1.4 to 1.6 times that of all other bins.

Conclusions

Here, we provide a chromosome-specific view into the organization and evolution of the D genome of bread wheat, in comparison to one of its ancestors, revealing recent genome rearrangements. The high-quality physical map constructed in this study paves the way for the assembly of a reference sequence, from which breeding efforts will greatly benefit.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1641-y) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background

The wheat genome sequence is an essential tool for advanced genomic research and improvements. The generation of a high-quality wheat genome sequence is challenging due to its complex 17 Gb polyploid genome. To overcome these difficulties, sequencing through the construction of BAC-based physical maps of individual chromosomes is employed by the wheat genomics community. Here, we present the construction of the first comprehensive physical map of chromosome 1BS, and illustrate its unique gene space organization and evolution.

Results

Fingerprinted BAC clones were assembled into 57 long scaffolds, anchored and ordered with 2,438 markers, covering 83% of chromosome 1BS. The BAC-based chromosome 1BS physical map and gene order of the orthologous regions of model grass species were consistent, providing strong support for the reliability of the chromosome 1BS assembly. The gene space for chromosome 1BS spans the entire length of the chromosome arm, with 76% of the genes organized in small gene islands, accompanied by a two-fold increase in gene density from the centromere to the telomere.

Conclusions

This study provides new evidence on common and chromosome-specific features in the organization and evolution of the wheat genome, including a non-uniform distribution of gene density along the centromere-telomere axis, abundance of non-syntenic genes, the degree of colinearity with other grass genomes and a non-uniform size expansion along the centromere-telomere axis compared with other model cereal genomes. The high-quality physical map constructed in this study provides a solid basis for the assembly of a reference sequence of chromosome 1BS and for breeding applications.  相似文献   

3.
《BMC genomics》2015,16(1)

Background

A complete genome sequence is an essential tool for the genetic improvement of wheat. Because the wheat genome is large, highly repetitive and complex due to its allohexaploid nature, the International Wheat Genome Sequencing Consortium (IWGSC) chose a strategy that involves constructing bacterial artificial chromosome (BAC)-based physical maps of individual chromosomes and performing BAC-by-BAC sequencing. Here, we report the construction of a physical map of chromosome 6B with the goal of revealing the structural features of the third largest chromosome in wheat.

Results

We assembled 689 informative BAC contigs (hereafter reffered to as contigs) representing 91 % of the entire physical length of wheat chromosome 6B. The contigs were integrated into a radiation hybrid (RH) map of chromosome 6B, with one linkage group consisting of 448 loci with 653 markers. The order and direction of 480 contigs, corresponding to 87 % of the total length of 6B, were determined. We also characterized the contigs that contained a part of the nucleolus organizer region or centromere based on their positions on the RH map and the assembled BAC clone sequences. Analysis of the virtual gene order along 6B using the information collected for the integrated map revealed the presence of several chromosomal rearrangements, indicating evolutionary events that occurred on chromosome 6B.

Conclusions

We constructed a reliable physical map of chromosome 6B, enabling us to analyze its genomic structure and evolutionary progression. More importantly, the physical map should provide a high-quality and map-based reference sequence that will serve as a resource for wheat chromosome 6B.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1803-y) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.

Background

Mapping and map-based cloning of genes that control agriculturally and economically important traits remain great challenges for plants with complex highly repetitive genomes such as those within the grass tribe, Triticeae. Mapping limitations in the Triticeae are primarily due to low frequencies of polymorphic gene markers and poor genetic recombination in certain genetic regions. Although the abundance of repetitive sequence may pose common problems in genome analysis and sequence assembly of large and complex genomes, they provide repeat junction markers with random and unbiased distribution throughout chromosomes. Hence, development of a high-throughput mapping technology that combine both gene-based and repeat junction-based markers is needed to generate maps that have better coverage of the entire genome.

