首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
施加外源物质对盐胁迫下水稻生长发育的影响   总被引:1,自引:0,他引:1  
水稻是重要的粮食作物之一,属于不耐盐的甜土植物,土壤盐渍化是影响其产量和生长发育的主要因素。消除或缓解盐胁迫是当务之急,目前主要应用传统育种、转基因技术及外源物质缓解盐胁迫。拟从外源物质对盐胁迫下水稻的影响作一综述,旨在为水稻生产及抗性育种提供理论依据和实践方法。  相似文献   

3.
4.
耐非生物胁迫转基因水稻的培育——现在和未来   总被引:1,自引:0,他引:1  
环境胁迫严重降低了作物产量,日益减少的耕地和膨胀的人口对世界粮食安全造成了威胁。长期以来,改善作物的抗逆性一直是农业生产的主要目标。水稻是重要的粮食作物之一,培育具有抗逆性的水稻品种对全球的粮食生产将产生重要影响。在改善水稻的抗逆性方面,转基因比传统方法更有发展潜力。近年来,已有许多抗逆相关基因转入水稻并获得了一些提高抗逆性的转基因植株,文章重点讨论了耐非生物胁迫转基因水稻的研究进展。  相似文献   

5.
6.
Rice is the most amenable crop plant for genetic manipulation amongst monocots due to its small genome size, enriched genetic map, availability of entire genome sequence, and relative ease of transformation. Improvement in agronomic traits of rice is bound to affect a sizeable population since it is a primary source of sustenance. Recent advances like use of ‘clean gene’ technology or matrix attachment regions would help improve rice transformation. Function of several novel genes and their promoters has been analyzed in transgenic rice. Significant progress has been made in introducing traits like herbicide, biotic stress and abiotic stress tolerance. Attempts also have been made to enhance nutritional characteristics of the grain and yield. Identification of genes controlling growth and development can be used to modify plant architecture and heading period. Transgenic rice can serve as a biofactory for the production of molecules of pharmaceutical and industrial utility. The drive to apply transgenic rice for public good as well as commercial gains has fueled research to an all time high. Successful field trials and biosafety of transgenic rice have been reported. This would act as a catalyst for greater acceptance of genetically modified food crops. The lessons learnt from rice can be extended to other cereals thereby opening new opportunities and possibilities.  相似文献   

7.
One of the widest ranging abiotic stresses in world agriculture arises from low iron (Fe) availability due to high soil pH, with 30% of arable land too alkaline for optimal crop production. Rice is especially susceptible to low iron supply, whereas other graminaceous crops such as barley are not. A barley genomic DNA fragment containing two naat genes, which encode crucial enzymes involved in the biosynthesis of phytosiderophores, was introduced into rice using Agrobacterium-mediated transformation and pBIGRZ1. Phytosiderophores are natural iron chelators that graminaceous plants secrete from their roots to solubilize iron in the soil. The two transgenes were expressed in response to low iron nutritional status in both the shoots and roots of rice transformants. Transgenic rice expressing the two genes showed a higher nicotianamine aminotransferase activity and secreted larger amounts of phytosiderophores than nontransformants under iron-deficient conditions. Consequently, the transgenic rice showed an enhanced tolerance to low iron availability and had 4.1 times greater grain yields than that of the nontransformant rice in an alkaline soil.  相似文献   

8.
9.
10.
The mitogen-activated protein kinase (MAPK) cascade is an important signaling module that transduces extracellular stimuli into intracellular responses in eukaryotic organisms. An increasing body of evidence has shown that the MAPK-mediated cellular signaling is crucial to plant growth and development, as well as biotic and abiotic stress responses. To date, a total of 17 MAPK genes have been Identified from the rice genome. Expression profiling, biochemical characterization and/or functional analysis were carried out with many members of the rice MAPK gene family, especially those associated with biotic and abiotic stress responses. In this review, the phylogenetic relationship and classification of rice MAPK genes are discussed to facilitate a simple nomenclature and standard annotation of the rice MAPK gene family. Functional data relating to biotic and abiotic stress responses are reviewed for each MAPK group and show that despite overlapping in functionality, there is a certain level of functional specificity among different rice MAP kinases. The future challenges are to functionally characterize each MAPK, to identify their downstream substrates and upstream kinases, and to genetically manipulate the MAPK signaling pathway in rice crops for the Improvement of agronomically important traits.  相似文献   

