首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Abstract. We studied the restoration success of flood plain meadows in the northern Upper Rhine valley, where between 1988 and 1992, 35 ha of arable land was converted into grassland and subsequently managed for nature conservation. Remnant populations of typical alluvial meadow species were found in old meadows and along drainage ditches that dissect the whole area. We analysed the site conditions and phytosociological relevés in old and new meadows. Small differences in site parameters between old and new meadows contrasted with a clear floristic differentiation between the two meadow types. The vegetation of old meadows was much more differentiated along prevailing environmental gradients than the vegetation of new meadows. Despite the favourable site conditions for the re‐establishment of species‐rich meadows on the former arable land, restoration success was limited to the vicinity of remnant stands. In contrast to old meadows, indicator species of new grassland were still typical species of regularly disturbed ruderal and arable habitats, often capable of building up a persistent seed bank. The precise mapping of 23 target species revealed that even wind dispersal predominantly leads to re‐establishment in the close circumference of parent plants. We found no indication that regular flooding, hay‐making and autumnal grazing had an impact on recolonization of newly created grassland. Even under favourable conditions for the re‐establishment of target species, restoration success in alluvial meadows proved to be strongly dispersal limited. We discuss the implications of our findings for future restoration management in grasslands.  相似文献   

2.
Following the collapse of the Soviet Union in 1991 around 45 million hectares of arable land became abandoned across Russia. Our study focused on the recovery potential and conservation value of grassland vegetation on ex-arable land in the Tyumen region of the Western Siberian grain belt. We compared ex-arable grasslands of different successional stages with ancient grasslands as reference for the final stage of succession along a climatic gradient from the pre-taiga to the forest steppe zone. Plant community composition and species richness of ex-arable land clearly developed towards reference sites over time, but even after 24 years of abandonment, the grassland vegetation had not totally recovered. The γ-diversity of vascular plants was slightly higher on ex-arable land than in ancient grasslands but the mean α-diversity was still moderately lower. A significant proportion of the vegetation of ex-arable land still consisted of ruderal and mesic grassland species and the number and cover of meadow-steppe species was significantly lower than in ancient grasslands. Grazing and time since abandonment positively affected the reestablishment of target grassland species, whereas it was negatively affected by the cover of grasses. In contrast to ex-arable land, the conservation value of arable land is only modest. Therefore, future intensification of land use is most likely less harmful if directed to existing arable land. Re-cultivation of ex-arable land and grassland improvement operations such as seeding of competitive grass species are major threats for the biodiversity of secondary grasslands on ex-arable land in the forest steppe zone of Western Siberia.  相似文献   

3.
Abstract Many grassland restoration projects on former arable land face problems because early successional grassland species establish vigorously and persistently but late successional grassland species fail to establish. Differences in establishment characteristics of early and late successional species might provide an explanation for the failure of many late successional species to colonize grasslands on ex‐arable land. I examined whether early and late successional species had different establishment rates in the initial years of a grassland succession, whether a specific establishment stage (seedling emergence, mortality or growth) could be identified as the key process controlling establishment, and what management would enhance the establishment of late successional grassland species. Seeds of three early and three late successional species were sown separately in ex‐arable plots with bare soil, 1‐year‐old vegetation, and 2‐year‐old vegetation. Emergence, mortality, and seedling growth were monitored for 1 year. Early successional species established successfully in the bare soil plots but failed to establish in plots with 1‐ and 2‐year‐old vegetation. Late successional species showed either lower establishment rates in the younger succession stages or decreased establishment with succession that nevertheless resulted in significant establishment in the oldest plots. Seedling emergence proved to be the key factor determining the establishment pattern of early and late successional species. In absolute numbers, emergence of late successional species was, however, similar or higher than that of early successional species, even in the earliest succession stage. The poor establishment of late successional species on former arable land could therefore not be explained solely by differences in establishment characteristics between early and late successional grassland species. Competitive processes between early and late successional species later in the life cycle probably play an important role. The results do point out that establishment of late successional species can be promoted by creating vegetative cover from the start of the restoration effort.  相似文献   