Results

In this study, the available genomics resource of the diploid Aegilop tauschii, the D genome donor of bread wheat, were used to develop genome specific markers that can be applied for mapping in modern hexaploid wheat. A NimbleGen array containing both gene-based and repeat junction probe sequences derived from Ae. tauschii was developed and used to map the Chinese Spring nullisomic-tetrasomic lines and deletion bin lines of the D genome chromosomes. Based on these mapping data, we have now anchored 5,171 repeat junction probes and 10,892 gene probes, corresponding to 5,070 gene markers, to the delineated deletion bins of the D genome. The order of the gene-based markers within the deletion bins of the Chinese Spring can be inferred based on their positions on the Ae. tauschii genetic map. Analysis of the probe sequences against the Chinese Spring chromosome sequence assembly database facilitated mapping of the NimbleGen probes to the sequence contigs and allowed assignment or ordering of these sequence contigs within the deletion bins. The accumulated length of anchored sequence contigs is about 155 Mb, representing ~ 3.2 % of the D genome. A specific database was developed to allow user to search or BLAST against the probe sequence information and to directly download PCR primers for mapping specific genetic loci.

Conclusions

In bread wheat, aneuploid stocks have been extensively used to assign markers linked with genes/traits to chromosomes, chromosome arms, and their specific bins. Through this study, we added thousands of markers to the existing wheat chromosome bin map, representing a significant step forward in providing a resource to navigate the wheat genome. The database website (http://probes.pw.usda.gov/ATRJM/) provides easy access and efficient utilization of the data. The resources developed herein can aid map-based cloning of traits of interest and the sequencing of the D genome of hexaploid wheat.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1852-2) contains supplementary material, which is available to authorized users.Keyword: Wheat deletion bins, Molecular markers, Repeat junction markers, NimbleGen array, Recombination, Genetic map  相似文献   

6.

Background

The ~17 Gb hexaploid bread wheat genome is a high priority and a major technical challenge for genomic studies. In particular, the D sub-genome is relatively lacking in genetic diversity, making it both difficult to map genetically, and a target for introgression of agriculturally useful traits. Elucidating its sequence and structure will therefore facilitate wheat breeding and crop improvement.

Results

We generated shotgun sequences from each arm of flow-sorted Triticum aestivum chromosome 5D using 454 FLX Titanium technology, giving 1.34× and 1.61× coverage of the short (5DS) and long (5DL) arms of the chromosome respectively. By a combination of sequence similarity and assembly-based methods, ~74% of the sequence reads were classified as repetitive elements, and coding sequence models of 1314 (5DS) and 2975 (5DL) genes were generated. The order of conserved genes in syntenic regions of previously sequenced grass genomes were integrated with physical and genetic map positions of 518 wheat markers to establish a virtual gene order for chromosome 5D.

Conclusions

The virtual gene order revealed a large-scale chromosomal rearrangement in the peri-centromeric region of 5DL, and a concentration of non-syntenic genes in the telomeric region of 5DS. Although our data support the large-scale conservation of Triticeae chromosome structure, they also suggest that some regions are evolving rapidly through frequent gene duplications and translocations.

Sequence accessions

EBI European Nucleotide Archive, Study no. ERP002330

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1080) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background

Cassava, Manihot esculenta Crantz, is one of the most important crops world-wide representing the staple security for more than one billion of people. The development of dense genetic and physical maps, as the basis for implementing genetic and molecular approaches to accelerate the rate of genetic gains in breeding program represents a significant challenge. A reference genome sequence for cassava has been made recently available and community efforts are underway for improving its quality. Cassava is threatened by several pathogens, but the mechanisms of defense are far from being understood. Besides, there has been a lack of information about the number of genes related to immunity as well as their distribution and genomic organization in the cassava genome.

