首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cryoelectron microscopy provides the means of studying macromolecules in their native state. However, the contrast transfer function (CTF) makes the images and the three-dimensional (3D) maps derived from them difficult to interpret. We developed methods to determine the CTF from experimental data and to obtain a CTF-corrected 3D reconstruction. The CTF correction and 3D reconstruction accomplished in one step make it easy to combine different defocus data sets and decrease the error accumulation in the computation. These methods were applied to energy-filtered images of the 70SEscherichia coliribosome, resulting in a distortion-free 3D map of the ribosome at 1/24.5 Å−1resolution, as determined by the differential phase residual resolution criterion.  相似文献   

2.
Abstract

The application of Molecular-Dynamics simulation in protein-crystallographic structure refinement has become common practice. In this paper, structure optimizations are described where the driving force is derived only from the crystallographic data and not from any physical potential energy function. Under this extreme condition ab initio structure refinement and the application of structure-factor time averaging was investigated using a small 9 atom test system. Success in ab initio refinement, where the starting atomic positions are randomly distributed, depends on the resolution of the crystallographic data used in the optimization. The presence of high resolution data introduces false minima in the X-ray energy profile, enhancing the search problem significantly. On the same system, we also tested the method of time-averaged crystallographically restrained Molecular Dynamics, again in the absence of a physical force field. In this method, the diffraction data is modelled by an ensemble of structures instead of one single structure. In comparison to conventional single-structure refinement, more reflections were required to determine a correct atomic distribution. A time-averaging simulation at 0.2 nm resolution (40 reflections) yielded an incorrect distribution, although a low R-factor was obtained. Simulations at 0.1 nm resolution (248 reflections) gave both low R-factors, 3 to 4%, and correct atomic distributions. The scale factor between the observed and time-averaged calculated structure factor amplitudes appeared to be unstable, when optimized during a time-averaging simulation. Tests of time-averaged restrained simulations with noise added to the observed structure-factor amplitudes, indicated that noise is modelled when no information in the form of constraints or restraints is available to distinguish it from real data.  相似文献   

3.
We describe a method based on Rosetta structure refinement for generating high-resolution, all-atom protein models from electron cryomicroscopy density maps. A local measure of the fit of a model to the density is used to directly guide structure refinement and to identify regions incompatible with the density that are then targeted for extensive rebuilding. Over a range of test cases using both simulated and experimentally generated data, the method consistently increases the accuracy of starting models generated either by comparative modeling or by hand-tracing the density. The method can achieve near-atomic resolution starting from density maps at 4-6 Å resolution.  相似文献   

4.
Kawabata T 《Biophysical journal》2008,95(10):4643-4658
Recently, electron microscopy measurement of single particles has enabled us to reconstruct a low-resolution 3D density map of large biomolecular complexes. If structures of the complex subunits can be solved by x-ray crystallography at atomic resolution, fitting these models into the 3D density map can generate an atomic resolution model of the entire large complex. The fitting of multiple subunits, however, generally requires large computational costs; therefore, development of an efficient algorithm is required. We developed a fast fitting program, “gmfit”, which employs a Gaussian mixture model (GMM) to represent approximated shapes of the 3D density map and the atomic models. A GMM is a distribution function composed by adding together several 3D Gaussian density functions. Because our model analytically provides an integral of a product of two distribution functions, it enables us to quickly calculate the fitness of the density map and the atomic models. Using the integral, two types of potential energy function are introduced: the attraction potential energy between a 3D density map and each subunit, and the repulsion potential energy between subunits. The restraint energy for symmetry is also employed to build symmetrical origomeric complexes. To find the optimal configuration of subunits, we randomly generated initial configurations of subunit models, and performed a steepest-descent method using forces and torques of the three potential energies. Comparison between an original density map and its GMM showed that the required number of Gaussian distribution functions for a given accuracy depended on both resolution and molecular size. We then performed test fitting calculations for simulated low-resolution density maps of atomic models of homodimer, trimer, and hexamer, using different search parameters. The results indicated that our method was able to rebuild atomic models of a complex even for maps of 30 Å resolution if sufficient numbers (eight or more) of Gaussian distribution functions were employed for each subunit, and the symmetric restraints were assigned for complexes with more than three subunits. As a more realistic test, we tried to build an atomic model of the GroEL/ES complex by fitting 21-subunit atomic models into the 3D density map obtained by cryoelectron microscopy using the C7 symmetric restraints. A model with low root mean-square deviations (14.7 Å) was obtained as the lowest-energy model, showing that our fitting method was reasonably accurate. Inclusion of other restraints from biological and biochemical experiments could further enhance the accuracy.  相似文献   

