首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Escherichia coli strains isolated from outbreaks of diarrheal disease were tested for the presence of adhesive factors. Fifty-one of these strains belonged to traditional infantile entero-pathogenic serotypes (EPEC) and 17 belonged to other serotypes. None of these strains were enterotoxigenic and none possessed colonization factors CFA/I or CFA/II, which have been described among strains of enterotoxigenicE. coli (ETEC). EnterotoxigenicE. coli strains from patients with diarrhea and strains which were neither EPEC nor ETEC from subjects without diarrhea were also examined. By means of a tissue culture technique using HEp-2 cells, a new adhesive factor was found to occur with greater frequency in EPEC strains. The adhesive factor was found less frequently in the other groups ofE. coli studied. It was distinct from type 1 pili and was not inhibited by the presence ofD-mannose.  相似文献   

2.
The presence of coliform bacteria, faecal coliforms, Escherichia coli, diarrhoeagenic E. coli pathotypes (DEP) and Salmonella were determined in ready‐to‐eat cooked vegetable salads (RECS) from restaurants in Pachuca city, Mexico. The RECS were purchased from three types of restaurants: national chain restaurants (A), local restaurants (B) and small restaurants (C). Two restaurants for each A and B, and three for C, were included. Forty RECS samples were purchased at each A and B restaurant and 20 at each C restaurant. Of the overall total of 220 analysed samples, 100, 98·2, 72·3, 4·1 and 4·1% had coliform bacteria, faecal coliforms, E. coli, DEP and Salmonella, respectively. Identified DEP included enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC) and Shiga toxin‐producing E. coli (STEC). The EPEC, ETEC and STEC were isolated each from 1·4% of samples. No E. coli O157:H7 were detected in any STEC‐positive samples. The analysis of Kruskal–Wallis anova and median test of microbiological data showed that the microbiological quality of RECS did not differ between the different restaurants (P > 0·05).

Significance and Impact of the Study

This is the first report regarding microbiological quality and Salmonella, enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC) and Shiga toxin‐producing E. coli (STEC) isolation from ready‐to‐eat cooked vegetable salads from Mexican restaurants. Ready‐to‐eat cooked vegetable salads could be an important factor contributing to the endemicity of EPEC, ETEC and STEC, and Salmonella caused gastroenteritis in Mexico.  相似文献   

3.
产肠毒素大肠杆菌(enterotoxigenic Escherichia coli, ETEC)是引起人和动物腹泻的重要病原菌之一,其中黏附素和肠毒素是其感染引起腹泻的主要毒力因子。首先,黏附素介导ETEC与宿主小肠上皮细胞的黏附和定殖。随后,定殖的细菌产生肠毒素,导致水、电解质代谢紊乱,最终引起水样腹泻。传统的观点认为ETEC属于非侵袭性大肠杆菌,并不会引起肠上皮细胞凋亡和破坏肠道的屏障结构。但是越来越多的研究证据表明,在体外和体内ETEC感染均可诱导肠上皮细胞凋亡,破坏宿主肠黏膜屏障的完整性,促进疾病发展。本文将就ETEC不同毒力因子诱导细胞凋亡的具体机制、细胞凋亡与疾病发展的相关性以及在临床如何利用抗凋亡治疗预防ETEC感染等方面进行综述,旨为进一步深入阐明ETEC的分子致病机制提供参考,为防治ETEC引起的腹泻提供新策略。  相似文献   

4.
Although many pharmaceutically useful proteins are produced inE. coli expression system, it is very rare for the system to be used in the production of diagnostic antigen due to a major problem,i.e., false-positive reaction ofE. coli host-derived proteins contaminating purified diagnostic antigen with human sera. The N (nucleocapsid) protein of Seoul virus causing haemorrhagic fever with renal syndrome (HFRS) was produced inE. coli BL21 (DE3), and used for the detection of N protein-specific antibodies in human sera. Using the N protein as a diagnostic antigen of HFRS, the false-positive reaction was cleared by merely mixing the test sera with the extract ofE. coli host strain not harboring expression plasmid.  相似文献   