Results

A high dense genetic map of cassava containing 2,141 SNPs has been constructed. Eighteen linkage groups were resolved with an overall size of 2,571 cM and an average distance of 1.26 cM between markers. More than half of mapped SNPs (57.4%) are located in coding sequences. Physical mapping of scaffolds of cassava whole genome sequence draft using the mapped markers as anchors resulted in the orientation of 687 scaffolds covering 45.6% of the genome. One hundred eighty nine new scaffolds are anchored to the genetic cassava map leading to an extension of the present cassava physical map with 30.7 Mb. Comparative analysis using anchor markers showed strong co-linearity to previously reported cassava genetic and physical maps. In silico based searching for conserved domains allowed the annotation of a repertory of 1,061 cassava genes coding for immunity-related proteins (IRPs). Based on physical map of the corresponding sequencing scaffolds, unambiguous genetic localization was possible for 569 IRPs.

Conclusions

This is the first study reported so far of an integrated high density genetic map using SNPs with integrated genetic and physical localization of newly annotated immunity related genes in cassava. These data build a solid basis for future studies to map and associate markers with single loci or quantitative trait loci for agronomical important traits. The enrichment of the physical map with novel scaffolds is in line with the efforts of the cassava genome sequencing consortium.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1397-4) contains supplementary material, which is available to authorized users.  相似文献   

8.

Background and Aims

Spontaneous male sterility is an advantageous trait for both constructing efficient pollination control systems and for understanding the developmental process of the male reproductive unit in many crops. A triallelic genetic male-sterile locus (BnMs5) has been identified in Brassica napus; however, its complicated genome structure has greatly hampered the isolation of this locus. The aim of this study was to physically map BnMs5 through an integrated map-based cloning strategy and analyse the local chromosomal evolution around BnMs5.

Methods

A large F2 population was used to integrate the existing genetic maps around BnMs5. A map-based cloning strategy in combination with comparative mapping among B. napus, Arabidopsis, Brassica rapa and Brassica oleracea was employed to facilitate the identification of a target bacterial artificial chromosome (BAC) clone covering the BnMs5 locus. The genomic sequences from the Brassica species were analysed to reveal the regional chromosomal evolution around BnMs5.

Key Results

BnMs5 was finally delimited to a 0·3-cM genetic fragment from an integrated local genetic map, and was anchored on the B. napus A8 chromosome. Screening of a B. napus BAC clone library and identification of the positive clones validated that JBnB034L06 was the target BAC clone. The closest flanking markers restrict BnMs5 to a 21-kb region on JBnB034L06 containing six predicted functional genes. Good collinearity relationship around BnMs5 between several Brassica species was observed, while violent chromosomal evolutionary events including insertions/deletions, duplications and single nucleotide mutations were also found to have extensively occurred during their divergence.

Conclusions

This work represents major progress towards the molecular cloning of BnMs5, as well as presenting a powerful, integrative method to mapping loci in plants with complex genomic architecture, such as the amphidiploid B. napus.  相似文献   

9.

Background

The 17 Gb bread wheat genome has massively expanded through the proliferation of transposable elements (TEs) and two recent rounds of polyploidization. The assembly of a 774 Mb reference sequence of wheat chromosome 3B provided us with the opportunity to explore the impact of TEs on the complex wheat genome structure and evolution at a resolution and scale not reached so far.

Results

We develop an automated workflow, CLARI-TE, for TE modeling in complex genomes. We delineate precisely 56,488 intact and 196,391 fragmented TEs along the 3B pseudomolecule, accounting for 85% of the sequence, and reconstruct 30,199 nested insertions. TEs have been mostly silent for the last one million years, and the 3B chromosome has been shaped by a succession of bursts that occurred between 1 to 3 million years ago. Accelerated TE elimination in the high-recombination distal regions is a driving force towards chromosome partitioning. CACTAs overrepresented in the high-recombination distal regions are significantly associated with recently duplicated genes. In addition, we identify 140 CACTA-mediated gene capture events with 17 genes potentially created by exon shuffling and show that 19 captured genes are transcribed and under selection pressure, suggesting the important role of CACTAs in the recent wheat adaptation.

Conclusion

Accurate TE modeling uncovers the dynamics of TEs in a highly complex and polyploid genome. It provides novel insights into chromosome partitioning and highlights the role of CACTA transposons in the high level of gene duplication in wheat.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0546-4) contains supplementary material, which is available to authorized users.  相似文献   

10.