5.
A Malhotra  R K Tan    S C Harvey 《Biophysical journal》1994,66(6):1777-1795
There is a growing body of low-resolution structural data that can be utilized to devise structural models for large RNAs and ribonucleoproteins. These models are routinely built manually. We introduce an automated refinement protocol to utilize such data for building low-resolution three-dimensional models using the tools of molecular mechanics. In addition to specifying the positions of each nucleotide, the protocol provides quantitative estimates of the uncertainties in those positions, i.e., the resolution of the model. In typical applications, the resolution of the models is about 10-20 A. Our method uses reduced representations and allows us to refine three-dimensional structures of systems as big as the 16S and 23S ribosomal RNAs, which are about one to two orders of magnitude larger than nucleic acids that can be examined by traditional all-atom modeling methods. Nonatomic resolution structural data--secondary structure, chemical cross-links, chemical and enzymatic footprinting patterns, protein positions, solvent accessibility, and so on--are combined with known motifs in RNA structure to predict low-resolution models of large RNAs. These structural constraints are imposed on the RNA chain using molecular mechanics-type potential functions with parameters based on the quality of experimental data. Surface potential functions are used to incorporate shape and positional data from electron microscopy image reconstruction experiments into our models. The structures are optimized using techniques of energy refinement to get RNA folding patterns. In addition to providing a consensus model, the method finds the range of models consistent with the data, which allows quantitative evaluation of the resolution of the model. The method also identifies conflicts in the experimental data. Although our protocol is aimed at much larger RNAs, we illustrate these techniques using the tRNA structure as an example and test-bed.  相似文献   

6.
The crystal structure of the ribosome inhibiting protein Mistletoe Lectin I (ML-I) derived from the European mistletoe, Viscum album, in complex with kinetin has been refined at 2.7 Å resolution. Suitably large crystals of ML-I were obtained applying the counter diffusion method using the Gel Tube R Crystallization Kit (GT-R) on board the Russian Service Module on the international space station ISS within the GCF mission No. 6, arranged by the Japanese aerospace exploration agency (JAXA). Hexagonal bi-pyramidal crystals were grown during three months under microgravity. Before data collection the crystals were soaked in a saturated solution of kinetin and diffraction data to 2.7 Å were collected using synchrotron radiation and cryogenic techniques. The atomic model was refined and revealed a single kinetin molecule in the ribosome inactivation site of ML-I. The complex demonstrates the feasibility of mistletoe to bind plant hormones out of the host regulation system as part of a self protection mechanism.  相似文献   

7.
Eukaryotic ribosome assembly involves a plethora of factors, which ensure that a correctly folded ribosome contains all ribosomal protein components. Among these assembly factors, Yar1 has recently emerged as a molecular chaperone for ribosomal protein rpS3 of the small ribosomal subunit (40S) in yeast. In complex with its chaperone, rpS3 is imported into the nucleus and protected from aggregation. How rpS3 and other ribosomal proteins are initially sequestered and subsequently integrated into pre-ribosomal particles is currently poorly understood. Here, we present the crystal structure of yeast rpS3 in complex with its chaperone Yar1 at 2.8 Å resolution. The crystal structure rationalizes how Yar1 can protect rpS3 from aggregation while facilitating nuclear import and suggests a mechanism for a stepwise exchange of molecular partners that ribosomal proteins interact with during ribosome assembly.  相似文献   