5.
Shiga toxin (Stx)-producing Escherichia coli (STEC) are important causes of diarrhoea and the haemolytic uremic syndrome (HUS). The most common STEC serotype implicated worldwide is E. coli O157:H7 that is diagnosed using procedures based on its typical phenotypic feature, the lack of sorbitol fermentation. In addition to E. coli O157:H7, a variety of non-O157:H7 STEC strains that usually ferment sorbitol and are thus missed by using the diagnostic protocol for E.coli O157:H7 have been isolated from patients. Among these sorbitol-fermenting (SF) non-O157:H7 STEC, SF E. coli O157:H and non-O157 STEC strains of serogroups O26, O103, O111 and O145 have emerged as significant causes of HUS and diarrhoea in continental Europe and have been associated with human disease in other parts of the world. Microbiological diagnosis of non-O157:H7 STEC strains is difficult due to their serotype diversity and the absence of a simple biochemical property that distinguishes such strains from the physiological intestinal microflora. Screening for non-O157:H7 STEC and their isolation from stools is presently based on the detection of Stx production or stx genes that are common characteristics of such strains. Molecular subtyping of the most frequent non-O157 STEC demonstrated that strains of serogroups O26, O103 and O111 belong to their own clonal lineages and show unique virulence profiles. SF STEC O157:H strains that have been isolated mostly in Central Europe represent a new clone within E. coli O157 serogroup which has its own typical combination of virulence factors. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

6.
Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrheal disease and deaths among children in developing countries and the major cause of traveler's diarrhea (TD). Since surface protein colonization factors (CFs) of ETEC are important for pathogenicity and immune protection is mainly mediated by locally produced IgA antibodies in the gut, much effort has focused on the development of an oral CF-based vaccine. The most extensively studied ETEC candidate vaccine is the rCTB-CF ETEC vaccine, containing recombinantly produced cholera B subunit and the most commonly encountered ETEC CFs on the surface of whole inactivated bacteria. Initial clinical trials with this vaccine showed significant immune responses against the key antigens in different age groups in Bangladesh and Egypt and protection against more severe TD in Western travelers. However, when tested in a phase-III trial in Egyptian infants, the protective efficacy of the vaccine was found to be low, indicating the need to improve the immunogenicity of the vaccine, e.g., by increasing the levels of the protective antigens. This review describes different strategies for the construction of recombinant nontoxigenic E. coli and Vibrio cholerae candidate vaccine strains over-expressing higher amounts of ETEC CFs than clinical ETEC isolates selected to produce high levels of the respective CF, e.g., those ETEC strains which have been used in the rCTB-CF ETEC vaccine. Several different expression vectors containing the genes responsible for the expression and assembly of the examined CFs, all downstream of the powerful tac promoter, which could be maintained either with or without antibiotic selection, were constructed. Expression from the tac promoter was under the control of the lacI q repressor present on the plasmids. Following induction with isopropyl-β-d-thiogalactopyranoside, candidate vaccine strains over-expressing single CFs, unnatural combinations of two CFs, and also hybrid forms of ETEC CFs were produced. Specific monoclonal antibodies against the major subunits of the examined CF were used to quantify the amount of the surface-expressed CF by a dot-blot assay and inhibition ELISA. Oral immunization with formalin- or phenol-inactivated recombinant bacteria over-expressing the CFs was found to induce significantly higher antibody responses compared to immunization with the previously used vaccine strains. We therefore conclude that our constructs may be useful as candidate strains in an oral whole-cell inactivated CF ETEC vaccine.  相似文献   