Background

Rye (Secale cereale L.) is an economically important crop, exhibiting unique features such as outstanding resistance to biotic and abiotic stresses and high nutrient use efficiency. This species presents a challenge to geneticists and breeders due to its large genome containing a high proportion of repetitive sequences, self incompatibility, severe inbreeding depression and tissue culture recalcitrance. The genomic resources currently available for rye are underdeveloped in comparison with other crops of similar economic importance. The aim of this study was to create a highly saturated, multilocus linkage map of rye via consensus mapping, based on Diversity Arrays Technology (DArT) markers.

Methodology/Principal Findings

Recombinant inbred lines (RILs) from 5 populations (564 in total) were genotyped using DArT markers and subjected to linkage analysis using Join Map 4.0 and Multipoint Consensus 2.2 software. A consensus map was constructed using a total of 9703 segregating markers. The average chromosome map length ranged from 199.9 cM (2R) to 251.4 cM (4R) and the average map density was 1.1 cM. The integrated map comprised 4048 loci with the number of markers per chromosome ranging from 454 for 7R to 805 for 4R. In comparison with previously published studies on rye, this represents an eight-fold increase in the number of loci placed on a consensus map and a more than two-fold increase in the number of genetically mapped DArT markers.

Conclusions/Significance

Through the careful choice of marker type, mapping populations and the use of software packages implementing powerful algorithms for map order optimization, we produced a valuable resource for rye and triticale genomics and breeding, which provides an excellent starting point for more in-depth studies on rye genome organization.  相似文献   

11.

Background

Durum wheat (Triticum durum Desf.) is a tetraploid cereal grown in the medium to low-precipitation areas of the Mediterranean Basin, North America and South-West Asia. Genomics applications in durum wheat have the potential to boost exploitation of genetic resources and to advance understanding of the genetics of important complex traits (e.g. resilience to environmental and biotic stresses). A dense and accurate consensus map specific for T. durum will greatly facilitate genetic mapping, functional genomics and marker-assisted improvement.

Results

High quality genotypic data from six core recombinant inbred line populations were used to obtain a consensus framework map of 598 simple sequence repeats (SSR) and Diversity Array Technology® (DArT) anchor markers (common across populations). Interpolation of unique markers from 14 maps allowed us to position a total of 2,575 markers in a consensus map of 2,463 cM. The T. durum A and B genomes were covered in their near totality based on the reference SSR hexaploid wheat map. The consensus locus order compared to those of the single component maps showed good correspondence, (average Spearman’s rank correlation rho ρ value of 0.96). Differences in marker order and local recombination rate were observed between the durum and hexaploid wheat consensus maps. The consensus map was used to carry out a whole-genome search for genetic differentiation signatures and association to heading date in a panel of 183 accessions adapted to the Mediterranean areas. Linkage disequilibrium was found to decay below the r2 threshold = 0.3 within 2.20 cM, on average. Strong molecular differentiations among sub-populations were mapped to 87 chromosome regions. A genome-wide association scan for heading date from 27 field trials in the Mediterranean Basin and in Mexico yielded 50 chromosome regions with evidences of association in multiple environments.

Conclusions

The consensus map presented here was used as a reference for genetic diversity and mapping analyses in T. durum, providing nearly complete genome coverage and even marker density. Markers previously mapped in hexaploid wheat constitute a strong link between the two species. The consensus map provides the basis for high-density single nucleotide polymorphic (SNP) marker implementation in durum wheat.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-873) contains supplementary material, which is available to authorized users.  相似文献   

12.

Background

Genotyping-by-sequencing (GBS) is a high-throughput genotyping approach that is starting to be used in several crop species, including bread wheat. Anchoring GBS tags on chromosomes is an important step towards utilizing them for wheat genetic improvement. Here we use genetic linkage mapping to construct a consensus map containing 28644 GBS markers.