4.
Despite growing recognition of the conservation values of grassy biomes, our understanding of how to maintain and restore biodiverse tropical grasslands (including savannas and open‐canopy grassy woodlands) remains limited. To incorporate grasslands into large‐scale restoration efforts, we synthesised existing ecological knowledge of tropical grassland resilience and approaches to plant community restoration. Tropical grassland plant communities are resilient to, and often dependent on, the endogenous disturbances with which they evolved – frequent fires and native megafaunal herbivory. In stark contrast, tropical grasslands are extremely vulnerable to human‐caused exogenous disturbances, particularly those that alter soils and destroy belowground biomass (e.g. tillage agriculture, surface mining); tropical grassland restoration after severe soil disturbances is expensive and rarely achieves management targets. Where grasslands have been degraded by altered disturbance regimes (e.g. fire exclusion), exotic plant invasions, or afforestation, restoration efforts can recreate vegetation structure (i.e. historical tree density and herbaceous ground cover), but species‐diverse plant communities, including endemic species, are slow to recover. Complicating plant‐community restoration efforts, many tropical grassland species, particularly those that invest in underground storage organs, are difficult to propagate and re‐establish. To guide restoration decisions, we draw on the old‐growth grassland concept, the novel ecosystem concept, and theory regarding tree cover along resource gradients in savannas to propose a conceptual framework that classifies tropical grasslands into three broad ecosystem states. These states are: (1) old‐growth grasslands (i.e. ancient, biodiverse grassy ecosystems), where management should focus on the maintenance of disturbance regimes; (2) hybrid grasslands, where restoration should emphasise a return towards the old‐growth state; and (3) novel ecosystems, where the magnitude of environmental change (i.e. a shift to an alternative ecosystem state) or the socioecological context preclude a return to historical conditions.  相似文献   

5.
Lately there has been a shift in Sweden from grazing species‐rich semi‐natural grasslands towards grazing ex‐arable fields in the modern agricultural landscape. Grazing ex‐arable fields contain a fraction of the plant species richness confined to semi‐natural grasslands. Still, they have been suggested as potential target sites for re‐creation of semi‐natural grasslands. We asked to what extent does fine‐scale variation in soil conditions, management history and site location effect local plant diversity in grazed ex‐arable fields. We examined local soil conditions such as texture, pH, organic carbon, nitrogen (N) and extractable phosphate (P) and effects on plant richness in ten pairs of grazed ex‐fields and neighbouring semi‐natural grasslands in different rural landscapes. Each grassland pair where in the same paddock. A multivariate test showed that site location and land use history explained more of differences in species richness than local soil property variables. Plant species richness was positively associated to grazed ex‐fields with low pH, low N and P levels. Sites with high plant richness in semi‐natural grasslands also had more species in the adjacent grazed ex‐fields, compared to sites neighbouring less species‐rich semi‐natural grasslands. Although both soil properties and species richness were different in grazed ex‐fields compared to semi‐natural grassland, the site location within a landscape, and vicinity to species‐rich grasslands, can override effects of soil properties. In conclusion, if properly located, ex‐arable fields may be an important habitat to maintain plant diversity at larger spatio‐temporal scales and should considered as potential sites for grassland restoration.  相似文献   

6.
The global decline of biodiversity makes it important to find affordable ways to conserve and restore habitats. Restoration is useful for conserving native grasslands, with passive restoration defined as either natural colonization or unassisted recovery. Grasslands in southeastern South America have been transformed into croplands and impacted by other human activities. We describe the first assessment of passive restoration as a management tool to conserve birds in the Pampa grasslands of Brazil. We compared bird species richness using coverage‐based rarefaction and extrapolation, applying PERMANOVA for composition, and the abundance of bird communities between sites undergoing passive restoration (PR) and sites with native grasslands (NG). We employed fitted generalized linear mixed models (GLMM) to quantify relationships between bird occurrence and vegetation structure and cover. We recorded 61 species of birds during our study (45 in PR and 46 in NG) and 762 individuals (333 in PR and 429 in NG). Of these species, 15 were restricted to PR and 16 to NG. Grassland specialists and threatened species were found in both PR and NG, and only vegetation height differed between PR and NG. We detected eight species of conservation concern, including three recorded only in PR, three only in NG, and two in both PR and NG. The absence of marked differences in species richness and composition of bird communities between passive‐restoration and native grasslands in our study suggests that grasslands in the process of passive restoration can provide habitat for many species of grassland birds and that passive restoration is an appropriate management tool for biodiversity conservation in Brazilian grasslands.  相似文献   