11.
Salinity stress is a major abiotic stress that limits agriculture productivity worldwide. Rice is a model plant of monocotyledons, including cereal crops. Studies have suggested a critical role of protein phosphorylation in salt stress response in plants. However, the phosphoproteome in rice, particularly under salinity stress, has not been well studied. Here, we use Pro-Q Diamond Phosphoprotein Stain to study rice phosphoproteome differential expression under salt stress. Seventeen differentially upregulated and 11 differentially downregulated putative phosphoproteins have been identified. Further analyses indicate that 10 of the 17 upregulated proteins are probably upregulated at post-translational level instead of the protein concentration. Meanwhile, we have identified 31 salt stress differentially regulated proteins using SYPRO Ruby stain. While eight of them are known salt stress response proteins, the majority has not been reported in the literature. Our studies have provided valuable new insight into plant response to salinity stress.  相似文献   

12.
The mitogen-activated protein kinase (MAPK) cascade is an important signaling module that transduces extracellu-lar stimuli into intracellular responses in eukaryotic organisms. An increasing body of evidence has shown that theMAPK-mediated cellular signaling is crucial to plant growth and development, as well as biotic and abiotic stressresponses. To date, a total of 17 MAPK genes have been identified from the rice genome. Expression profiling,biochemical characterization and/or functional analysis were carried out with many members of the rice MAPKgene family, especially those associated with biotic and abiotic stress responses. In this review, the phylogeneticrelationship and classification of rice MAPK genes are discussed to facilitate a simple nomenclature and standardannotation of the rice MAPK gene family. Functional data relating to biotic and abiotic stress responses are re-viewed for each MAPK group and show that despite overlapping in functionality, there is a certain level of functionalspecificity among different rice MAP kinases, The future challenges are to functionally characterize each MAPK, toidentify their downstream substrates and upstream kinases, and to genetically manipulate the MAPK signalingpathway in rice crops for the improvement of agronomically important traits.  相似文献   

13.
Global climate change, i.e. higher and more variable temperatures, and a gain in soil salinity are increasing plant stress with direct consequences on crop yield and quality levels. Rice productivity is strongly affected by abiotic stress conditions. The regulation of chromatin structure in response to environmental stress is poorly understood. We investigated the interphase chromatin organization from rice plants in non-stress versus stress conditions. We have used a cytogenetic approach, based on fluorescence in situ hybridization (FISH) with 45S, 5S rDNA and centromeric probes on rice tissue sections. The abiotic stress conditions included cold, heat and mild salinity and were applied during seed germination. In contrast to cold, saline and heat stresses caused extensive decondensation of 45S rDNA chromatin and also an increase in the distance between the 2 homologous 5S rDNA loci. 5-Azacytidine (5-AC), a DNA hypomethylating drug, greatly increased 45S rDNA chromatin decondensation and interestingly was able to induce polarization of centromeres in rice interphase nuclei. The abiotic stresses tested did not perturb the spatial position of centromeres, typically with circular arrangement around the nucleolus. The results suggest a role for chromatin plasticity in a world of climate changes.  相似文献   