7.
Pathogenesis of enterotoxigenic Escherichia coli (ETEC) infections involves colonization of the small intestine mediated by cell-surface fimbriae (CS) or colonization fimbriae antigens (CFA). However, protection against reinfection of ETEC is also conferred by somatic antigens rather than by virulence factors. To discover ETEC specific somatic antigens, the surface proteome of the ETEC H10406 strain was compared with that of non-pathogenic E. coli K12 strains. In this study, we were using stable isotope labelling with amino acids in cell culture (SILAC) technology for the labelling and relative quantification of surface proteins in order to identify polypeptides that are specifically present on ETEC strains. Outer membrane proteins were isolated, separated by gel electrophoresis, and identified by mass spectrometry. Twenty-three differentially expressed cell-surface polypeptides of ETEC were identified and evaluated by bioinformatics for protein vaccine candidates. The combination of being surface-exposed and present differentially makes these polypeptides highly suitable as targets for antibodies and thus for use in passive or active immunisation/vaccination.  相似文献   

8.
Escherichia coli O157:H7 is an emerging food and waterborne pathogen in the U.S. and internationally. The objective of this work was to develop a dose-response model for illness by this organism that bounds the uncertainty in the dose-response relationship. No human clinical trial data are available for E. coli O157:H7, but such data are available for two surrogate pathogens: enteropathogenic E. coli (EPEC) and Shigella dysenteriae. E. coli O157:H7 outbreak data provide an initial estimate of the most likely value of the dose-response relationship within the bounds of an envelope defined by beta-Poisson dose-response models fit to the EPEC and S. dysenteriae data. The most likely value of the median effective dose for E. coli O157:H7 is estimated to be approximately 190[emsp4 ]000 colony forming units (cfu). At a dose level of 100[emsp4 ]cfu, the median response predicted by the model is six percent.  相似文献   

9.
Shiga toxin-producing Escherichia coli (STEC) O157 is a formidable human pathogen with the capacity to cause large outbreaks of gastrointestinal illness. The known virulence factors of this organism are encoded on phage, plasmid and chromosomal genes. There are also likely to be novel, as yet unknown virulence factors in this organism. Many of these virulence factors have been acquired by E. coli O157 by transfer from other organisms, both E. coli and non-E. coli species. By examination of biochemical and genetic characteristics of various E. coli O157 strains and the relationships with other organisms, an evolutionary pathway for development of E. coli O157 as a pathogen has been proposed. E. coli O157 evolved from an enteropathogenic E. coli ancestor of serotype O55:H7, which contained the locus of enterocyte effacement containing the adhesin intimin. During the evolutionary process, Shiga toxins, the pO157 plasmid and other characteristics which enhanced virulence were acquired and other functions such as motility, sorbitol fermentation and β-glucuronidase activity were lost by some strains. It is likely that E. coli O157 is constantly evolving, and changes can be detected in genetic patterns during the course of infection. A variety of mechanisms may be responsible for the development of the virulent phenotype that we see today. Such changes include uptake of as yet uncharacterised virulence factors, possibly enhanced by a mutator phenotype, recombination within virulence genes to produce variant genes with different properties, loss of large segments of DNA (black holes) to enhance virulence and possible adaptation to different hosts. Although little is known about the evolution of non-O157 STEC it is likely that the most virulent clones evolved in a similar manner to E. coli O157. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

10.
A technique has been developed to selectively attach bacteria to solid supports using poly-l-lysine. The patterned biofilms were labeled with green fluorescent protein (GFP) or a nucleic acid stain and imaged using both confocal microscopy and GFP stereomicroscopy. E. coli DH10B, E. coli MC1061, and Pseudomonas sp. GJ1 were selectively attached to regions coated with poly-l-lysine but not to uncoated regions. In contrast, E. coli DH5, W3110 and 33456 attached indiscriminately to the coated and uncoated regions of the surface. Those organisms that selectively attached to the poly-l-lysine coated regions formed biofilms twice as thick as the organisms that attached indiscriminately to the surface. This technique can be used for selectively patterning surfaces with genetically engineered microorganisms for biosynthesis of secondary metabolites and biodegradation or for developing a bacterial-based microscale medical diagnostic tool.  相似文献   