Results

Three RIL populations, PBW343 × Kingbird, PBW343 × Kenya Swara and PBW343 × Muu, which share a common parent, were used to minimize the impact of potential structural genomic variation on consensus-map quality. The consensus map comprised 3757 unique positions, and the average marker distance was 0.88 cM, obtained by calculating the average distance between two adjacent unique positions. Significant variation of segregation distortion was observed across the three populations. The consensus map was validated by comparing positions of known rust resistance genes, and comparing them to wheat reference genome sequences recently published by the International Wheat Genome Sequencing Consortium, Rye and Ae. tauschii genomes. Three well-characterized rust resistance genes (Sr58/Lr46/Yr29, Sr2/Yr30/Lr27, and Sr57/Lr34/Yr18) and 15 published QTLs for wheat rusts were validated with high resolution. Fifty-two per cent of GBS tags on the consensus map were successfully aligned through BLAST to the right chromosomes on the wheat reference genome sequence.

Conclusion

The consensus map should provide a useful basis for analyzing genome-wide variation of complex traits. The identified genes can then be explored as genetic markers to be used in genomic applications in wheat breeding.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1424-5) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

Sugarcane genetic mapping has lagged behind other crops due to its complex autopolyploid genome structure. Modern sugarcane cultivars have from 110-120 chromosomes and are in general interspecific hybrids between two species with different basic chromosome numbers: Saccharum officinarum (2n = 80) with a basic chromosome number of 10 and S. spontaneum (2n = 40-128) with a basic chromosome number of 8. The first maps that were constructed utilised the single dose (SD) markers generated using RFLP, more recent maps generated using AFLP and SSRs provided at most 60% genome coverage. Diversity Array Technology (DArT) markers are high throughput allowing greater numbers of markers to be generated.

Results

Progeny from a cross between a sugarcane variety Q165 and a S. officinarum accession IJ76-514 were used to generate 2467 SD markers. A genetic map of Q165 was generated containing 2267 markers, These markers formed 160 linkage groups (LGs) of which 147 could be placed using allelic information into the eight basic homology groups (HGs) of sugarcane. The HGs contained from 13 to 23 LGs and from 204 to 475 markers with a total map length of 9774.4 cM and an average density of one marker every 4.3 cM. Each homology group contained on average 280 markers of which 43% were DArT markers 31% AFLP, 16% SSRs and 6% SNP markers. The multi-allelic SSR and SNP markers were used to place the LGs into HGs.

Conclusions

The DArT array has allowed us to generate and map a larger number of markers than ever before and consequently to map a larger portion of the sugarcane genome. This larger number of markers has enabled 92% of the LGs to be placed into the 8 HGs that represent the basic chromosome number of the ancestral species, S. spontaneum. There were two HGs (HG2 and 8) that contained larger numbers of LGs verifying the alignment of two sets of S. officinarum chromosomes with one set of S. spontaneum chromosomes and explaining the difference in basic chromosome number between the two ancestral species. There was also evidence of more complex structural differences between the two ancestral species.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-152) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.
16.
Hu Z  Hua W  Huang S  Yang H  Zhan G  Wang X  Liu G  Wang H 《PloS one》2012,7(4):e34253

Background

Single nucleotide polymorphisms (SNPs) are an important class of genetic marker for target gene mapping. As of yet, there is no rapid and effective method to identify SNPs linked with agronomic traits in rapeseed and other crop species.

Methodology/Principal Findings

We demonstrate a novel method for identifying SNP markers in rapeseed by deep sequencing a representative library and performing bulk segregant analysis. With this method, SNPs associated with rapeseed pod shatter-resistance were discovered. Firstly, a reduced representation of the rapeseed genome was used. Genomic fragments ranging from 450–550 bp were prepared from the susceptible bulk (ten F2 plants with the silique shattering resistance index, SSRI <0.10) and the resistance bulk (ten F2 plants with SSRI >0.90), and also Solexa sequencing-produced 90 bp reads. Approximately 50 million of these sequence reads were assembled into contigs to a depth of 20-fold coverage. Secondly, 60,396 ‘simple SNPs’ were identified, and the statistical significance was evaluated using Fisher''s exact test. There were 70 associated SNPs whose –log10 p value over 16 were selected to be further analyzed. The distribution of these SNPs appeared a tight cluster, which consisted of 14 associated SNPs within a 396 kb region on chromosome A09. Our evidence indicates that this region contains a major quantitative trait locus (QTL). Finally, two associated SNPs from this region were mapped on a major QTL region.

