首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Similarities between the mode of action of growth factors and the oncogene product (pp 60 src protein) of Rous Sarcoma virus have been described. However, a major difference is that addition of growth factors does not induce a malignant transformation of cells. The present work proposes a hypothesis concerning this difference. Various data suggest that density-dependent inhibition (DDI) of growth in non-transformed cells is due to the diffusion of growth inhibitory molecules. Inhibitory factors of 45 K (IDF 45) and 12 K have been fractionated. We assume that the stimulation of DNA synthesis induced by growth factor addition to dense quiescent cultures of non-transformed cells leads to an increase in the activity of autocrine inhibitory molecules in such a manner that the growth factor stimulatory effect is only transient, and cells re-enter the Go phase. On the contrary, the stimulation of DNA synthesis by v-src transformation would not be counterbalanced by inhibitory diffusing factors and cells would not enter Go phase. We present preliminary results which support this assumption. Dense quiescent cultures of chick embryo fibroblasts infected by Ny 68 virus (ts mutant for transformation of Rous Sarcoma virus) were stimulated to proliferate either by addition of growth factors in cultures maintained at 41 degrees C or by expression of transformation (by the cell transfer from 41 to 37 degrees C, the permissive temperature for expression of transformation). Stimulation of DNA synthesis by growth factors was totally inhibited by the inhibitory diffusing factors of 45 K (IDF45) whereas the stimulation of DNA synthesis produced by transformation was reproducibly not decreased by IDF45.  相似文献   

2.
Factors inhibiting cell growth have been isolated from different cell types. However, little information is available concerning their mode of action. A novel growth inhibitory factor of 45 kDa (IDF45) was recently purified to homogeneity from medium conditioned by 3T3 cells. This molecule was able to inhibit DNA synthesis and the growth of chick embryo fibroblasts (CEF) in a reversible manner. By contrast, DNA synthesis stimulated by v-src expression in CEF was poorly inhibited by IDF45. In order to gain further insight into the IDF45 mode of action in normal and transformed CEF, we compared the effects of IDF45 on early stimulation of RNA synthesis induced in CEF by different mitogenic factors and by v-src gene expression. Stimulation, by serum, of RNA synthesis was inhibited by IDF45; however, inhibition increased when cells were preincubated with IDF45 before addition of serum and cell labeling for 2 h. IDF45 was also able to inhibit partially the stimulation of RNA synthesis induced by PMA and PDGF but was unable to inhibit stimulation of RNA synthesis induced by insulin and v-src expression. By contrast, stimulation of RNA synthesis induced by IGF-I was rapidly 100% inhibited by IDF45. The effect of IDF45 on DNA synthesis stimulated by the different mitogens was also determined and was correlated with the effect of IDF45 on RNA synthesis. These results suggest that the modes of action of IDF45 on stimulation of RNA synthesis by v-src and by insulin are similar. Our present results agree with others showing the bifunctional activity of IDF45 as an IGF-binding protein and as an inhibitory molecule in DNA stimulation induced by serum.  相似文献   

3.
A novel cell growth inhibitor, IDF45 (inhibitory diffusible factor), was recently purified to apparent homogeneity. It is a bifunctional molecule: able to bind Insulin like growth factor (IGF) and to 100% inhibit DNA synthesis stimulated by serum in fibroblasts. It was of interest to verify whether other members of the IGF-binding protein (IGFBP) family show the same bifunctional growth inhibitory properties. In this paper we show that purified IGFBP-1 derived from amniotic fluid is a cell growth inhibitor. In chick embryo fibroblasts, it inhibited DNA synthesis stimulated by serum. However the stimulation was maximally 60% inhibited and half of the inhibition was observed with 100ng/ml IGFBP-1. So the specific activity of IGFBP-1 is lower than that of IDF45. IGFBP-1 also reversibly prevented the CEF growth. In the same cells IGFBP-1 inhibited DNA synthesis stimulated by IGF-I. We demonstrated that the same protein IGFBP-1 is able to inhibit DNA synthesis stimulated by serum and by IGF-I. The possibility that IGFBP-1 is a bifunctional molecule is discussed.  相似文献   

