首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 271 毫秒
1.

Background

Over the past thirty years several reports of the pairing or association of non-homologous centromeres during meiotic prophase have appeared in the literature. Recently, the homology-independent pairwise association of centromeres, termed centromere coupling, was also reported in budding yeast. It seems paradoxical that centromeres would pair with non-homologous partners during a process intended to align homologous chromosomes, yet the conservation of this phenomenon across a wide range of species suggests it may play an important role in meiosis.

Principal Findings

To better define the role of this phenomenon in budding yeast, experiments were preformed to place centromere coupling within the context of landmark meiotic events. Soon after the initiation of the meiotic program, centromeres were found to re-organize from a single cluster into non-homologous couples. Centromere coupling is detected as soon as chromosome replication is finished and persists while the recombination protein Dmc1 is loaded onto the chromosomes, suggesting that centromere coupling persists through the time of double strand break formation. In the absence of the synaptonemal complex component, Zip1, centromere coupling was undetectable, at all times examined, confirming the essential role of this protein on this process. Finally, the timely release of centromere coupling depends on the recombination-initiating enzyme, Spo11, suggesting a connection between events in homologous pairing/recombination and the regulation of centromere coupling.

Conclusions

Based on our results we propose a role for centromere coupling in blocking interactions between homologous centromeres as recombination initiation is taking place.  相似文献   

2.

Background

Ancestral reconstructions of mammalian genomes have revealed that evolutionary breakpoint regions are clustered in regions that are more prone to break and reorganize. What is still unclear to evolutionary biologists is whether these regions are physically unstable due solely to sequence composition and/or genome organization, or do they represent genomic areas where the selection against breakpoints is minimal.

Methodology and Principal Findings

Here we present a comprehensive study of the distribution of tandem repeats in great apes. We analyzed the distribution of tandem repeats in relation to the localization of evolutionary breakpoint regions in the human, chimpanzee, orangutan and macaque genomes. We observed an accumulation of tandem repeats in the genomic regions implicated in chromosomal reorganizations. In the case of the human genome our analyses revealed that evolutionary breakpoint regions contained more base pairs implicated in tandem repeats compared to synteny blocks, being the AAAT motif the most frequently involved in evolutionary regions. We found that those AAAT repeats located in evolutionary regions were preferentially associated with Alu elements.

Significance

Our observations provide evidence for the role of tandem repeats in shaping mammalian genome architecture. We hypothesize that an accumulation of specific tandem repeats in evolutionary regions can promote genome instability by altering the state of the chromatin conformation or by promoting the insertion of transposable elements.  相似文献   

3.

Background

Colorectal cancer is a major contributor to cancer morbidity and mortality. Tandem repeat instability and its effect on cancer phenotypes remain so far poorly studied on a genome-wide scale.

Results

Here we analyze the genomes of 35 colorectal tumors and their matched normal (healthy) tissues for two types of tandem repeat instability, de-novo repeat gain or loss and repeat copy number variation. Specifically, we study for the first time genome-wide repeat instability in the promoters and exons of 18,439 genes, and examine the association of repeat instability with genome-scale gene expression levels. We find that tumors with a microsatellite instable (MSI) phenotype are enriched in genes with repeat instability, and that tumor genomes have significantly more genes with repeat instability compared to healthy tissues. Genes in tumor genomes with repeat instability in their promoters are significantly less expressed and show slightly higher levels of methylation. Genes in well-studied cancer-associated signaling pathways also contain significantly more unstable repeats in tumor genomes. Genes with such unstable repeats in the tumor-suppressor p53 pathway have lower expression levels, whereas genes with repeat instability in the MAPK and Wnt signaling pathways are expressed at higher levels, consistent with the oncogenic role they play in cancer.

Conclusions

Our results suggest that repeat instability in gene promoters and associated differential gene expression may play an important role in colorectal tumors, which is a first step towards the development of more effective molecular diagnostic approaches centered on repeat instability.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1902-9) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

Comparative evolutionary analysis of whole genomes requires not only accurate annotation of gene space, but also proper annotation of the repetitive fraction which is often the largest component of most if not all genomes larger than 50 kb in size.

Results

Here we present the Rice TE database (RiTE-db) - a genus-wide collection of transposable elements and repeated sequences across 11 diploid species of the genus Oryza and the closely-related out-group Leersia perrieri. The database consists of more than 170,000 entries divided into three main types: (i) a classified and curated set of publicly-available repeated sequences, (ii) a set of consensus assemblies of highly-repetitive sequences obtained from genome sequencing surveys of 12 species; and (iii) a set of full-length TEs, identified and extracted from 12 whole genome assemblies.

