首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The genome sequence of Thermotoga maritima revealed that 24% of its open reading frames (ORFs) showed the highest similarity scores to archaeal genes in BLAST analyses. Here we screened 16 strains from the genus Thermotoga and other related Thermotogales for the occurrence of two of these "archaeal" genes: the gene encoding the large subunit of glutamate synthase (gltB) and the myo-inositol 1P synthase gene (ino1). Both genes were restricted to the Thermotoga species within the Thermotogales. The distribution of the two genes, along with results from phylogenetic analyses, showed that they were acquired from Archaea during the divergence of the Thermotogales. Database searches revealed that three other bacteria-Dehalococcoides ethenogenes, Sinorhizobium meliloti, and Clostridium difficile-possess archaeal-type gltBs, and the phylogenetic analyses confirmed at least two lateral gene transfer (LGT) events between Bacteria and Archaea. These LGT events were also strongly supported by gene structure data, as the three domains in bacterial-type gltB are homologous to three independent ORFs in Archaea and Bacteria with archaeal-type gltBs. The ino1 gene has a scattered distribution among Bacteria, and apart from the Thermotoga strains it is found only in Aquifex aeolicus, D. ethenogenes, and some high-G+C Gram-positive bacteria. Phylogenetic analysis of the ino1 sequences revealed three highly supported prokaryotic clades, all containing a mixture of archaeal and bacterial sequences, and suggested that all bacterial ino1 genes had been recruited from archaeal donors. The Thermotoga strains and A. aeolicus acquired this gene independently from different archaeal species. Although transfer of genes from hyperthermophilic Archaea may have facilitated the evolution of bacterial hyperthermophily, between-domain transfers also affect mesophilic species. For hyperthermophiles, we hypothesize that LGT may be as much a consequence as the cause of adaptation to hyperthermophily.  相似文献   

2.
3.
The origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria was proposed on the basis of the phylogenetic topologies of genes. However, it was not possible to conclude whether or not the genes involved were authentic representative genes. Furthermore, using the BLAST and FASTA programs, the similarity of open reading frame (ORF) groups between three domains (Eukarya, Archaea and Bacteria) was estimated at one threshold. Therefore, their similarities at other thresholds could not be clarified. Here we use our newly developed 'homology-hit analysis' method, which uses multiple thresholds, to determine the origin of the nucleus. We removed mitochondria-related ORFs from yeast ORFs, and determined the number of yeast orthologous ORFs in each functional category to the ORFs in six Archaea and nine Bacteria at several thresholds (E-values) using the BLAST. Our results indicate that yeast ORFs related to the nucleus may share their origins with archaeal ORFs, whereas ORFs that are related to the cytoplasm may share their origins with bacterial ORFs. Our results thus strongly support the idea of nucleus symbiosis.  相似文献   

4.
The presence of an A/V-type ATPase in different Thermus species and in the deeper branching species Meiothermus ruber and Deinococcus radiodurans suggests that the presence of the archaeal-type ATPase is a primitive character of the Deinococci that was acquired through horizontal gene transfer (HGT). However, the presence of a bacterial type F-ATPases was reported in two newly identified Thermus species (Thermus scotoductus DSM 8553 and Thermus filiformis DSM 4687). Two different scenarios can explain this finding, either the recent replacement of the ancestral A/V-type ATPase in Thermus scotoductus and Thermus filiformis with a newly acquired F-type ATPase or a long-term persistence of both F and A type ATPase in the Deinococci, which would imply several independent losses of the F-type ATPase in the Deinococci. Using PCR with redundant primers, sequencing and Southern blot analyses, we tried to confirm the presence of an F-type ATPase in the genome of Thermus scotoductus and Thermus filiformis, and determine its phylogenetic affinities. Initial experiments appeared to confirm the presence of an F-type ATPase in Thermus scotoductus that was similar to the F-ATPases found in Bacillus. However, further experiments revealed that the detection of an F-ATPase was due to a culture contamination. For all the Thermus and Deinococcus species surveyed, including Thermus scotoductus, cultures that were free of contamination only contained an A/V-type ATP synthases.  相似文献   