7.
Large scale restoration using local high-diversity seed mixture combined with turf transfer was applied on ex-arable land in the Morava River floodplain in the western Slovakia in the years 1999–2012. The post-restoration vegetation development was recorded during 12 years after the restoration using floristic records per restored polygons with cover estimation in simple 3-degree scale. Temporal changes in species composition were evaluated by gradient analysis and number of characteristic grassland and ruderal species on restored sites was analysed by general linear models. Species composition changed gradually towards the species composition typical for species-rich floodplain grasslands, but the trajectory was not straightforward and several irregularities were observed. They were probably induced by extreme weather events (drought, floods). The decrease in ruderal species and increase in the number of typical floodplain grassland species were observed, when floodplain grassland species permanently outcompeted ruderal species since 8th year after the restoration. However the development in large scale was slower, than expected from previous small-scale experiments, it is evident, that combination of local seed mixture sowing with a turf transfer is a feasible method for the restoration of species-rich floodplain grasslands from arable land.  相似文献   

8.
European farmland biodiversity is declining due to land use changes towards agricultural intensification or abandonment. Some Eastern European farming systems have sustained traditional forms of use, resulting in high levels of biodiversity. However, global markets and international policies now imply rapid and major changes to these systems. To effectively protect farmland biodiversity, understanding landscape features which underpin species diversity is crucial. Focusing on butterflies, we addressed this question for a cultural-historic landscape in Southern Transylvania, Romania. Following a natural experiment, we randomly selected 120 survey sites in farmland, 60 each in grassland and arable land. We surveyed butterfly species richness and abundance by walking transects with four repeats in summer 2012. We analysed species composition using Detrended Correspondence Analysis. We modelled species richness, richness of functional groups, and abundance of selected species in response to topography, woody vegetation cover and heterogeneity at three spatial scales, using generalised linear mixed effects models. Species composition widely overlapped in grassland and arable land. Composition changed along gradients of heterogeneity at local and context scales, and of woody vegetation cover at context and landscape scales. The effect of local heterogeneity on species richness was positive in arable land, but negative in grassland. Plant species richness, and structural and topographic conditions at multiple scales explained species richness, richness of functional groups and species abundances. Our study revealed high conservation value of both grassland and arable land in low-intensity Eastern European farmland. Besides grassland, also heterogeneous arable land provides important habitat for butterflies. While butterfly diversity in arable land benefits from heterogeneity by small-scale structures, grasslands should be protected from fragmentation to provide sufficiently large areas for butterflies. These findings have important implications for EU agricultural and conservation policy. Most importantly, conservation management needs to consider entire landscapes, and implement appropriate measures at multiple spatial scales.  相似文献   

9.
Restoration of species-rich grasslands on ex-arable land can help the conservation of biodiversity but faces three big challenges: absence of target plant propagules, high residual soil fertility and restoration of soil communities. Seed additions and top soil removal can solve some of these constraints, but restoring beneficial biotic soil conditions remains a challenge. Here we test the hypotheses that inoculation of soil from late secondary succession grasslands in arable receptor soil enhances performance of late successional plants, especially after top soil removal but pending on the added dose. To test this we grew mixtures of late successional plants in arable top (organic) soil or in underlying mineral soil mixed with donor soil in small or large proportions. Donor soils were collected from different grasslands that had been under restoration for 5 to 41 years, or from semi-natural grassland that has not been used intensively. Donor soil addition, especially when collected from older restoration sites, increased plant community biomass without altering its evenness. In contrast, addition of soil from semi-natural grassland promoted plant community evenness, and hence its diversity, but reduced community biomass. Effects of donor soil additions were stronger in mineral than in organic soil and larger with bigger proportions added. The variation in plant community composition was explained best by the abundances of nematodes, ergosterol concentration and soil pH. We show that in controlled conditions inoculation of soil from secondary succession grassland into ex-arable land can strongly promote target plant species, and that the role of soil biota in promoting target plant species is greatest when added after top soil removal. Together our results point out that transplantation of later secondary succession soil can promote grassland restoration on ex-arable land.  相似文献   