14.
Jiang Y  Cai Z  Xie W  Long T  Yu H  Zhang Q 《Biotechnology advances》2012,30(5):1059-1070
Rice is a staple food crop and has become a reference of monocot plant for functional genomic research. With the availability of high quality rice genome sequence, there has been rapid accumulation of functional genomic resources, including: large mutant libraries by T-DNA insertion, transposon tagging, and chemical mutagenesis; global expression profiles of the genes in the entire life cycle of rice growth and development; full-length cDNAs for both indica and japonica rice; sequences from resequencing large numbers of diverse germplasm accessions. Such resource development has greatly accelerated gene cloning. By the end of 2010, over 600 genes had been cloned using various methods. Many of the genes control agriculturally useful traits such as yield, grain quality, resistances to biotic and abiotic stresses, and nutrient-use efficiency, thus have potential utility in crop genetic improvement. This review was aimed to provide a comprehensive summary of such progress. We also presented our perspective for future studies.  相似文献   

15.
16.
17.
Rice, one of the most important food crops for humans, is the first crop plant to have its genome sequenced. Rice whole-genome microarrays, genome tiling arrays and genome-wide gene-indexed mutant collections have recently been generated. With the availability of these resources, discovering the function of the estimated 41,000 rice genes is now within reach. Such discoveries have broad practical implications for understanding the biological processes of rice and other economically important grasses such as cereals and bioenergy crops.  相似文献   

18.
可变剪接是生物重要的转录后修饰过程,是转录组和蛋白组多样性的重要来源.可变剪接参与了植物众多生理过程,包括植物昼夜节律、生长发育等,在植物响应生物和非生物胁迫过程中尤为普遍.近年来,可变剪接被认为是植物抵御病原菌侵染的重要调控机制.本文综述了可变剪接在植物免疫各个层面的调控作用,包括调节重要免疫受体、R基因、激素信号路...  相似文献   

19.
Chickpea (Cicer arietinum L.) is an important food legume crop, particularly for the arid regions including Indian subcontinent. Considering the detrimental effect of drought, temperature and salt stress on crop yield, efforts have been initiated in the direction of developing improved varieties and designing alternate strategies to sustain chickpea production in adverse environmental conditions. Identification of genes that confer abiotic stress tolerance in plants remains a challenge in contemporary plant breeding. The present study focused on the identification of abiotic stress responsive genes in chickpea based on sequence similarity approach exploiting known abiotic stress responsive genes from model crops or other plant species. Ten abiotic stress responsive genes identified in other plants were partially amplified from eight chickpea genotypes and their presence in chickpea was confirmed after sequencing the PCR products. These genes have been functionally validated and reported to play significant role in stress response in model plants like Arabidopsis, rice and other legume crops. Chickpea EST sequences available at NCBI EST database were used for the identification of abiotic stress responsive genes. A total of 8,536 unique coding long sequences were used for identification of chickpea homologues of these abiotic stress responsive genes by sequence similarity search (BLASTN and BLASTX). These genes can be further explored towards achieving the goal of developing superior chickpea varieties providing improved yields under stress conditions using modern molecular breeding approaches.  相似文献   

20.
With the completion of the rice (Oryza sativa L.) genome‐sequencing project, the rice research community proposed to characterize the function of every predicted gene in rice by 2020. One of the most effective and high‐throughput strategies for studying gene function is to employ genetic mutations induced by insertion elements such as T‐DNA or transposons. Since 1999, with support from the Ministry of Science and Technology of China for Rice Functional Genomics Programs, large‐scale T‐DNA insertion mutant populations have been generated in Huazhong Agricultural University, the Chinese Academy of Sciences and the Chinese Academy of Agricultural Sciences. Currently, a total of 372,346 mutant lines have been generated, and 58,226 T‐DNA or Tos17 flanking sequence tags have been isolated. Using these mutant resources, more than 40 genes with potential applications in rice breeding have already been identified. These include genes involved in biotic or abiotic stress responses, nutrient metabolism, pollen development, and plant architecture. The functional analysis of these genes will not only deepen our understanding of the fundamental biological questions in rice, but will also offer valuable gene resources for developing Green Super Rice that is high‐yielding with few inputs even under the poor growth conditions of many regions of Africa and Asia.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号