8.
The phosphagen kinase family, including creatine and arginine kinases (AKs), catalyzes the reversible transfer of a “high-energy” phosphate between ATP and a phosphoguanidino substrate. They have become a model for the study of both substrate-induced conformational change and intrinsic protein dynamics. Prior crystallographic studies indicated large substrate-induced domain rotations, but differences among a recent set of AK structures were interpreted as a plastic deformation. Here, the structure of Limulus substrate-free AK is refined against high-resolution crystallographic data and compared quantitatively with NMR chemical shifts and residual dipolar couplings (RDCs). This demonstrates the feasibility of this type of RDC analysis of proteins that are large by NMR standards (42 kDa) and illuminates the solution structure, free from crystal-packing constraints. Detailed comparison of the 1.7 Å resolution substrate-free crystal structure against the 1.7 Å transition-state analog complex shows large substrate-induced domain motions that can be broken down into movements of smaller quasi-rigid bodies. The solution-state structure of substrate-free AK is most consistent with an equilibrium of substrate-free and substrate-bound structures, with the substrate-free form dominating, but with varying displacements of the quasi-rigid groups. Rigid-group rotations evident from the crystal structures are about axes previously associated with intrinsic millisecond dynamics using NMR relaxation dispersion. Thus, “substrate-induced” motions are along modes that are intrinsically flexible in the substrate-free enzyme and likely involve some degree of conformational selection.  相似文献   

9.
The structures of large macromolecular complexes in different functional states can be determined by cryo-electron microscopy, which yields electron density maps of low to intermediate resolutions. The maps can be combined with high-resolution atomic structures of components of the complex, to produce a model for the complex that is more accurate than the formal resolution of the map. To this end, methods have been developed to dock atomic models into density maps rigidly or flexibly, and to refine a docked model so as to optimize the fit of the atomic model into the map. We have developed a new refinement method called YUP.SCX. The electron density map is converted into a component of the potential energy function to which terms for stereochemical restraints and volume exclusion are added. The potential energy function is then minimized (using simulated annealing) to yield a stereochemically-restrained atomic structure that fits into the electron density map optimally. We used this procedure to construct an atomic model of the 70S ribosome in the pre-accommodation state. Although some atoms are displaced by as much as 33 Å, they divide themselves into nearly rigid fragments along natural boundaries with smooth transitions between the fragments.  相似文献   

10.
Summary A new method, a restrained Monte Carlo (rMC) calculation, is demonstrated for generating high-resolution structures of DNA oligonucleotides in solution from interproton distance restraints and bounds derived from complete relaxation matrix analysis of two-dimensional nuclear Overhauser effect (NOE) spectral peak intensities. As in the case of restrained molecular dynamics (rMD) refinement of structures, the experimental distance restraints and bounds are incorporated as a pseudo-energy term (or penalty function) into the mathematical expression for the molecular energy. However, the use of generalized helical parameters, rather than Cartesian coordinates, to define DNA conformation increases efficiency by decreasing by an order of magnitude the number of parameters needed to describe a conformation and by simplifying the potential energy profile. The Metropolis Monte Carlo method is employed to simulate an annealing process. The rMC method was applied to experimental 2D NOE data from the octamer duplex d(GTA-TAATG)·d(CATTATAC). Using starting structures from different locations in conformational space (e.g. A-DNA and B-DNA), the rMC calculations readily converged, with a root-mean-square deviation (RMSD) of <0.3 Å between structures generated using different protocols and starting structures. Theoretical 2D NOE peak intensities were calculated for the rMC-generated structures using the complete relaxation matrix program CORMA, enabling a comparison with experimental intensities via residual indices. Simulation of the vicinal proton coupling constants was carried out for the structures generated, enabling a comparison with the experimental deoxyribose ring coupling constants, which were not utilized in the structure determination in the case of the rMC simulations. Agreement with experimental 2D NOE and scalar coupling data was good in all cases. The rMC structures are quite similar to that refined by a traditional restrained MD approach (RMSD<0.5 Å) despite the different force fields used and despite the fact that MD refinement was conducted with additional restraints imposed on the endocyclic torsion angles of deoxyriboses. The computational time required for the rMC and rMD calculations is about the same. A comparison of structural parameters is made and some limitations of both methods are discussed with regard to the average nature of the experimental restraints used in the refinement.Abbreviations MC Monte Carlo - rMC restrained Monte Carlo - MD molecular dynamics - rMD restrained molecular dynamics - DG distance geometry - EM energy minimization - 2D NOE two-dimensional nuclear Overhauser effect - DQF-COSY double-quantum-filtered correlation spectroscopy - RMSD root-mean-square deviation To whom correspondence should be addressed.  相似文献   