4.
From medium conditioned by 3T3 cells, we had previously purified to apparent homogeneity a novel inhibitory diffusible factor of 45 kDa (IDF45), and then determined the amino-terminal sequence. IDF45 prevented reversibly the growth of chick embryo fibroblast (CEF). In these cells, DNA synthesis stimulated by 1% serum was 50% inhibited in the presence of 45 ng/ml (1 nM) IDF45. In the present article, we show that, in CEF, DNA synthesis stimulated by IGF-I was 100% inhibited in the presence of purified IDF45. Furthermore, the 45-kDa protein (IDF45) was, after Western blotting, able to bind IGF-I. The inhibitory effect of IDF45 upon serum stimulation did not seem to be the result of its inhibitory activity upon IGF-I stimulation, since stimulation by IGF-I and serum were additive. Moreover, it was possible to dissociate the two inhibitory effects: when added to v-src transformed CEF, IDF45 was able to 100% inhibit stimulation induced by IGF-I and was unable to significantly decrease stimulation induced by serum, as was previously observed. Taken together, our results strongly suggest that IDF45 has two distinct functions, one of which was to bind IGF-I and the other to inhibit serum stimulation. Indeed, it was impossible to separate the two functions when IDF45 was purified by cation exchange fast protein liquid chromatography, a method very different from reverse-phase fast protein liquid chromatography previously used for purification to apparent homogeneity of IDF45. On the other hand, if the IGF binding activity and inhibitory activity effect upon serum stimulation were carried by two different proteins, the presence of IGF-I (in conditions where most of the 45-kDa proteins were bound to IGF-I) should not have affected the activity of the molecule inhibiting serum stimulation. However, we observed the contrary: when IDF45 was bound to IGF-I, it lost its inhibitory effect upon stimulation induced by serum. This suggests that the two activities occurred on the same protein and that IDF45 is a bifunctional protein.  相似文献   

5.
Our results show that an insulin-like growth factor binding protein, IGFBP-3, purified from rat serum, is an inhibitor of chick embryo fibroblast (CEF) growth. It abolished DNA synthesis in CEF stimulated by IGF-I as well as by human serum. Rat IGFBP-3 and IDF45 (an inhibitory diffusible factor secreted by mouse cells) had the same activities, confirming that they have an intrinsic capacity to inhibit serum stimulation and may be considered as growth inhibitors. Our data show that inhibition by IGFBP-3 of serum stimulation was not simply the result of its inhibition of IGF present in the serum: 1) While anti-IGF-I IgG was able to completely inhibit stimulation induced by added IGF-I, it did not decrease stimulation induced by 1% human serum. Anti-IGF-II IgG inhibited the stimulation induced by added IGF-II, but only 25% decreased the stimulation induced by 0.7% serum. The percent inhibition was not significantly increased when the concentration of serum was decreased to 0.2%, which induced 140% stimulation of DNA synthesis; 2) stimulation by 0.2% serum was much more inhibited by IGFBP-3 than by IgG anti IGF-II; 3) after separation of IGF-I and IGF-II from serum by chromatography of acidified serum proteins on BioGel P150, the remaining serum proteins (with a molecular mass greater than 45 kDa) which were depleted in IGF-I and -II (verified by RIA determination) still stimulated DNA synthesis, and this stimulation was 80% inhibited by IGFBP-3.  相似文献   

6.
We purified to homogeneity a growth inhibiting diffusible factor (IDF45) secreted by dense cultures of mouse 3T3 cells and which was able to inhibit 100% of DNA synthesis stimulated by serum in chick embryo fibroblasts (CEF) (Blat et al., 1989a). We then demonstrated that this factor was an IGF-binding protein (Blat et al., 1989b). Indeed, its N-terminal amino acid sequence was homologous to that of rat IGFBP-3. Our present results show that basic fibroblast growth factor (bFGF) induced, respectively, a fivefold and threefold increase in DNA synthesis in mouse embryo fibroblasts (MEF) and CEF. IDF-45 inhibited the stimulation induced by bFGF by about 65%, while stimulation induced by insulin, PDGF, or EGF was only weakly or not at all inhibited by IDF45. When bFGF stimulation was determined in the presence of a high concentration of insulin in conditions which minimize the effect of endogenous IGF-I or -II, this stimulation was decreased by about 50% in the presence of IDF45. This result suggests that addition of bFGF stimulates IGF secretion, thereby resulting in partial loss of inhibition, by IDF45, of bFGF stimulation.  相似文献   