Conclusions

This is the first report of a repeat dataset that spans the majority of repeat variability within an entire genus, and one that includes complete elements as well as unassembled repeats. The database allows sequence browsing, downloading, and similarity searches. Because of the strategy adopted, the RiTE-db opens a new path to unprecedented direct comparative studies that span the entire nuclear repeat content of 15 million years of Oryza diversity.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1762-3) contains supplementary material, which is available to authorized users.  相似文献   

5.
In most eukaryotic species, centromeres harbor large arrays of tandem repeated satellite DNA sequences. In this study, we report on the genomic distribution of a centromere satellite repeat “MtR3” in Medicago genus and three distantly related genera. Fluorescence in situ hybridization (FISH) results showed MtR3 repeats were detected in the centromere regions in M. truncatula, M. minima, M. edgeworthii, M. ruthenica, M. caerulea, M. sativa, and M. falcata (4×), but no signals were discovered in M. lupulina, M. polymorpha, and M. falcata (2×), Melilotus officinalis, Crotalaria medicaginea, and Trifolium repens. However, sequence analysis showed this MtR3 DNA had genomic distribution in all species and was highly conserved across the entire Medicago genus and three other genera. The conservation and widespread presence suggested MtR3 repeats may play important roles in centromeric function.  相似文献   

6.

Background

Cytoplasmic male sterility (CMS) is an inability to produce functional pollen that is caused by mutation of the mitochondrial genome. Comparative analyses of mitochondrial genomes of lines with and without CMS in several species have revealed structural differences between genomes, including extensive rearrangements caused by recombination. However, the mitochondrial genome structure and the DNA rearrangements that may be related to CMS have not been characterized in Capsicum spp.

Results

We obtained the complete mitochondrial genome sequences of the pepper CMS line FS4401 (507,452 bp) and the fertile line Jeju (511,530 bp). Comparative analysis between mitochondrial genomes of peppers and tobacco that are included in Solanaceae revealed extensive DNA rearrangements and poor conservation in non-coding DNA. In comparison between pepper lines, FS4401 and Jeju mitochondrial DNAs contained the same complement of protein coding genes except for one additional copy of an atp6 gene (ψatp6-2) in FS4401. In terms of genome structure, we found eighteen syntenic blocks in the two mitochondrial genomes, which have been rearranged in each genome. By contrast, sequences between syntenic blocks, which were specific to each line, accounted for 30,380 and 17,847 bp in FS4401 and Jeju, respectively. The previously-reported CMS candidate genes, orf507 and ψatp6-2, were located on the edges of the largest sequence segments that were specific to FS4401. In this region, large number of small sequence segments which were absent or found on different locations in Jeju mitochondrial genome were combined together. The incorporation of repeats and overlapping of connected sequence segments by a few nucleotides implied that extensive rearrangements by homologous recombination might be involved in evolution of this region. Further analysis using mtDNA pairs from other plant species revealed common features of DNA regions around CMS-associated genes.

Conclusions

Although large portion of sequence context was shared by mitochondrial genomes of CMS and male-fertile pepper lines, extensive genome rearrangements were detected. CMS candidate genes located on the edges of highly-rearranged CMS-specific DNA regions and near to repeat sequences. These characteristics were detected among CMS-associated genes in other species, implying a common mechanism might be involved in the evolution of CMS-associated genes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-561) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background

Polymorphic Y chromosome short tandem repeats (STRs) have been widely used in population genetic and evolutionary studies. Compared to di-, tri-, and tetranucleotide repeats, STRs with longer repeat units occur more rarely and are far less commonly used.

Principal Findings

In order to study the evolutionary dynamics of STRs according to repeat unit size, we analysed variation at 24 Y chromosome repeat loci: 1 tri-, 14 tetra-, 7 penta-, and 2 hexanucleotide loci. According to our results, penta- and hexanucleotide repeats have approximately two times lower repeat variance and diversity than tri- and tetranucleotide repeats, indicating that their mutation rate is about half of that of tri- and tetranucleotide repeats. Thus, STR markers with longer repeat units are more robust in distinguishing Y chromosome haplogroups and, in some cases, phylogenetic splits within established haplogroups.

Conclusions

Our findings suggest that Y chromosome STRs of increased repeat unit size have a lower rate of evolution, which has significant relevance in population genetic and evolutionary studies.  相似文献   

8.