11.
The distribution of coliphages infecting different Escherichia coli virotypes (EHEC, EIEC, EPEC, ETEC) and an avirulent strain (K-12) in sewage system of a hospital and a sewage treatment plant (STP) was investigated by culture-based agar overlay methods. Coliphages were found in all the samples except stool dumping site in the sewage system of the hospital and lagoon of the STP. Bacteriophage count (pfu/ml) infecting E. coli strains showed the following ascending pattern (EHEC < EIEC < EPEC < ETEC < E coli K-12) in all the collected samples except one. Phages capable of infecting avirulent E. coli K-12 strains were present in the highest number among all the examined locations. Phages specific for E. coli K-12 presented high diversity in plaque size on the bacterial lawn. Virulent E. coli specific coliphages rarely produced plaques with diameter of 1–2 mm or over. Conventional agar overlay method was found to be not satisfactory for phage community analysis from primary stool dumping site of the hospital, probably due to the presence of high concentration of antimicrobial substances. The gradual decrease seen in the five groups of coliphage quantity with the ongoing treatment process and then the absolute absence of coliphages in the outlet of the examined treatment plant is indicative of the usefulness of the treatment processes practiced there.  相似文献   

12.

Background

Enterotoxigenic Escherichia coli (ETEC) strains are the leading bacterial cause of diarrhea to humans and farm animals. These ETEC strains produce heat-labile toxin (LT) and/or heat-stable toxins that include type I (STa), type II (STb), and enteroaggregative heat-stable toxin 1 (EAST1). LT, STa, and STb (in pigs) are proven the virulence determinants in ETEC diarrhea. However, significance of EAST1 in ETEC-associated diarrheal has not been determined, even though EAST1 is highly prevalent among ETEC strains.

Methodology/Principal Findings

In this study, we constructed E. coli strains to express EAST1 toxin as the only toxin and studied them in cell lines and five-day old gnotobiotic piglets to determine significance of EAST1 toxin. Data from in vitro studies indicated that EAST1 did not stimulate an increase of intracellular cyclic AMP or GMP levels in T-84 cells or porcine cell line IPEC-J2, nor did it enhance LT or STa toxin of ETEC strains in stimulation of cAMP or cGMP in T-84 cells. In addition, 5-day old gnotobiotic pigs challenged with E. coli strains expressing EAST1 as the only toxin did not developed diarrhea or signs of clinical disease during 72 h post-inoculation.

Conclusion/Significance

Results from this study indicated that EAST1 alone is not sufficient to cause diarrhea in five-day old gnotobiotic pigs, and suggest that EAST1 likely is not a virulence determinant in ETEC-associated diarrhea.  相似文献   

13.
Enterotoxigenic Escherichia coli (ETEC) causes an acute cholera-like diarrhoea in both humans and animals. We describe a new pilus termed longus produced by ETEC, which can extend for over 20 microns from the cell surface. Longus is composed of a repeating subunit of 22 kDa and its NH2-terminal amino acid sequence revealed homology with the toxin-coregulated pilus of Vibrio cholerae, the bundle-forming pilus of enteropathogenic E. coli and type IV pilins of some Gram-negative bacterial pathogens. The longus structural gene (IgA) is encoded in a large plasmid and was cloned in a 5 kb fragment, which proved to be sufficient for pilus production and assembly in E. coli K-12. The presence of IngA was restricted to human ETEC strains. In contrast to other ETEC pili, IngA was widely distributed among ETEC strains independent of their geographical origin, serotype, toxin production, or other pili antigens expressed. Longus is a new member of the type IV pili family, which may represent a highly conserved intestinal colonization factor of ETEC. Common antigenic determinants exist among longus and their pilin subunits, produced by heterologous ETEC. Longus could be significant in the immuno-prophylaxis of diarrhoeal disease caused by ETEC, especially against those strains in which no colonization factors have been identified and that produce heat-stable toxin only.  相似文献   