7.
IDF45 (inhibitory diffusible factor) a mouse insulin-like growth factor binding protein (mlGFBP-3) has been shown to 100 percent inhibit DNA synthesis stimulated by serum in chick embryo fibroblasts (CEF). Our previous results suggested that this large inhibition by IDF45 of serum stimulation was not just the result of its inhibitory activity toward IGF present in serum. The addition of Mn2+ (10(-3)M) in the incubation medium enables us to show the presence of numerous binding sites per cells (about 60,000) of mlGFBP-3. However the dissociation constant (10(-8)M) indicated that this mouse IGFBP-3 bound to the membrane with low affinity. These findings lend new support to the assumption of the bifunctional property of IGFBP-3, which would have an effect outside the cell (binding of IGF in the medium) and another effect within cells or on the surface.  相似文献   

8.
The expression of src gene in dense cultures of chick embryo fibroblasts (CEF) infected by a thermosensitive mutant (NY68) of RSV released density-dependent inhibition of growth and induced in these cells a large increase in DNA, RNA and protein synthesis. This stimulation of cellular metabolism was abolished in the presence of quercetin. Furthermore, quercetin added to the culture medium also inhibited the stimulation of pp60src kinase due to the expression of transformation.  相似文献   

9.
Our results showed that the expression of the src gene in chick embryo fibroblasts (CEF) released the density-dependent inhibition (DDI) of phosphate metabolism (phosphate uptake and phosphorylation of small organic compounds). With increasing cell density, phosphate metabolism decreased by 58% in normal CEF and, in contrast, increased by 20% in Rous sarcoma virus (RSV)-transformed CEF. The same change in the DDI was observed in CEF infected by NY68 (a ts mutant for transformation of RSV) and maintained at the permissive temperature (37 degrees C) instead of the restrictive temperature (41.5 degrees C) for the expression of transformation. An interesting feature was that the release of the DDI of phosphate metabolism was an early event in the process of transformation, since it was almost concomitant with the stimulation of the pp60 src kinase activity following the shift from 41.5 to 37 degrees C of NY68 CEF. The phosphorylation of small organic compounds (Po) was more strongly increased by the change in temperature than was 32Pi accumulation. Furthermore, the percentage increases of Po and adenosine triphosphate (ATP) labelling with 32P were similar, suggesting that the expression of src gene enhanced ATP synthesis. In glucose-free medium, the stimulation of Po-labelling was still observed but was decreased. Therefore the activation of glycolytic activity is not an absolute requirement, but is necessary for the maximum effect of transformation on the release of DDI of phosphate metabolism. Oligomycin added in complete medium did not prevent the increase in Po-labelling. From these results, we assumed that ATP turnover was stimulated as a consequence of enhanced ATP degradation. We verified that the stimulation of Po phosphorylation was not a consequence of increased ATP utilization for RNA or protein synthesis. The stimulation of Po labelling was specifically abolished by quercetin. This drug inhibited the transformed cells more strongly than the non-transformed cells.  相似文献   

10.
Density-dependent inhibition (DDI) of growth is assumed to be the result of diffusion in the medium of growth inhibitory molecules. In this work, we demonstrate the presence of inhibitory molecules (IDFc: chicken inhibitory diffusible factor) in the medium of chick embryo fibroblasts (CEF) cultures. IDFc partially purified by Bio-Gel P150 chromatography followed by reverse phase FPLC. The dose-response curve showed that 250 ng/ml IDFc inhibited 50% DNA synthesis. IDFc was also able to inhibit the growth of sparse cultures of CEF; this inhibition was reversible. IDFc was unable to prevent the DNA synthesis in cells transformed by v-src gene expression. These results suggest that IDFc is involved in the DDI of CEF growth.  相似文献   

11.
Inhibitory diffusible factor IDF45, a G1 phase inhibitor   总被引:1,自引:0,他引:1  
C Blat  G Chatelain  G Desauty  L Harel 《FEBS letters》1986,203(2):175-180
An inhibitory diffusible factor of 45 kDa (IDF45) was isolated from medium conditioned by dense cultures of 3T3 cells. The procedure involved Bio-Gel P150 chromatography and 2 reverse-phase FPLC. After the final step of purification, 60 ng/ml of IDF45 inhibited 50% of alpha-globulin-stimulated DNA synthesis. It was shown that IDF45 acted in the G1 phase of the cell cycle. When added for 8 h in the G1 phase of the cell cycle, it was able to inhibit DNA synthesis in the S phase which followed this G1 phase. Furthermore, IDF45 inhibited the early stimulation of RNA synthesis induced by alpha-globulin.  相似文献   