Background and Aims

Lolium perenne (perennial ryegrass) is the most important forage grass species of temperate regions. We have previously released the chloroplast genome sequence of L. perenne ‘Cashel’. Here nine chloroplast microsatellite markers are published, which were designed based on knowledge about genetically variable regions within the L. perenne chloroplast genome. These markers were successfully used for characterizing the genetic diversity in Lolium and different grass species.

Methods

Chloroplast genomes of 14 Poaceae taxa were screened for mononucleotide microsatellite repeat regions and primers designed for their amplification from nine loci. The potential of these markers to assess genetic diversity was evaluated on a set of 16 Irish and 15 European L. perenne ecotypes, nine L. perenne cultivars, other Lolium taxa and other grass species.

Key Results

All analysed Poaceae chloroplast genomes contained more than 200 mononucleotide repeats (chloroplast simple sequence repeats, cpSSRs) of at least 7 bp in length, concentrated mainly in the large single copy region of the genome. Nucleotide composition varied considerably among subfamilies (with Pooideae biased towards poly A repeats). The nine new markers distinguish L. perenne from all non-Lolium taxa. TeaCpSSR28 was able to distinguish between all Lolium species and Lolium multiflorum due to an elongation of an A8 mononucleotide repeat in L. multiflorum. TeaCpSSR31 detected a considerable degree of microsatellite length variation and single nucleotide polymorphism. TeaCpSSR27 revealed variation within some L. perenne accessions due to a 44-bp indel and was hence readily detected by simple agarose gel electrophoresis. Smaller insertion/deletion events or single nucleotide polymorphisms detected by these new markers could be visualized by polyacrylamide gel electrophoresis or DNA sequencing, respectively.

Conclusions

The new markers are a valuable tool for plant breeding companies, seed testing agencies and the wider scientific community due to their ability to monitor genetic diversity within breeding pools, to trace maternal inheritance and to distinguish closely related species.  相似文献   

9.

Background

Silene latifolia is a dioceous plant with well distinguished X and Y chromosomes that is used as a model to study sex determination and sex chromosome evolution in plants. However, efficient utilization of this species has been hampered by the lack of large-scale sequencing resources and detailed analysis of its genome composition, especially with respect to repetitive DNA, which makes up the majority of the genome.

Methodology/Principal Findings

We performed low-pass 454 sequencing followed by similarity-based clustering of 454 reads in order to identify and characterize sequences of all major groups of S. latifolia repeats. Illumina sequencing data from male and female genomes were also generated and employed to quantify the genomic proportions of individual repeat families. The majority of identified repeats belonged to LTR-retrotransposons, constituting about 50% of genomic DNA, with Ty3/gypsy elements being more frequent than Ty1/copia. While there were differences between the male and female genome in the abundance of several repeat families, their overall repeat composition was highly similar. Specific localization patterns on sex chromosomes were found for several satellite repeats using in situ hybridization with probes based on k-mer frequency analysis of Illumina sequencing data.

Conclusions/Significance

This study provides comprehensive information about the sequence composition and abundance of repeats representing over 60% of the S. latifolia genome. The results revealed generally low divergence in repeat composition between the sex chromosomes, which is consistent with their relatively recent origin. In addition, the study generated various data resources that are available for future exploration of the S. latifolia genome.  相似文献   

10.

Background

There are a growing number of next-generation sequencing technologies. At present, the most cost-effective options also produce the shortest reads. However, even for prokaryotes, there is uncertainty concerning the utility of these technologies for the de novo assembly of complete genomes. This reflects an expectation that short reads will be unable to resolve small, but presumably abundant, repeats.

Methodology/Principal Findings

Using a simple model of repeat assembly, we develop and test a technique that, for any read length, can estimate the occurrence of unresolvable repeats in a genome, and thus predict the number of gaps that would need to be closed to produce a complete sequence. We apply this technique to 818 prokaryote genome sequences. This provides a quantitative assessment of the relative performance of various lengths. Notably, unpaired reads of only 150nt can reconstruct approximately 50% of the analysed genomes with fewer than 96 repeat-induced gaps. Nonetheless, there is considerable variation amongst prokaryotes. Some genomes can be assembled to near contiguity using very short reads while others require much longer reads.

Conclusions

Given the diversity of prokaryote genomes, a sequencing strategy should be tailored to the organism under study. Our results will provide researchers with a practical resource to guide the selection of the appropriate read length.  相似文献   

11.