11.
Structure of the mammalian 80S ribosome at 8.7 A resolution   总被引:1,自引:0,他引:1  
In this paper, we present a structure of the mammalian ribosome determined at approximately 8.7 A resolution by electron cryomicroscopy and single-particle methods. A model of the ribosome was created by docking homology models of subunit rRNAs and conserved proteins into the density map. We then modeled expansion segments in the subunit rRNAs and found unclaimed density for approximately 20 proteins. In general, many conserved proteins and novel proteins interact with expansion segments to form an integrated framework that may stabilize the mature ribosome. Our structure provides a snapshot of the mammalian ribosome at the beginning of translation and lends support to current models in which large movements of the small subunit and L1 stalk occur during tRNA translocation. Finally, details are presented for intersubunit bridges that are specific to the eukaryotic ribosome. We suggest that these bridges may help reset the conformation of the ribosome to prepare for the next cycle of chain elongation.  相似文献   

12.
Recent technological advances in cryo electron microscopy (cryo-EM) have led to new opportunities in the structural biology field. Here we benchmark the performance of two 300 kV latest-generation cryo electron microscopes, Titan Krios G4 from Thermofisher Scientific and CRYO ARM 300 from Jeol, with regards to achieving high resolution single particle reconstructions on a real case sample. We compare potentially limiting factors such as drift rates, astigmatism & coma aberrations and performance during image processing and show that both microscopes, while comprising rather different technical setups & parameter settings and equipped with different types of energy filters & cameras, achieve a resolution of around 2 Å on the human ribosome, a non-symmetric object which constitutes a key drug target. Astigmatism correction, CTF refinement and correction of higher order aberrations through refinement in separate optics groups helped to account for astigmatism/coma caused by beam tilting during multi-spot and multi-hole acquisition in neighbouring holes without stage movement. The obtained maps resolve Mg2+ ions, water molecules, inhibitors and side-chains including chemical modifications. The fact that both instruments can resolve such detailed features will greatly facilitate understanding molecular mechanisms of various targets and helps in cryo-EM structure based drug design. The methods and analysis tools used here will be useful also to characterize existing instruments and optimize data acquisition settings and are applicable broadly to other drug targets in structural biology.  相似文献   

13.
Many of the most important functions in the cell are carried out by proteins organized in large molecular machines. Cryo-electron microscopy (cryo-EM) is increasingly being used to obtain low resolution density maps of these large assemblies. A new method, ATTRACT-EM, for the computational assembly of molecular assemblies from their components has been developed. Based on concepts from the protein-protein docking field, it utilizes cryo-EM density maps to assemble molecular subunits at near atomic detail, starting from millions of initial subunit configurations. The search efficiency was further enhanced by recombining partial solutions, the inclusion of symmetry information, and refinement using a molecular force field. The approach was tested on the GroES-GroEL system, using an experimental cryo-EM map at 23.5 Å resolution, and on several smaller complexes. Inclusion of experimental information on the symmetry of the systems and the application of a new gradient vector matching algorithm allowed the efficient identification of docked assemblies in close agreement with experiment. Application to the GroES-GroEL complex resulted in a top ranked model with a deviation of 4.6 Å (and a 2.8 Å model within the top 10) from the GroES-GroEL crystal structure, a significant improvement over existing methods.  相似文献   