14.
The binding specificities of cholera toxin andEscherichia coli heat-labile enterotoxin were investigated by binding of125I-labelled toxins to reference glycosphingolipids separated on thin-layer chromatograms and coated in microtitre wells. The binding of cholera toxin was restricted to the GM1 ganglioside. The heat-labile toxin showed the highest affinity for GM1 but also bound, though less strongly, to the GM2, GD2 and GD1b gangliosides and to the non-acid glycosphingolipids gangliotetraosylceramide and lactoneotetraosylceramide. The infant rabbit small intestine, a model system for diarrhoea induced by the toxins, was shown to contain two receptor-active glycosphingolipids for the heat-labile toxin, GM1 ganglioside and lactoneotetraosylceramide, whereas only the GM1 ganglioside was receptor-active for cholera toxin. Preliminary evidence was obtained, indicating that epithelial cells of human small intestine also contain lactoneotetraosylceramide and similar sequences. By computer-based molecular modelling, lactoneotetraosylceramide was docked into the active site of the heat-labile toxin, using the known crystal structure of the toxin in complex with lactose. Interactions which may explain the relatively high toxin affinity for this receptor were found.Abbreviations CT cholera toxin - CT-B B-subunits of cholera toxin - LT Escherichia coli heat-labile enterotoxin - hLT humanEscherichia coli heat-labile enterotoxin - pLT porcineEscherichia coli heat-labile enterotoxin - EI electron ionization  相似文献   

15.
16.
Enterotoxigenic Escherichia Coli (ETEC) strains are the commonest bacteria causing diarrhea in children in developing countries and travelers to these areas. Colonization factors (CFs) and enterotoxins are the main virulence determinants in ETEC pathogenesis. Heterogeneity of CFs is commonly considered the bottleneck to developing an effective vaccine. It is believed that broad spectrum protection against ETEC would be achieved by induced anti‐CF and anti‐enterotoxin immunity simultaneously. Here, a fusion antigen strategy was used to construct a quadrivalent recombinant protein called 3CL and composed of CfaB, a structural subunit of CFA/I, and CS6 structural subunits, LTB and STa toxoid of ETEC. Its anti‐CF and antitoxin immunogenicity was then assessed. To achieve high‐level expression, the 3CL gene was synthesized using E. coli codon bias. Female BALB/C mice were immunized with purified recombinant 3CL. Immunized mice developed antibodies that were capable of detecting each recombinant subunit in addition to native CS6 protein and also protected the mice against ETEC challenge. Moreover, sera from immunized mice also neutralized STa toxin in a suckling mouse assay. These results indicate that 3CL can induce anti‐CF and neutralizing antitoxin antibodies along with introducing CFA/I as a platform for epitope insertion.
  相似文献   

17.
Deleted forms of ricin B chain (RTB) containing only one of the two galactose binding sites were produced inE. coli and targeted to the periplasm by fusion to theompA orompF signal sequences. The proteins were then isolated from the periplasm and their sugar binding properties assessed. Previous studies investigating the properties of such proteins produced inXenopus laevis oocytes suggested that deleted forms of RTB, when not glycosylated, retain their ability to bind simple sugars, unlike the full-length unglycosylated proteins. When produced inE. coli however we found that only one, EB733, of a number of deleted forms of RTB closely related to those previously produced inXenopus laevis oocytes, bound to simple sugars. All of the deletion forms of RTB were found to bind in the asialofetuin binding assay; an assay which has been previously utilized to measure binding of lectins to the terminal galactose residues of glycoprotein oligosaccharides. However, in contrast to glycosylated RTB, binding of the deletion mutants could be competed to only a small degree or not at all with galactose. The only deletion mutant observed to bind to free galactose when produced inE. coli corresponded closely to the complete domain 2 of RTB. It is assumed that this mutant forms a stable structure similar to that of the C-terminal domain in the full-length protein. The structural integrity of EB733 was not only suggested by its sugar binding properties and solubility but also by its consistently higher level of expression and the absence of any apparent susceptibility toE. coli proteases.Abbreviations RTA ricin toxin A chain - RTB ricin toxin B chain - ER endoplasmic reticulum - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - IPTG isopropyl -d-thiogalactopyranoside  相似文献   