5.
Mimivirus is a nucleocytoplasmic large DNA virus (NCLDV) with a genome size (1.2 Mb) and coding capacity ( 1000 genes) comparable to that of some cellular organisms. Unlike other viruses, Mimivirus and its NCLDV relatives encode homologs of broadly conserved informational genes found in Bacteria, Archaea, and Eukaryotes, raising the possibility that they could be placed on the tree of life. A recent phylogenetic analysis of these genes showed the NCLDVs emerging as a monophyletic group branching between Eukaryotes and Archaea. These trees were interpreted as evidence for an independent "fourth domain" of life that may have contributed DNA processing genes to the ancestral eukaryote. However, the analysis of ancient evolutionary events is challenging, and tree reconstruction is susceptible to bias resulting from non-phylogenetic signals in the data. These include compositional heterogeneity and homoplasy, which can lead to the spurious grouping of compositionally-similar or fast-evolving sequences. Here, we show that these informational gene alignments contain both significant compositional heterogeneity and homoplasy, which were not adequately modelled in the original analysis. When we use more realistic evolutionary models that better fit the data, the resulting trees are unable to reject a simple null hypothesis in which these informational genes, like many other NCLDV genes, were acquired by horizontal transfer from eukaryotic hosts. Our results suggest that a fourth domain is not required to explain the available sequence data.  相似文献   

6.
A comprehensive investigation of ribosomal genes in complete genomes from 66 different species allows us to address the distribution of r-proteins between and within the three primary domains. Thirty-four r-protein families are represented in all domains but 33 families are specific to Archaea and Eucarya, providing evidence for specialisation at an early stage of evolution between the bacterial lineage and the lineage leading to Archaea and Eukaryotes. With only one specific r-protein, the archaeal ribosome appears to be a small-scale model of the eukaryotic one in terms of protein composition. However, the mechanism of evolution of the protein component of the ribosome appears dramatically different in Archaea. In Bacteria and Eucarya, a restricted number of ribosomal genes can be lost with a bias toward losses in intracellular pathogens. In Archaea, losses implicate 15% of the ribosomal genes revealing an unexpected plasticity of the translation apparatus and the pattern of gene losses indicates a progressive elimination of ribosomal genes in the course of archaeal evolution. This first documented case of reductive evolution at the domain scale provides a new framework for discussing the shape of the universal tree of life and the selective forces directing the evolution of prokaryotes.  相似文献   

7.
Phylogenetic analysis of archaeal PCNA homologues   总被引:2,自引:0,他引:2  
Proliferating cell nuclear antigen (PCNA) is an essential component of the DNA replication and repair machinery in the domain Eucarya. Eukaryotes and euryarchaeotes, which belong to one subdomain of Archaea, possess a single PCNA homologue, whereas two distinct PCNA homologues have been identified from Sulfolobus solfataricus, which belongs to the other archaeal subdomain, Crenarchaeota. We have cloned and sequenced two genes of PCNA homologues from the thermoacidophilic crenarchaeon Sulfurisphaera ohwakuensis. These genes, referred to as the Soh PCNA A gene and the Soh PCNA B gene, were found to encode 245 amino acids (aa) (27 kDa) and 248 aa (27 kDa), respectively. In deduced amino acid sequences of both PCNA homologues, the motif L/I-A-P-K/R, implicated in binding of PCNA with replication factor C (RFC), was identified. Phylogenetic analysis of all available archaeal PCNA homologues suggests that crenarchaeal homologues are divided into two groups. Group A consists of Soh PCNA A, one of the S. solfataricus PCNA homologues, and one of the Aeropyrum pernix PCNA homologues. The other crenarchaeal homologues form group B. Crenarchaeal PCNA homologues constitute a monophyletic subfamily. These results suggest that the evolution of crenarchaeal PCNA homologues has been characterized by one or two gene duplication events, which are assumed to have occurred after the split of the crenarchaeal and euryarchaeal lineages. Received: July 10, 2000 / Accepted: September 26, 2000  相似文献   

8.
9.
Meiothermus ruber (Loginova et al. 1984) Nobre et al. 1996 is the type species of the genus Meiothermus. This thermophilic genus is of special interest, as its members share relatively low degrees of 16S rRNA gene sequence similarity and constitute a separate evolutionary lineage from members of the genus Thermus, from which they can generally be distinguished by their slightly lower temperature optima. The temperature related split is in accordance with the chemotaxonomic feature of the polar lipids. M. ruber is a representative of the low-temperature group. This is the first completed genome sequence of the genus Meiothermus and only the third genome sequence to be published from a member of the family Thermaceae. The 3,097,457 bp long genome with its 3,052 protein-coding and 53 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

10.
The set of conserved eukaryotic protein-coding genes includes distinct subsets one of which appears to be most closely related to and, by inference, derived from archaea, whereas another one appears to be of bacterial, possibly, endosymbiotic origin. The "archaeal" genes of eukaryotes, primarily, encode components of information-processing systems, whereas the "bacterial" genes are predominantly operational. The precise nature of the archaeo-eukaryotic relationship remains uncertain, and it has been variously argued that eukaryotic informational genes evolved from the homologous genes of Euryarchaeota or Crenarchaeota (the major branches of extant archaea) or that the origin of eukaryotes lies outside the known diversity of archaea. We describe a comprehensive set of 355 eukaryotic genes of apparent archaeal origin identified through ortholog detection and phylogenetic analysis. Phylogenetic hypothesis testing using constrained trees, combined with a systematic search for shared derived characters in the form of homologous inserts in conserved proteins, indicate that, for the majority of these genes, the preferred tree topology is one with the eukaryotic branch placed outside the extant diversity of archaea although small subsets of genes show crenarchaeal and euryarchaeal affinities. Thus, the archaeal genes in eukaryotes appear to descend from a distinct, ancient, and otherwise uncharacterized archaeal lineage that acquired some euryarchaeal and crenarchaeal genes via early horizontal gene transfer.  相似文献   