Conclusions/Significance

70 associated SNPs were discovered and a major QTL for rapeseed pod shatter-resistance was found on chromosome A09 using our novel method. The associated SNP markers were used for mapping of the QTL, and may be useful for improving pod shatter-resistance in rapeseed through marker-assisted selection and map-based cloning. This approach will accelerate the discovery of major QTLs and the cloning of functional genes for important agronomic traits in rapeseed and other crop species.  相似文献   

17.

Key message

A stripe rust resistance gene YrZH22 was mapped by combined BSR-Seq and comparative genomics analyses to a 5.92 centimorgan (cM) genetic interval spanning a 4 Mb physical genomic region on wheat chromosome 4BL1.

Abstract

Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most destructive diseases of wheat and severely threatens wheat production worldwide. The widely grown Chinese wheat cultivar Zhoumai 22 is highly resistant to the current prevailing PST race CYR34 (V26). Genetic analysis of F5:6 and F6:7 recombinant inbred line (RIL) populations indicated that adult-plant stripe rust resistance in Zhoumai 22 is controlled by a single gene, temporarily designated YrZH22. By applying bulked segregant RNA-Seq (BSR-Seq), 7 SNP markers were developed and SNP mapping showed that YrZH22 is located between markers WGGB105 and WGGB112 on chromosome arm 4BL. The corresponding genomic regions of the Chinese Spring 4BL genome assembly and physical map of Aegilops tauschii 4DL were selected for comparative genomics analyses to develop nine new polymorphic markers that were used to construct a high-resolution genetic linkage map of YrZH22. YrZH22 was delimited in a 5.92 cM genetic interval between markers WGGB133 and WGGB146, corresponding to 4.1 Mb genomic interval in Chinese Spring 4BL and a 2.2 Mb orthologous genomic region in Ae. tauschii 4DL. The genetic linkage map of YrZH22 will be valuable for fine mapping and positional cloning of YrZH22, and can be used for marker-assisted selection in wheat breeding.
  相似文献   

18.

Background

Tetraploid cotton contains two sets of homologous chromosomes, the At- and Dt-subgenomes. Consequently, many markers in cotton were mapped to multiple positions during linkage genetic map construction, posing a challenge to anchoring linkage groups and mapping economically-important genes to particular chromosomes. Chromosome-specific markers could solve this problem. Recently, the genomes of two diploid species were sequenced whose progenitors were putative contributors of the At- and Dt-subgenomes to tetraploid cotton. These sequences provide a powerful tool for developing chromosome-specific markers given the high level of synteny among tetraploid and diploid cotton genomes. In this study, simple sequence repeats (SSRs) on each chromosome in the two diploid genomes were characterized. Chromosome-specific SSRs were developed by comparative analysis and proved to distinguish chromosomes.

Results

A total of 200,744 and 142,409 SSRs were detected on the 13 chromosomes of Gossypium arboreum L. and Gossypium raimondii Ulbrich, respectively. Chromosome-specific SSRs were obtained by comparing SSR flanking sequences from each chromosome with those from the other 25 chromosomes. The average was 7,996 per chromosome. To confirm their chromosome specificity, these SSRs were used to distinguish two homologous chromosomes in tetraploid cotton through linkage group construction. The chromosome-specific SSRs and previously-reported chromosome markers were grouped together, and no marker mapped to another homologous chromosome, proving that the chromosome-specific SSRs were unique and could distinguish homologous chromosomes in tetraploid cotton. Because longer dinucleotide AT-rich repeats were the most polymorphic in previous reports, the SSRs on each chromosome were sorted by motif type and repeat length for convenient selection. The primer sequences of all chromosome-specific SSRs were also made publicly available.