10.
Landscape heterogeneity affects the spatial distribution of species. This makes it an important consideration for conservation planning, particularly when designing sustainable production landscapes. We determine whether conserving landscape elements within a transformed landscape is adequate for conserving dung beetle biodiversity. Dung beetles are excellent indicators for landscape biodiversity studies as they are ecologically sensitive. Here we measure dung beetle alpha-diversity, as well as beta-diversity within landscape elements and across different landscape elements. In doing so, we assess the value of landscape elements, as well as variation within landscape elements, in determining the spatial distribution of dung beetles across a production landscape. The study was conducted in the commercial timber production area of the KwaZulu-Natal Midlands, South Africa. In this system, the different landscape elements are a mosaic of natural indigenous forests, grasslands and alien pine plantation blocks. Our results show that the only response for dung beetle alpha-diversity was higher species richness in grasslands and pine blocks compared to natural forests. The highest beta-diversity for a landscape element was the grassland, for elevational category was low elevational areas and grassland type was the Midlands Mistbelt Grassland. The compositional diversity (beta-diversity between elements) was significantly different for all pairwise variations between landscape elements, the elevational categories and grassland types. Natural forests embedded in the two different grassland types had greater differences in compositional diversity than those embedded in natural (grassland) or transformed (pine blocks) matrices. This highlights the need to conserve a range of similar remnant patches of natural vegetation regionally, in addition to conserving broad landscape elements (i.e. grasslands or natural forests) as conservation targets. Furthermore, our results are encouraging for the potential benefits from the ecosystem service provided by dung beetles across the whole landscape, even in the transformed elements.  相似文献   

11.
ABSTRACT The grasslands of southeastern South America (SESA), comprising one of the most extensive grassland ecosystems in the Neotropics, have been negatively impacted by the development of the livestock industry, arable agriculture, and forestry. SESA grasslands have a rich avifauna that includes 22 globally threatened and near‐threatened species, and many other species have suffered local population extinctions and range reductions. In addition to habitat loss and fragmentation, grassland birds in SESA are threatened by improper use of agrochemicals, unfavorable fire management regimes, pollution, and illegal capture and hunting. Studies to date have provided information about the distribution of grassland birds, the threats populations face, and the habitat requirements of some threatened species, but more information is needed concerning dispersal and migration patterns, genetics, and factors that influence habitat use and species survival in both natural and agricultural landscapes. There are few public protected areas in the region (1% of original grasslands), and many populations of threatened grassland birds are found on private lands. Therefore, efforts to preserve grassland habitat must reconcile the interests of land owners and conservationists. Current conservation efforts include establishment of public and private reserves, promotion of agricultural activities that reconcile production with biodiversity conservation, development of multilateral conservation projects across countries, and elaboration of action plans. Measures that result in significant losses to private land owners should include economic compensation, and use of economic incentives to promote agriculture and forestry in native grassland areas should be discouraged, especially in priority areas for grassland birds. Although more studies are needed, some actions, particularly habitat protection and improved management of public and private lands, should be taken immediately to improve the conservation status of grassland birds in SESA.  相似文献   

12.
The preservation of remaining semi-natural grasslands in Europe has a high conservation priority. Previously, the effects of artificial fertilisation and grazing intensity on grassland animal and plant taxa have been extensively investigated. In contrast, little is known of the effects of tree and shrub cover within semi-natural grasslands and composition of habitats in the surrounding landscape on grassland taxa. We evaluated the effect that each of these factors has on species richness and community structure of vascular plants, butterflies, bumble bees, ground beetles, dung beetles and birds surveyed simultaneously in 31 semi-natural pastures in a farmland landscape in south-central Sweden. Partial correlation analyses showed that increasing proportion of the pasture area covered by shrubs and trees had a positive effect on species richness on most taxa. Furthermore, species richness of nectar seeking butterflies and bumble bees were negatively associated with grazing intensity as reflected by grass height. At the landscape level, species richness of all taxa decreased (butterflies and birds significantly so) with increasing proportion of urban elements in a 1-km2 landscape area centred on each pasture, while the number of plant and bird species were lower in landscapes with large proportion of arable fields. Our results differed markedly depending on whether the focus was on species richness or community structure. Canonical correspondence analyses (CCA) showed that the abundance of most taxa was ordered along a gradient describing tree cover within pastures and proportion of arable fields in the landscape. However, subsets of grassland birds and vascular plants, respectively, showed markedly different distribution patterns along axis one of the CCA. In contrast to current conservation policy of semi-natural pastures in Sweden, our results strongly advise against using a single-taxon approach (i.e., grassland vascular plants) to design management and conservation actions in semi-natural pastures. Careful consideration of conservation values linked to the tree and shrub layers in grasslands should always precede decisions to remove trees and shrubs on the grounds of promoting richness of vascular plants confined to semi-natural grasslands. Finally, the importance of landscape composition for mobile organisms such as birds entails that management activities should focus on the wider countryside and not exclusively on single pastures.  相似文献   