11.
12.
13.
We analyzed length differences of eukaryotic, bacterial and archaeal proteins in relation to function, conservation and environmental factors. Comparing Eukaryotes and Prokaryotes, we found that the greater length of eukaryotic proteins is pervasive over all functional categories and involves the vast majority of protein families. The magnitude of these differences suggests that the evolution of eukaryotic proteins was influenced by processes of fusion of single-function proteins into extended multi-functional and multi-domain proteins. Comparing Bacteria and Archaea, we determined that the small but significant length difference observed between their proteins results from a combination of three factors: (i) bacterial proteomes include a greater proportion than archaeal proteomes of longer proteins involved in metabolism or cellular processes, (ii) within most functional classes, protein families unique to Bacteria are generally longer than protein families unique to Archaea and (iii) within the same protein family, homologs from Bacteria tend to be longer than the corresponding homologs from Archaea. These differences are interpreted with respect to evolutionary trends and prevailing environmental conditions within the two prokaryotic groups.  相似文献   

14.
Box C/D ribonucleoproteins (RNP) guide the 2'-O-methylation of targeted nucleotides in archaeal and eukaryotic rRNAs. The archaeal L7Ae and eukaryotic 15.5kD box C/D RNP core protein homologues initiate RNP assembly by recognizing kink-turn (K-turn) motifs. The crystal structure of the 15.5kD core protein from the primitive eukaryote Giardia lamblia is described here to a resolution of 1.8 ?. The Giardia 15.5kD protein exhibits the typical α-β-α sandwich fold exhibited by both archaeal L7Ae and eukaryotic 15.5kD proteins. Characteristic of eukaryotic homologues, the Giardia 15.5kD protein binds the K-turn motif but not the variant K-loop motif. The highly conserved residues of loop 9, critical for RNA binding, also exhibit conformations similar to those of the human 15.5kD protein when bound to the K-turn motif. However, comparative sequence analysis indicated a distinct evolutionary position between Archaea and Eukarya. Indeed, assessment of the Giardia 15.5kD protein in denaturing experiments demonstrated an intermediate stability in protein structure when compared with that of the eukaryotic mouse 15.5kD and archaeal Methanocaldococcus jannaschii L7Ae proteins. Most notable was the ability of the Giardia 15.5kD protein to assemble in vitro a catalytically active chimeric box C/D RNP utilizing the archaeal M. jannaschii Nop56/58 and fibrillarin core proteins. In contrast, a catalytically competent chimeric RNP could not be assembled using the mouse 15.5kD protein. Collectively, these analyses suggest that the G. lamblia 15.5kD protein occupies a unique position in the evolution of this box C/D RNP core protein retaining structural and functional features characteristic of both archaeal L7Ae and higher eukaryotic 15.5kD homologues.  相似文献   

15.

Background

The single-stranded-nucleic acid binding (SSB) protein superfamily includes proteins encoded by different organisms from Bacteria and their phages to Eukaryotes. SSB proteins share common structural characteristics and have been suggested to descend from an ancestor polypeptide. However, as other proteins involved in DNA replication, bacterial SSB proteins are clearly different from those found in Archaea and Eukaryotes. It was proposed that the corresponding genes in the phage genomes were transferred from the bacterial hosts. Recently new SSB proteins encoded by the virulent lactococcal bacteriophages (Orf14bIL67-like proteins) have been identified and characterized structurally and biochemically.

Methodology/Principal Findings

This study focused on the determination of phylogenetic relationships between Orf14bIL67-like proteins and other SSBs. We have performed a large scale phylogenetic analysis and pairwise sequence comparisons of SSB proteins from different phyla. The results show that, in remarkable contrast to other phage SSBs, the Orf14bIL67–like proteins form a distinct, self-contained and well supported phylogenetic group connected to the archaeal SSBs. Functional studies demonstrated that, despite the structural and amino acid sequence differences from bacterial SSBs, Orf14bIL67 protein complements the conditional lethal ssb-1 mutation of Escherichia coli.