12.
The growth rate of normal cells multiplied in vitro decreases as the cell density of the culture increases. Previous results suggested that this density-dependent inhibition of growth in nontransformed cells was due to the diffusion of growth inhibitory substances in the medium of dense cultures. In this paper, we demonstrate that dense cultures of 3T3 cells secrete inhibitory and stimulatory factors. Macromolecules of conditioned medium were fractionated on Biogel P150 and the different fractions were tested on quiescent cultures of 3T3 cells stimulated or not to proliferate by addition of alpha globulin. When target cells were not stimulated to proliferate by addition of exocrine growth factors, we observed the inhibitory activity of a large molecular weight inhibitor (IDF45) and the stimulatory activity of autocrine growth factors (fraction about 35 and 10 K molecular weight), on the incorporation of 14C inosine into nucleotide pool and RNA. However, DNA synthesis was significantly stimulated with fraction 10 K only. This discrepancy between the stimulation of RNA and DNA synthesis may be explained by the presence, simultaneously, of inhibitory and stimulatory factors in fraction 35 and 10 K molecular weight. The presence of inhibitory factor was demonstrated when the fractions were tested on target cells stimulated to proliferate by alpha globulin addition and labeled with 14C thymidine. In these conditions, the stimulatory activity of autocrine growth factors was not observable, and only the inhibitory activity on DNA synthesis of fractions 35 and 10 K appeared. It is tempting to assume that the regulation of in vitro cell proliferation is determined by the balance between these antagonist stimulatory and inhibitory autocrine growth factors.  相似文献   

13.
Temporal inhibition of protein synthesis with cycloheximide prevents subsequent insulin, but not serum-stimulated DNA synthesis in G1-arrested chick embryo fibroblasts (CEF). The inhibition is measured by the incorporation of 3H-thymidine into acid insoluble material and confirmed by chemical estimate of the DNA content of inhibited and uninhibited cells. Cycloheximide treatment is without effect if the cell cultures are maintained at 4 degrees C while exposed to the drug. Several alpha-keto acids (pyruvate, oxaloacetate, alpha-ketobutyrate) at 0.5-1 mM concentrations restore DNA synthesis in previously inhibited cells when combined with insulin. L-alanine (D-alanine is inert) is even more effective than the keto acids in stimulating DNA synthesis after cycloheximide treatment. Glucose transport was unaffected by cycloheximide treatment while lactate levels in medium from inhibited, insulin-stimulated CEF were reduced 70% compared to uninhibited counterparts. We speculate that cycloheximide treatment may lead to the decay of a glycolytic enzyme which compromises the ability of inhibited cells to synthesize pyruvate from glucose, and thus induces an exogenous requirement for alpha-keto acid or L-alanine. A serum component(s) with a molecular weight of about 100 permitted insulin-stimulated DNA synthesis in inhibited cells.  相似文献   

14.
1. The relationship between synthesis of putrescine, human cytomegalovirus DNA synthesis, cell DNA synthesis, and human cytomegalovirus replication has been studied. 2. Stimulation of ornithine decarboxylase activity by shifting low serum-arrested whole human embryo cells to high serum medium is inhibited more than 99% by 2.5 mM DL-alpha-difluoromethylornithine. The addition of DL-alpha-difluoromethylornithine to human cells arrested in low serum and subsequently stimulated by the addition of fresh high serum-containing medium, causes a greater percent inhibition of ornithine decarboxylase activity than when the drug is added to growing human cells. 3. Increased ornithine decarboxylase activity produced by infection of low serum-arrested human cells was inhibited by 5.0 mM of DL-alpha-difluoromethylornithine. However, at a concentration of 5.0 mM, neither DL-alpha-methylornithine nor DL-alpha-difluoromethylornithine affected human cytomegalovirus growth or was toxic to these cells. These data suggest that the increased putrescine synthesis produced by infection is not required for virus replication. 4. The addition of 5.0 mM DL-alpha-difluoromethylornithine had no effect on human cytomegalovirus DNA synthesis or human cytomegalovirus-induced stimulation of cell DNA synthesis. However, 5.0 mM DL-alpha-difluoromethylornithine significantly reduced the stimulation of cell DNA synthesis caused by treatment with mock infecting fluid.  相似文献   