14.
The three-dimensional structure of the deoxycholate-treated form of purple membrane has been determined to a resolution of about 6 Å. Using low temperature electron diffraction data, room temperature electron microscope images and improved methods of data analysis, higher resolution has been reached than was obtained using native membranes of the same size. Statistical analysis of the data shows that the new map is considerably better than earlier maps. The map indicates the probable sites for the lipid molecules that remain in the deoxycholate-treated membranes; some of these sites differ from those suggested by the projection map of Glaeser et al. (1985). Comparison of the bacteriorhodopsin structures now determined independently from three crystal forms shows that the monomer structure is independent of the detailed contacts with lipid molecules. The average of the three structures gives a picture with very little noise showing seven similar rod-like features which are clearly best interpreted as -helices; there is no indication that part of the structure is -sheet as suggested by Jap et al. (1983). Phases from the averaged structure at 6 Å resolution will enable better refinement of the parameters that will be required in the analysis of higher resolution images from tilted specimens needed to extend the projection map at 3.5 Å resolution (Henderson et al. 1986) to produce a three-dimensional atomic resolution map.  相似文献   

15.
Summary The ultrastructure of Drosophila melanogaster cytoplasmic ribosomal subunits and monomers have been examined by electron microscopy. The Drosophila ribosomal structures are compared to those determined for other eucaryotes and E. coli. Negatively contrasted images of 60S subunits are seen in the most frequent view to be approximately round particles about 280 Å in diameter. About 35% of the particles present a single prominent projection which we call the 60S peak. The peak emanates from a flattened region of the 60S subunit. The maximum observed length of the 60S peak is approximately 90Å. The Drosophila 60S peak is highly reminiscent of the E. coli L7/L12 stalk. The Drosophila 40S subunit is an elongated, slightly bent particle which measures 280×170×160 Å. It bears a strong resemblance to small ribosomal subunits of other eucaryotes and is strikingly similar to the E. coli 30S subunit. Micrographs of 80S monomeric ribosomes show the long axis of the 40S to be parallel and in apparent contact with the flattened region of 60S subunit. The 60S peak appears to bisect the long axis of the 40S subunit. The 40S subunit seems to be oriented in the monomeric ribosome so that the 40S projection is toward the body of the large subunit. Comparison of our data with similar studies in different organisms indicates that the eucaryotic large ribosomal subunits exhibit morphological heterogeneity while the small subunits remain remarkably similar.  相似文献   

16.
The serum-amyloid-P-component-like pentraxin from Limulus polyphemus, a recently discovered pentraxin species and important effector protein of the hemolymph immune system, displays two distinct doubly stacked cyclic molecular aggregations, heptameric and octameric. The refined three-dimensional structures determined by X-ray crystallography, both based on the same cDNA sequence, show that each aggregate is constructed from a similar dimer of protomers, which is repeated to make up the ring structure. The native octameric form has been refined at a resolution of 3 Å, the native heptameric form at 2.3 Å, and the phosphoethanolamine (PE)-bound octameric form at 2.7 Å. The existence of the hitherto undescribed heptameric form was confirmed by single-particle analysis using cryo-electron microscopy. In the native structures, the calcium-binding site is similar to that in human pentraxins, with two calcium ions bound in each subunit. Upon binding PE, however, each subunit binds a third calcium ion, with all three calcium ions contributing to the binding and orientation of the bound phosphate group within the ligand-binding pocket. While the phosphate is well-defined in the electron density, the ethanolamine group is poorly defined, suggesting structural and binding variabilities of this group. Although sequence homology with human serum amyloid P component is relatively low, structural homology is high, with very similar overall folds and a common affinity for PE. This is due, in part, to a “topological” equivalence of side-chain position. Identical side chains that are important in both function and fold, from different regions of the sequence in human and Limulus structures, occupy similar space within the overall subunit fold. Sequence and structure alignment, based on the refined three-dimensional structures presented here and the known horseshoe crab pentraxin sequences, suggest that adaptation and refinement of C-reactive-protein-mediated immune responses in these ancient creatures lacking antibody-based immunity are based on adaptation by gene duplication.  相似文献   