Background

Polymorphic tandem repeat typing is a new generic technology which has been proved to be very efficient for bacterial pathogens such as B. anthracis, M. tuberculosis, P. aeruginosa, L. pneumophila, Y. pestis. The previously developed tandem repeats database takes advantage of the release of genome sequence data for a growing number of bacteria to facilitate the identification of tandem repeats. The development of an assay then requires the evaluation of tandem repeat polymorphism on well-selected sets of isolates. In the case of major human pathogens, such as S. aureus, more than one strain is being sequenced, so that tandem repeats most likely to be polymorphic can now be selected in silico based on genome sequence comparison.

Results

In addition to the previously described general Tandem Repeats Database, we have developed a tool to automatically identify tandem repeats of a different length in the genome sequence of two (or more) closely related bacterial strains. Genome comparisons are pre-computed. The results of the comparisons are parsed in a database, which can be conveniently queried over the internet according to criteria of practical value, including repeat unit length, predicted size difference, etc. Comparisons are available for 16 bacterial species, and the orthopox viruses, including the variola virus and three of its close neighbors.

Conclusions

We are presenting an internet-based resource to help develop and perform tandem repeats based bacterial strain typing. The tools accessible at http://minisatellites.u-psud.fr now comprise four parts. The Tandem Repeats Database enables the identification of tandem repeats across entire genomes. The Strain Comparison Page identifies tandem repeats differing between different genome sequences from the same species. The "Blast in the Tandem Repeats Database" facilitates the search for a known tandem repeat and the prediction of amplification product sizes. The "Bacterial Genotyping Page" is a service for strain identification at the subspecies level.
  相似文献   

12.
Zhang W  Wu W  Lin W  Zhou P  Dai L  Zhang Y  Huang J  Zhang D 《PloS one》2010,5(10):e13303

Background

The isochore, a large DNA sequence with relatively small GC variance, is one of the most important structures in eukaryotic genomes. Although the isochore has been widely studied in humans and other species, little is known about its distribution in pigs.

Principal Findings

In this paper, we construct a map of long homogeneous genome regions (LHGRs), i.e., isochores and isochore-like regions, in pigs to provide an intuitive version of GC heterogeneity in each chromosome. The LHGR pattern study not only quantifies heterogeneities, but also reveals some primary characteristics of the chromatin organization, including the followings: (1) the majority of LHGRs belong to GC-poor families and are in long length; (2) a high gene density tends to occur with the appearance of GC-rich LHGRs; and (3) the density of LINE repeats decreases with an increase in the GC content of LHGRs. Furthermore, a portion of LHGRs with particular GC ranges (50%–51% and 54%–55%) tend to have abnormally high gene densities, suggesting that biased gene conversion (BGC), as well as time- and energy-saving principles, could be of importance to the formation of genome organization.

Conclusion

This study significantly improves our knowledge of chromatin organization in the pig genome. Correlations between the different biological features (e.g., gene density and repeat density) and GC content of LHGRs provide a unique glimpse of in silico gene and repeats prediction.  相似文献   

13.

Background

The movement of mobile elements among species by horizontal transposon transfer (HTT) influences the evolution of genomes through the modification of structure and function. Helitrons are a relatively new lineage of DNA-based (class II) transposable elements (TEs) that propagate by rolling-circle replication, and are capable of acquiring host DNA. The rapid spread of Helitrons among animal lineages by HTT is facilitated by shuttling in viral particles or by unknown mechanisms mediated by close organism associations (e.g. between hosts and parasites).

Results

A non-autonomous Helitron independently annotated as BmHel-2 from Bombyx mori and the MITE01 element from Ostrinia nubilalis was predicted in the genomes of 24 species in the insect Order Lepidoptera. Integrated Helitrons retained ≥ 65% sequence identity over a 250 bp consensus, and were predicted to retain secondary structures inclusive of a 3′-hairpin and a 5′-subterminal inverted repeat. Highly similar Hel-2 copies were predicted in the genomes of insects and associated viruses, which along with a previous documented case of real-time virus-insect cell line transposition suggests that this Helitron has likely propagated by HTT.