Conclusion

Chromosome-specific SSRs are efficient tools for chromosome identification by anchoring linkage groups to particular chromosomes during genetic mapping and are especially useful in mapping of qualitative-trait genes or quantitative trait loci with just a few markers. The SSRs reported here will facilitate a number of genetic and genomic studies in cotton, including construction of high-density genetic maps, positional gene cloning, fingerprinting, and genetic diversity and comparative evolutionary analyses among Gossypium species.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1265-2) contains supplementary material, which is available to authorized users.  相似文献   

19.

Background

The domestic goat (Capra hircus), an important livestock species, belongs to a clade of Ruminantia, Bovidae, together with cattle, buffalo and sheep. The history of genome evolution and chromosomal rearrangements on a small scale in ruminants remain speculative. Recently completed goat genome sequence was released but is still in a draft stage. The draft sequence used a variety of assembly packages, as well as a radiation hybrid (RH) map of chromosome 1 as part of its validation.

Results

Using an improved RH mapping pipeline, whole-genome dense maps of 45,953 SNP markers were constructed with statistical confidence measures and the saturated maps provided a fine map resolution of approximate 65 kb. Linking RH maps to the goat sequences showed that the assemblies of scaffolds/super-scaffolds were globally accurate. However, we observed certain flaws linked to the process of anchoring chromosome using conserved synteny with cattle. Chromosome assignments, long-range order, and orientation of the scaffolds were reassessed in an updated genome sequence version. We also present new results exploiting the updated goat genome sequence to understand genomic rearrangements and chromosome evolution between mammals during species radiations. The sequence architecture of rearrangement sites between the goat and cattle genomes presented abundant segmental duplication on regions of goat chromosome 9 and 14, as well as new insertions in homologous cattle genome regions. This complex interplay between duplicated sequences and Robertsonian translocations highlights the rearrangement mechanism of centromeric nonallelic homologous recombination (NAHR) in mammals. We observed that species-specific shifts in ANKRD26 gene duplication are coincident with breakpoint reuse in divergent lineages and this gene family may play a role in chromosome stabilization in chromosome evolution.

Conclusions

We generated dense maps of the complete whole goat genome. The chromosomal maps allowed us to anchor and orientate assembled genome scaffolds along the chromosomes, annotate chromosome rearrangements and thereby get a better understanding of the genome evolution of ruminants and other mammals.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-625) contains supplementary material, which is available to authorized users.  相似文献   

20.

Background

Lotus is a diploid plant with agricultural, medicinal, and ecological significance. Genetic linkage maps are fundamental resources for genome and genetic study, and also provide molecular markers for breeding in agriculturally important species. Genotyping by sequencing revolutionized genetic mapping, the restriction-site associated DNA sequencing (RADseq) allowed rapid discovery of thousands of SNPs markers, and a crucial aspect of the sequence based mapping strategy is the reference sequences used for marker identification.

Results

We assessed the effectiveness of linkage mapping using three types of references for scoring markers: the unmasked genome, repeat masked genome, and gene models. Overall, the repeat masked genome produced the optimal genetic maps. A high-density genetic map of American lotus was constructed using an F1 population derived from a cross between Nelumbo nucifera ‘China Antique’ and N. lutea ‘AL1’. A total of 4,098 RADseq markers were used to construct the American lotus ‘AL1’ genetic map, and 147 markers were used to construct the Chinese lotus ‘China Antique’ genetic map. The American lotus map has 9 linkage groups, and spans 494.3 cM, with an average distance of 0.7 cM between adjacent markers. The American lotus map was used to anchor scaffold sequences in the N. nucifera ‘China Antique’ draft genome. 3,603 RADseq markers anchored 234 individual scaffold sequences into 9 megascaffolds spanning 67% of the 804 Mb draft genome.

Conclusions

Among the unmasked genome, repeat masked genome and gene models, the optimal reference sequences to call RADseq markers for map construction is repeat masked genome. This high density genetic map is a valuable resource for genomic research and crop improvement in lotus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号