17.
The protonation states and hydration structures of the α-thrombin–bivalirudin complex were studied by joint XN refinement of the single crystal X-ray and neutron diffraction data at resolutions of 1.6 and 2.8 Å, respectively. The atomic distances were estimated by carrying out X-ray crystallographic analysis at 1.25 Å resolution. The complex represents a model of the enzyme-product (EP) complex of α-thrombin. The neutron scattering length maps around the active site suggest that the side chain of H57/H was deuterated. The joint XN refinement showed that occupancies for Dδ1 and Dε2 of H57/H were 1.0 and 0.7, respectively. However, no significant neutron scattering length density was observed around the hydroxyl oxygen Oγ of S195/H, which was close to the carboxylic carbon atom of dFPR-COOH. These observations suggest that the Oγ atom of S195/H is deprotonated and maintains its nucleophilicity in the EP complex. In addition to the active site, the hydration structures of the S1 subsite and the Exosite I, which are involved in the recognition of bivalirudin, are presented.  相似文献   

18.
At the end of translation in bacteria, ribosome recycling factor (RRF) is used together with elongation factor G to recycle the 30S and 50S ribosomal subunits for the next round of translation. In x-ray crystal structures of RRF with the Escherichia coli 70S ribosome, RRF binds to the large ribosomal subunit in the cleft that contains the peptidyl transferase center. Upon binding of either E. coli or Thermus thermophilus RRF to the E. coli ribosome, the tip of ribosomal RNA helix 69 in the large subunit moves away from the small subunit toward RRF by 8 Å, thereby disrupting a key contact between the small and large ribosomal subunits termed bridge B2a. In the ribosome crystals, the ability of RRF to destabilize bridge B2a is influenced by crystal packing forces. Movement of helix 69 involves an ordered-to-disordered transition upon binding of RRF to the ribosome. The disruption of bridge B2a upon RRF binding to the ribosome seen in the present structures reveals one of the key roles that RRF plays in ribosome recycling, the dissociation of 70S ribosomes into subunits. The structures also reveal contacts between domain II of RRF and protein S12 in the 30S subunit that may also play a role in ribosome recycling.  相似文献   

19.
A simple and rapid procedure is presented that enables evaluation and visualization of refinement efficiency for bio-macromolecular complexes consisting of two subunits in a given orientation by using small-angle scattering. Subunit orientations within a complex can be provided in practice by NMR residual dipolar couplings, an approach that has been combined with increasing success to complement small-angle data. The procedure is illustrated by applying it to several systems composed of two simple geometric bodies (ellipsoids) and to protein complexes from the protein data bank that vary in subunit size and anisometry. The effects of the experimental small-angle scattering range (Q-range) and data noise level on the refinement efficiency are investigated and discussed. The procedure can be used in two ways: (1) either as a quick preliminary test to probe the refinement capacity expected for a given bio-macromolecular complex prior to sophisticated and time-consuming experiments and data analysis, or (2) as an a posteriori check of the stability and accuracy of a refined model and for illustration of the residual degrees of freedom of the subunit positions that are in agreement with both small-angle data and restraints on subunit orientation (as provided, e.g., by NMR).  相似文献   

20.
Crystallographic and associated biochemical and structural studies are in progress on the fiber-forming pilin proteins of the gonococcal pilus. Preparative scale purification procedures have been developed for the gonococcal pilin protein, which appear generally applicable to bacterial pilins. For three gonococcal pilin protein strains, we have obtained both reassembled pilus fibers and three-dimensional crystals. One needle-shaped crystal form of gonococcal C30 pilin diffracts beyond 3 Å resolution using synchrotron x-ray radiation. A diffraction data set to 3.5 Å resolution has been collected on these needle-shaped crystals (lattice spacings a=125.4(3) b=120.4(3), c=26.61(4) Å) in which the packing arrangement of the pilin subunits appears to resemble that seen in the pilus fibers using electron microscopy. X-ray diffraction data confirm our proposed model for the overall polypeptide fold of a pilin subunit, which is an antiparallel 4- helix bundle similar to tobacco mosaic virus coat protein and myohemerythrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号