Conclusions

These findings provide evidence that insect virus may mediate the HTT of Helitron-like TEs. This movement may facilitate the shuttling of DNA elements among insect genomes. Further sampling is required to determine the putative role of HTT in insect genome evolution.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1318-6) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background

Microsatellites have been used extensively in the field of comparative genomics. By studying microsatellites in coding regions we have a simple model of how genotypic changes undergo selection as they are directly expressed in the phenotype as altered proteins. The simplest of these tandem repeats in coding regions are the tri-nucleotide repeats which produce a repeat of a single amino acid when translated into proteins. Tri-nucleotide repeats are often disease associated, and are also known to be unstable to both expansion and contraction. This makes them sensitive markers for studying proteome evolution, in closely related species.

Results

The evolutionary history of the family of malarial causing parasites Plasmodia is complex because of the life-cycle of the organism, where it interacts with a number of different hosts and goes through a series of tissue specific stages. This study shows that the divergence between the primate and rodent malarial parasites has resulted in a lineage specific change in the simple amino acid repeat distribution that is correlated to A–T content. The paper also shows that this altered use of amino acids in SAARs is consistent with the repeat distributions being under selective pressure.

Conclusions

The study shows that simple amino acid repeat distributions can be used to group related species and to examine their phylogenetic relationships. This study also shows that an outgroup species with a similar A–T content can be distinguished based only on the amino acid usage in repeats, and suggest that this might be a useful feature for proteome clustering. The lineage specific use of amino acids in repeat regions suggests that comparative studies of SAAR distributions between proteomes gives an insight into the mechanisms of expansion and the selective pressures acting on the organism.  相似文献   

15.
Yu JN  Won C  Jun J  Lim Y  Kwak M 《PloS one》2011,6(11):e26933

Background

Microsatellites, a special class of repetitive DNA sequence, have become one of the most popular genetic markers for population/conservation genetic studies. However, its application to endangered species has been impeded by high development costs, a lack of available sequences, and technical difficulties. The water deer Hydropotes inermis is the sole existing endangered species of the subfamily Capreolinae. Although population genetics studies are urgently required for conservation management, no species-specific microsatellite marker has been reported.

Methods

We adopted next-generation sequencing (NGS) to elucidate the microsatellite markers of Korean water deer and overcome these impediments on marker developments. We performed genotyping to determine the efficiency of this method as applied to population genetics.

Results

We obtained 98 Mbp of nucleotide information from 260,467 sequence reads. A total of 20,101 di-/tri-nucleotide repeat motifs were identified; di-repeats were 5.9-fold more common than tri-repeats. [CA]n and [AAC]n/[AAT]n repeats were the most frequent di- and tri-repeats, respectively. Of the 17,206 di-repeats, 12,471 microsatellite primer pairs were derived. PCR amplification of 400 primer pairs yielded 106 amplicons and 79 polymorphic markers from 20 individual Korean water deer. Polymorphic rates of the 79 new microsatellites varied from 2 to 11 alleles per locus (He: 0.050–0.880; Ho: 0.000–1.000), while those of known microsatellite markers transferred from cattle to Chinese water deer ranged from 4 to 6 alleles per locus (He: 0.279–0.714; Ho: 0.300–0.400).

Conclusions

Polymorphic microsatellite markers from Korean water deer were successfully identified using NGS without any prior sequence information and deposited into the public database. Thus, the methods described herein represent a rapid and low-cost way to investigate the population genetics of endangered/non-model species.  相似文献   

16.

Background

Multiple models have been proposed to interpret the retention of duplicated genes. In this study, we attempted to compare whether the duplicates arising from tandem duplications and retropositions are retained by the same mechanisms in human and mouse genomes.

Results

Both sequence and expression similarity analyses revealed that tandem duplicates tend to be more conserved, whereas retrogenes tend to be more divergent. The duplicability of tandem duplicates is also higher than that of retrogenes. However, positive selection seems to play significant roles in the retention of both types of duplicates.

Conclusions

We propose that dosage effect is more prevalent in the retention of tandem duplicates, while ''escape from adaptive conflict'' (EAC) effect is more prevalent in the retention of retrogenes.  相似文献   

17.

Background

Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes.

Methodology/Principal Findings

We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes.

Conclusion

The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.  相似文献   

18.

Background and Aims

The cultivated jute species Corchorus olitorius and Corchorus capsularis are important fibre crops. The analysis of repetitive DNA sequences, comprising a major part of plant genomes, has not been carried out in jute but is useful to investigate the long-range organization of chromosomes. The aim of this study was the identification of repetitive DNA sequences to facilitate comparative molecular and cytogenetic studies of two jute cultivars and to develop a fluorescent in situ hybridization (FISH) karyotype for chromosome identification.