18.
[目的] 本试验旨在阐明鸡源大肠杆菌致病性及分子流行特性,为探索大肠杆菌流行途径制定合理的防控策略提供新思路。[方法] 2018–2019年在河北省采集病死鸡肝脏样品,通过选择培养基筛选、生化鉴定、血清凝集试验对分离菌株进行系统鉴定,应用PCR方法检测分离株中毒力基因流行情况。参考系统发育群分类方法对大肠杆菌进行分群分析,并参照McMLST网站数据库提供的7对管家基因序列进行多位点序列分型(multilocus sequence typing,MLST)分析。[结果] 结果显示,56株分离株符合大肠杆菌生化特征,分为8个生化表型,B4(30.36%)、B5(25%)和B2(23.21%)为主要生化表型。56株分离株大肠杆菌血清凝集试验均呈阳性,分为11种血清型,O78(26.79%)、O2(23.21%)、O157(17.86%)和O1(14.29%)为主要流行血清型。56株大肠杆菌共检测出15种肠外大肠杆菌毒力基因,未检出papCibeAibeB基因。黏附相关基因fimC和抗血清存活因子相关基因ompA携带率为100%。aatAyijPirp2matiss,检出率分别为98.21%、98.21%、98.21%、96.43%、92.86%。同时,大肠杆菌与铁转运相关基因iroNfyuAiucDirp2检出率均在80%以上。56株大肠杆菌中有20株属于肠出血型大肠杆菌(enterohemorrhagic E.coli,EHEC),其次是肠聚集型大肠杆菌(enteroaggregative E.coli,EAEC)(n=4)、肠产毒素型大肠杆菌(Enterotoxigenic E.coli,ETEC)(n=2)。这些菌株D群分离株较多,其次是B2群。通过MLST分型分析,共分为22个ST型,其中ST88(n=7)、ST85(n=6)、ST243(n=6)型为主要流行型。[结论] 结果显示大肠杆菌血清型多样,毒力因子种类繁多,致病性大肠杆菌同时携带多种毒力基因,表明动物源大肠杆菌具有较强的毒力基础。  相似文献   

19.
This study identified and characterized enteropathogenic Escherichia coli (EPEC) in the Canadian food supply. Eighteen of 450 E. coli isolates from food animal sources were identified as atypical EPEC (aEPEC). Several of the aEPEC isolates identified in this study possessed multiple virulence genes, exhibited adherence and attaching and effacing (A/E) lesion formation, disrupted tight junctions, and were coclassified with the extraintestinal pathogenic E. coli (ExPEC) and enterotoxigenic E. coli (ETEC) pathotypes.  相似文献   

20.
Understanding the factors influencing the transport of microbial pathogens, such as Salmonella and Escherichia coli, through porous media is critical to protecting drinking water supplies. The production of biofilms, along with individual biofilm-associated components, such as tafi, is believed to hinder transport of microorganisms through soil. This study investigated the relationship between biofilm formation and tafi production and the transport of environmental Salmonella through porous media. Thirty-two Salmonella isolates were initially assayed for their ability to form biofilms, from which a subset of these was selected to represent a range of high and low biofilm-formation potential and tafi formation capabilities. These were subsequently examined in unsaturated sand columns for transport characteristics. No obvious correlation was observed between Salmonella phenotypes and column retention. The results indicated that while transport of well-characterized laboratory E. coli strains can often be hindered by the presence of tafi and the potential to form biofilms, the presence of tafi did not retard the transport of the Salmonella strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号