Conclusions/Significance

Here we identified for the first time a group of phages encoded SSBs which are clearly distinct from their bacterial counterparts. All methods supported the recognition of these phage proteins as a new family within the SSB superfamily. Our findings suggest that unlike other phages, the virulent lactococcal phages carry ssb genes that were not acquired from their hosts, but transferred from an archaeal genome. This represents a unique example of a horizontal gene transfer between Archaea and bacterial phages.  相似文献   

16.
The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS). These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT) of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants.  相似文献   

17.
The eukaryotic genome is a mosaic of eubacterial and archaeal genes in addition to those unique to itself. The mosaic may have arisen as the result of two prokaryotes merging their genomes, or from genes acquired from an endosymbiont of eubacterial origin. A third possibility is that the eukaryotic genome arose from successive events of lateral gene transfer over long periods of time. This theory does not exclude the endosymbiont, but questions whether it is necessary to explain the peculiar set of eukaryotic genes. We use phylogenetic studies and reconstructions of ancestral first appearances of genes on the prokaryotic phylogeny to assess evidence for the lateral gene transfer scenario. We find that phylogenies advanced to support fusion can also arise from a succession of lateral gene transfer events. Our reconstructions of ancestral first appearances of genes reveal that the various genes that make up the eukaryotic mosaic arose at different times and in diverse lineages on the prokaryotic tree, and were not available in a single lineage. Successive events of lateral gene transfer can explain the unusual mosaic structure of the eukaryotic genome, with its content linked to the immediate adaptive value of the genes its acquired. Progress in understanding eukaryotes may come from identifying ancestral features such as the eukaryotic splicesome that could explain why this lineage invaded, or created, the eukaryotic niche.  相似文献   

18.
Archaea are prokaryotes but some of their chaperoning systems resemble those of eukaryotes. Also, not all archaea possess the stress protein Hsp70(DnaK), in contrast with bacteria and eukaryotes, which possess it without any known exception. Further, the primary structure of the archaeal DnaK resembles more the bacterial than the eukaryotic homologues. The work reported here addresses two questions: Is the archaeal Hsp70 protein a chaperone, like its homologues in the other two phylogenetic domains? And, if so, is the chaperoning mechanism of bacterial or eukaryotic type? The data have shown that the DnaK protein of the archaeon Methanosarcina mazei functions efficiently as a chaperone in luciferase renaturation in vitro, and that it requires DnaJ, and the other bacterial-type chaperone, GrpE, to perform its function. The M. mazei DnaK chaperone activity was enhanced by interaction with the bacterial co-chaperone DnaJ, but not by the eukaryotic homologue HDJ-2. Both the bacterial GrpE and DnaJ stimulated the ATPase activity of the M. mazei DnaK. The M. mazei DnaK-dependent chaperoning pathway in vitro is similar to that of the bacterium Escherichia coli used for comparison. However, in vivo analyses indicate that there are also significant differences. The M. mazei dnaJ and grpE genes rescued E.coli mutants lacking these genes, but E.coli dnaK mutants were not complemented by the M. mazei dnaK gene. Thus, while the data from in vitro tests demonstrate functional similarities between the M. mazei and E.coli DnaK proteins, in vivo results indicate that, intracellularly, the chaperones from the two species differ.  相似文献   

19.
Archaea comprise one of the three distinct domains of life (with bacteria and eukaryotes). With 16 complete archaeal genomes sequenced to date, comparative genomics has revealed a conserved core of 313 genes that are represented in all sequenced archaeal genomes, plus a variable 'shell' that is prone to lineage-specific gene loss and horizontal gene exchange. The majority of archaeal genes have not been experimentally characterized, but novel functional pathways have been predicted.  相似文献   

20.
Eukaryotes and archaea both possess multiple genes coding for family B DNA polymerases. In animals and fungi, three family B DNA polymerases, alpha, delta, and epsilon, are responsible for replication of nuclear DNA. We used a PCR-based approach to amplify and sequence phylogenetically conserved regions of these three DNA polymerases from Giardia intestinalis and Trichomonas vaginalis, representatives of early-diverging eukaryotic lineages. Phylogenetic analysis of eukaryotic and archaeal paralogs suggests that the gene duplications that gave rise to the three replicative paralogs occurred before the divergence of the earliest eukaryotic lineages, and that all eukaryotes are likely to possess these paralogs. One eukaryotic paralog, epsilon, consistently branches within archaeal sequences to the exclusion of other eukaryotic paralogs, suggesting that an epsilon-like family B DNA polymerase was ancestral to both archaea and eukaryotes. Because crenarchaeote and euryarchaeote paralogs do not form monophyletic groups in phylogenetic analysis, it is possible that archaeal family B paralogs themselves evolved by a series of gene duplications independent of the gene duplications that gave rise to eukaryotic paralogs.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号