Methods

A plasmid library was generated from C. olitorius and C. capsularis with genomic restriction fragments of 100–500 bp, which was complemented by targeted cloning of satellite DNA by PCR. The diversity of the repetitive DNA families was analysed comparatively. The genomic abundance and chromosomal localization of different repeat classes were investigated by Southern analysis and FISH, respectively. The cytosine methylation of satellite arrays was studied by immunolabelling.

Key Results

Major satellite repeats and retrotransposons have been identified from C. olitorius and C. capsularis. The satellite family CoSat I forms two undermethylated species-specific subfamilies, while the long terminal repeat (LTR) retrotransposons CoRetro I and CoRetro II show similarity to the Metaviridea of plant retroelements. FISH karyotypes were developed by multicolour FISH using these repetitive DNA sequences in combination with 5S and 18S–5·8S–25S rRNA genes which enable the unequivocal chromosome discrimination in both jute species.

Conclusions

The analysis of the structure and diversity of the repeated DNA is crucial for genome sequence annotation. The reference karyotypes will be useful for breeding of jute and provide the basis for karyotyping homeologous chromosomes of wild jute species to reveal the genetic and evolutionary relationship between cultivated and wild Corchorus species.  相似文献   

19.

Background and Aims

Dendrobium species show tremendous morphological diversity and have broad geographical distribution. As repetitive sequence analysis is a useful tool to investigate the evolution of chromosomes and genomes, the aim of the present study was the characterization of repetitive sequences from Dendrobium moschatum for comparative molecular and cytogenetic studies in the related species Dendrobium aphyllum, Dendrobium aggregatum and representatives from other orchid genera.

Methods

In order to isolate highly repetitive sequences, a c0t-1 DNA plasmid library was established. Repeats were sequenced and used as probes for Southern hybridization. Sequence divergence was analysed using bioinformatic tools. Repetitive sequences were localized along orchid chromosomes by fluorescence in situ hybridization (FISH).

Key Results

Characterization of the c0t-1 library resulted in the detection of repetitive sequences including the (GA)n dinucleotide DmoO11, numerous Arabidopsis-like telomeric repeats and the highly amplified dispersed repeat DmoF14. The DmoF14 repeat is conserved in six Dendrobium species but diversified in representative species of three other orchid genera. FISH analyses showed the genome-wide distribution of DmoF14 in D. moschatum, D. aphyllum and D. aggregatum. Hybridization with the telomeric repeats demonstrated Arabidopsis-like telomeres at the chromosome ends of Dendrobium species. However, FISH using the telomeric probe revealed two pairs of chromosomes with strong intercalary signals in D. aphyllum. FISH showed the terminal position of 5S and 18S–5·8S–25S rRNA genes and a characteristic number of rDNA sites in the three Dendrobium species.

Conclusions

The repeated sequences isolated from D. moschatum c0t-1 DNA constitute major DNA families of the D. moschatum, D. aphyllum and D. aggregatum genomes with DmoF14 representing an ancient component of orchid genomes. Large intercalary telomere-like arrays suggest chromosomal rearrangements in D. aphyllum while the number and localization of rRNA genes as well as the species-specific distribution pattern of an abundant microsatellite reflect the genomic diversity of the three Dendrobium species.  相似文献   

20.

Background

Microsporidia are intracellular parasites that are highly-derived relatives of fungi. They have compacted genomes and, despite a high rate of sequence evolution, distantly related species can share high levels of gene order conservation. To date, only two species have been analysed in detail, and data from one of these largely consists of short genomic fragments. It is therefore difficult to determine how conservation has been maintained through microsporidian evolution, and impossible to identify whether certain regions are more prone to genomic stasis.

Principal Findings

Here, we analyse three large fragments of the Enterocytozoon bieneusi genome (in total 429 kbp), a species of medical significance. A total of 296 ORFs were identified, annotated and their context compared with Encephalitozoon cuniculi and Antonospora locustae. Overall, a high degree of conservation was found between all three species, and interestingly the level of conservation was similar in all three pairwise comparisons, despite the fact that A. locustae is more distantly related to E. cuniculi and E. bieneusi than either are to each other.

Conclusions/Significance

Any two genes that are found together in any pair of genomes are more likely to be conserved in the third genome as well, suggesting that a core of genes tends to be conserved across the entire group. The mechanisms of rearrangments identified among microsporidian genomes were consistent with a very slow evolution of their architecture, as opposed to the very rapid sequence evolution reported for these parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号