15.
In chick embryo fibroblasts (CEF) deprived of serum, DNA synthesis is reduced to a basal level in about 12 h, cell division ceases after 24–36 h and their morphology changes to a rounded, less refringent form. During several days without serum the cAMP content of the cells showed a slow increase or a maintenance of the level found before serum was removed. When CEF deprived of serum for 24 h were treated with beef heart 3′,5′-phosphodiesterase (PHD) the cAMP level fell about 40% after 3 h, 3H-thymidine incorporation into DNA was strongly stimulated with a peak of incorporation at 12 h after the start of PHD treatment, cell morphology returned to that observed before serum deprivation, and at 24 h there was an evident growth in cell population, with a parallel increase in protein content. The growth stimulation by PHD is transitory: after cells had been deprived of serum for 4 days the PHD effect was no longer noticeable on the above parameters. Theophylline (1 mM and 4 mM) inhibited the PHD-mediated stimulation of 3H-TdR incorporation, this could well have been due to its general toxic effect on the cells (see Discussion).  相似文献   

16.
Resting cultures of 3T3 cells (an established line of mouse fibroblasts) were released from density inhibition by either infection with Simian virus 40 or addition of serum. The increased rate of thymidine incorporation into DNA, induced by these two agents, was measured in the presence and in the absence of three inhibitory conditions (cycloheximide or dibutyryladenosine 3':5'-monophosphate added to the medium, or lack of anchorage). The inhibition was found to be quite similar in cultures stimulated by virus or serum; under the same conditions, however, the incorporation into mitochondrial DNA was much less inhibited than that into nuclear DNA. The experiments also suggest that new protein synthesis may not be necessary, for either virus or serum, to start the inductive mechanism.  相似文献   

17.
18.
We have analysed the effects of oncogenic transformation on the expression of type VI collagen in mesenchymal cells. Synthesis of type VI collagen was almost completely inhibited in fibroblasts transformed by DNA or RNA tumour viruses or in cells derived from spontaneous mesenchymal tumours. Inhibition of type VI collagen synthesis appears, therefore, to be a common phenomenon of transformed mesenchymal cells. When introduced into normal cells by viral vectors, the 'nuclear' oncogene v-myc had an inhibitory effect similar to that of the 'cytoplasmic' oncogene v-src. Fibroblasts infected with a temperature-sensitive strain of Rous sarcoma virus (NY68) produced type VI collagen at the restrictive, but not at the permissive temperature. If such cells were shifted from the permissive to the restrictive temperature, synthesis of the individual subunits of type VI collagen was co-ordinately induced. These results demonstrate that the activity of a single oncogene product is sufficient to inhibit type VI collagen expression.  相似文献   

19.
When the growth of serum-arrested GC-7 cells, a clone from African green monkey kidney, was induced by the addition of 10% calf serum, they began to enter S phase after 15-16 h. When stimulated cells were cultured in the presence of 0.6 micrograms/ml of cytochalasin D, the entrance into S phase was inhibited. Treatment of cells with cytochalasin D during the period earlier than 8 h or later than 11 h after the serum stimulation showed no or little inhibitory effect on the entrance of cells into S phase. Inhibition of the entrance into S phase was observed only when stimulated cells were treated with cytochalasin D during the periods including 9-10 h after stimulation. A rapid increase in protein synthesis occurred 9-12 h after the serum stimulation and was inhibited in the presence of cytochalasin D. These and other results suggested that in the course of the prereplicative process from Go through S phase only the stage around 9-10 h after the start of the cell cycle was sensitive to cytochalasin D and that the block of the cycle was correlated with the inhibition of protein synthesis at this stage.  相似文献   

20.
1. The synthesis of mitochondrial DNA in CEF in vivo at 3,4 and 6 days after infection with RSV (Schmidt-Ruppin, subgroup A) was progressively stimulated 2 to 4-fold as compared with that in uninfected CEF cells grown in parallel. 2. The stimulation of mtDNA synthesis in vivo upon transformation was found to be temperature dependent when the thermosensitive mutant of RSV, T5, was used to infect the cells. 3. In contrast to mtDNA synthesis, nuclear DNA synthesis did not differ in transformed and uninfected cells, nor did it change significantly upon temperature shifts. 4. MtDNA (monomeric and catenated dimeric forms) in transformed and uninfected CEF replicate by displacement synthesis. Various replication intermediates are described. 5. The restriction endonuclease EcoRI cleaves closed circular mtDNA from CEF at one specific site. 6. Heteroduplex molecules formed between nicked circular and/or EcoRI cleaved mt DNA molecules from uninfected and transformed CEF revealed, with a few exceptions, no detectable base sequence heterogeneity in at least 98% of cases. 7. Intramitochondrial virus like particles (IMV) are described in hamster tumor cells. The evidence suggests both engulfment of cytoplasmic particles by mitochondria and the presence of intramitochondrial incomplete forms of particles. Bromodeoxyuridine was found to enhance the frequency of IMV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号