13.
Preliminary results are presented of sampling the leafhopper assemblages on a field experiment designed to examine the differential effects of rabbits and livestock (mainly sheep) on the vegetation of chalk heath in southern England. Experimental plots that excluded livestock either allowed entry by rabbits or excluded them. Results were compared with those from plots grazed by both livestock and rabbits. After 7 years, exclusion of grazing herbivores had resulted in predictable increases in vegetation height, but no major changes were detected in the species composition of the vegetation. As expected, ungrazed plots had higher species richness and greater abundances of several individual leafhopper species. However, plots grazed only by rabbits had a leafhopper assemblage that was distinct from either ungrazed or mixed grazing plots. It is suggested that rabbit grazing may have subtle effects on grassland invertebrate assemblages that are not necessarily predictable from an examination of the species composition of the vegetation. Chalk heath vegetation contains an unusual mixture of calcicole and calcifuge plant species, but the leafhopper assemblage included a restricted number of calcareous grassland specialist species and only one species strongly associated with acidic grasslands; most leafhoppers recorded were generalist grassland species.  相似文献   

14.
Questions: Can seed addition enhance the success of establishing species‐rich grassland on former arable land? Are sowing date and cutting regime important in determining success? Location: Aberdeen and Elgin, northeast Scotland, United Kingdom. Methods: A field experiment was conducted at two sites to assess the effect of seed addition, sowing date and cutting regime on the vegetation developing on former arable land, the aim being to compare the success of different treatments at producing a species‐rich grassland. Results: Sowing a seed mix resulted in the establishment of vegetation very distinct from the species‐poor vegetation dominated by perennial grasses which otherwise developed, though establishment success of the sown grassland species was highly variable between sites. Where establishment of the sown species was poor, sowing date had no significant effect on species composition, whereas the cutting regime was very important. Cutting the vegetation significantly increased both the number and abundance of sown species compared with the uncut control. Conversely, where establishment had been good, the cutting regime in the first year had little effect on species composition. Cutting the vegetation at least twice a year appeared to be the most effective management over the length of the experiment. Conclusions: Sowing a seed mixture significantly reduced the abundance and number of naturally colonising species, effectively controlling problem weed species such as Senecio jacobaea and Cirsium vulgare, highlighting the agronomic value of sowing seed mixtures on fallow farmland. The sowing of a seed mix on former arable land has demonstrated that it is feasible to create vegetation similar in character to that of species‐rich grasslands.  相似文献   

15.
The coastal grasslands in north‐eastern South Africa are a severely threatened vegetation type rich in plant species, particularly forbs. Many of the forbs have underground storage organs which allow them to resprout rapidly after fires. A significant portion of this land was placed under commercial pine afforestation in the 1950s. The pine plantations have since been removed starting 17 years ago and restored to grasslands within a conservation area. We assessed the effects of plantations on grassland plant diversity and functional trait composition by sampling 64 circular quadrats of 5 m radius distributed equally in restored versus natural grasslands. The difference in plant diversity was dramatic with the natural grassland supporting 221 species of which 163 were forbs compared with 144 and only 73 forb species in restored grasslands. Major differences in species composition were recorded, especially for forb species. Natural grasslands were dominated by resprouters (130 species) but these were rare in the restored grasslands (36 species). Differences in plant species response to fire were also evident for the two grassland states. In contrast to coastal forest restoration studies in the same area which have shown near linear increases in woody species with time, restored grasslands showed no increase in forb species richness with increasing time since clear‐felling of pines. Our results indicate that current methods for restoring these grasslands are inadequate and that restoring grasslands may be a lot harder than previously thought. Considerable effort should be made in conserving what is left of natural grasslands.  相似文献   

16.
In 1993, experiments on the restoration of calcareous grasslands on ex‐arable fields were started in order to provide new habitats for species of a small nature reserve with ancient grasslands north of Munich (Germany). The effects of diaspore transfer by the application of seed‐containing hay on vegetation establishment were studied on restoration fields with and without topsoil removal for 5 years. The aim of the study was to assess plant diversity for the evaluation of restoration success by different methods including determination of species with viable seeds in the hay by germination tests, phenological investigations on hay‐transfer source sites at the time of harvest, and vegetation analyses on the restoration sites. Total seed content of the hay and the number and composition of plant species with viable seeds were affected by the time of harvesting and differed between a site which had been used as arable field until 1959 and ancient grassland sites. Nevertheless, the number of established hay‐transfer species showed only few differences between restoration fields. The proportion of species transferred to restoration fields in relation to the number of species with viable seeds in the hay was between 69 and 89%. Five years after the hay transfer, the proportion of the established species was still between 58 and 76%. Up to now, topsoil removal had no significant effect on the number of established hay‐transfer species. After triple hay application the absolute number of transferred grassland species was higher than on sites with single hay application, but restoration efficiency was lower because many of the species with viable seeds in the hay did not establish. In general, our results showed that the transfer of autochthonous hay is a successful method to overcome dispersal limitation in restoration projects.  相似文献   

17.
18.
Grasslands in southeastern South America have been extensively converted to various land uses such as agriculture, threatening regional biodiversity. Active restoration has been viewed as a management alternative for recovery of degraded areas worldwide, although most studies are conducted in forests and none has evaluated the effect of active restoration of grasslands in southeastern South America. From 2015 through 2017 we monitored a federally owned tract of grassland from the beginning of the active‐restoration process. We compared the bird community in this active‐restoration area (AR) with a reference area (NG) in Pampa grasslands in southern Brazil. We sampled birds by point counts and surveyed vegetation structure in plots. Over the 3 years of active restoration, bird species richness and abundance were higher in AR (30 species, 171 individuals) than NG (22 species, 154 individuals). The species composition also differed between the two habitats. Grassland bird species were present in both AR and NG. The vegetation structure differed between AR and NG in five attributes: height, short and tall grasses, herbs, and shrubs. Since it has been found that active restoration is useful in promoting species diversity, we encourage studies of the use of long‐term restoration efforts. Our study, even on a local scale, showed a rapid recovery of the bird community in the active‐restoration compared to native grassland, and suggests the potential for recovery of the degraded grasslands of the Brazilian Pampa biome.  相似文献   

19.
Abstract. A series of fertilization experiments was carried out over a 5-yr period in a chalk grassland in Limburg (The Netherlands) as part of a study of the maintenance of species richness in species-rich grasslands. Phosphorus and nitrogen were shown to be the most limiting nutrients. Addition of both elements doubled above-ground production, and species richness dropped ca. 50 % in 0.01-m2 subplots, relative to controls. However, neither the above-ground production nor plant growth-forms were sufficient to explain the observed changes in species richness. Small-scale structural heterogeneity of the vegetation is probably critical for maintaining high levels of richness. Historically, high nitrogen, low phosphorus conditions were rarely encountered in the Dutch landscape and few species appear adapted to these conditions. Among the chalk grassland species, Brachypodiumpinnatum seems well adapted to these conditions, where it dominates and excludes most other species. A detailed understanding of the small-scale processes responsible for maintenance of species richness is critically important in efforts to maintain the biodiversity of natural ecosystems.  相似文献   

20.
We compared soil seed banks and vegetation of recent (established on abandoned arable fields) and ancient (continuously managed as pastures at least since 1830) calcareous grasslands if there is any impact of former arable field use. The study was carried out in two regions of Southern Germany with well-preserved dry grassland vegetation: the western Jurassic mountains (Kaltes Feld) and the climatically drier eastern part of Southern Germany (Kallmünz).Total number of species in the seed bank was similar in both regions, but species composition partly differed, reflecting phytogeographical differences between the regions. The total number of emerged seedlings showed a large disparity (5457 compared to 2523 seedlings/m2 in Kaltes Feld and Kallmünz, respectively).Though there were differences in seed bank composition and size, we found a uniform pattern of plant traits (affiliation to phytosociological groups, Raunkiaer plant life-forms and seed longevity), which depended on the age of the grassland.The main conclusion is that seed banks in contemporary calcareous grasslands still reflect the history of former land use – in this case arable cultivation, even though it occurred a long time ago (up to 150 years). Indicators of former arable fields are germinable seeds of weeds which have persisted in the soil to the present. By contrast, weedy species are completely absent from the seed banks of ancient grasslands. Soil seed banks of recent grasslands may be of substantial conservation importance because they may store seeds of rare and endangered weed species such as Kickxia spuria, Silene noctiflora and Stachys annua, the majority of which have already gone extinct from the current vegetation of the study sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号