首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Female multiple mating (polyandry) is widespread across Insecta, even if mating can be costly to females. To explain the evolution and maintenance of polyandry, several hypotheses, mainly focusing on the material (direct) and/or the genetic (indirect) benefits, have been proposed and empirically tested in many species. Considering only the direct benefits, repeatedly‐mated females are expected to exhibit the same fitness as multiply‐mated females under the same mating frequency. In the present study, we compare the fitness of females received monandrous repeated mating (MM) and polyandrous multiple mating (PM) in a polyandrous leaf beetle Galerucella birmanica and assess female mate preference with regard to polyandry or monandry. Our data indicate that the longevity and the egg‐laying duration of MM females are significantly longer than that of PM females. MM females produce significantly more hatched eggs than PM females over their lifetime under the same mating frequency, which results from the high hatching rate of eggs produced by MM females. PM females mated with novel virgin males in the second mating suffer decreased longevity and lifetime fecundity compared with PM females mated with novel mated males in the second mating. Once‐mated females are more likely to re‐mate with familiar males than novel males. By contrast to expectations, the results of the present study suggest that repeated mating provides females with more direct benefits than multiple mating in G. birmanica, and females prefer to re‐mate with familiar males. The possible causes of this finding are discussed.  相似文献   

2.
Mating system variation is profound in animals. In insects, female willingness to remate varies from mating with hundreds of males (extreme polyandry) to never remating (monandry). This variation in female behaviour is predicted to affect the pattern of selection on males, with intense pre-copulatory sexual selection under monandry compared to a mix of pre- and post-copulatory forces affecting fitness under polyandry. We tested the hypothesis that differences in female mating biology would be reflected in different costs of pre-copulatory competition between males. We observed that exposure to rival males early in life was highly costly for males of a monandrous species, but had lower costs in the polyandrous species. Males from the monandrous species housed with competitors showed reduced ability to obtain a mate and decreased longevity. These effects were specific to exposure to rivals compared with other types of social interactions (heterospecific male and mated female) and were either absent or weaker in males of the polyandrous species. We conclude that males in monandrous species suffer severe physiological costs from interactions with rivals and note the significance of male–male interactions as a source of stress in laboratory culture.  相似文献   

3.
1. Butterflies are frequently used in comparative studies of sexual selection because of their diverse mating systems. In Heliconius, the two major clades in the genus are characterised by contrasting pupal‐mating and adult‐mating strategies. Adult‐mating females are considered to be promiscuous whereas pupal‐mating females are thought to be monandrous. 2. Counting spermatophores in female Lepidoptera is a common method for assessing patterns of female remating. However, in pupal‐mating Heliconius butterflies spermatophores can become completely degraded, potentially leading to underestimation of female remating rates. 3. We qualitatively characterised the different states of spermatophore degradation, and showed that complete degradation takes approximately 3 weeks in captive‐bred H. erato females. 4. We counted spermatophores and/or assayed spermatophore degradation in > 500 Heliconius females across 28 species sampled from natural populations. Among pupal‐maters these observations yielded a few rare observations of double mating by recently eclosed females, but generally indicated a lack of rematings. In contrast, approximately 25% of sampled adult‐mating females remated at least once. 5. Using a novel statistical analysis, we estimated remating rates from patterns of spermatophore degradation or from counts stratified by age, as indicated by wing‐wear. This analysis showed no statistically significant evidence for remating for the pupal‐mating H. erato whereas significant remating rates were detected for adult‐mating species. 6. The present results support the established view of Heliconius mating systems in which pupal‐maters are largely monandrous, whereas adult‐maters are polyandrous.  相似文献   

4.
The accessory gland protein (Acp) ejaculate molecules of male Drosophila melanogaster mediate sexual selection and sexual conflict at the molecular level. However, to date no studies have comprehensively measured the timing and magnitude of fitness benefits to males of transferring specific Acps. This is an important omission because without this information it is not possible to fully understand the strength and form of selection acting on adaptations such as Acps. Here, we measured the fitness benefits to males of ejaculate sex peptide (SP) transfer. SP is of interest because it is a candidate for mediating sexual conflict: its frequent receipt reduces female fitness. In single matings with virgin females SP is known to increase egg laying and decrease receptivity. Hence, we predicted that SP could: (i) boost a male’s absolute paternity by increasing offspring production and delaying female remating and/or (ii) boost relative paternity share. We tested these predictions using two different lines of SP‐lacking males, in both two‐mating and free‐mating assay conditions. SP transfer conferred higher absolute, but not relative, male reproductive success. In matings with virgin females, SP transfer increased mating productivity and delayed remating and hence the onset of sperm competition. In already mated females, SP transfer did not elevate absolute progeny production, but did increase intermating intervals and hence the period over which a male could gain paternity. Consistent with this, under free‐mating conditions over an extended period, we detected a ‘per‐mating’ fitness benefit for males transferring SP. These benefits are consistent with a role for SP in mediating conflict, with SP acting to maximize short‐term fitness benefits for males.  相似文献   

5.
In insects, spermatophore production represents a non‐trivial cost to a male. Non‐virgin males have been shown to produce small spermatophores at subsequent matings. Particularly in monandrous species, it may be an issue to receive a sufficiently large spermatophore at the first and typically only mating. Females of the monandrous Speckled wood butterfly Pararge aegeria (L.) produce fewer offspring after mating with a non‐virgin male. After mating, females spend all their active time selecting oviposition sites and typically ignore other males. Here, we show that females did not discriminate between a virgin male and a recently mated male in our laboratory experiments. We demonstrate that the number of eupyrene sperm bundles relative to spermatophore mass differed with subsequent male matings. Males transferred a significantly smaller spermatophore after the first copulation, but the spermatophore mass did not decrease further with subsequent matings. However, the number of eupyrene sperm bundles decreased linearly. Therefore, there was proportionally more eupyrene sperm in the male’s second spermatophore compared with the first and the later spermatophores. Such a pattern has been shown in polyandrous species. Hence, it suggests that differences in sperm allocation strategy between polyandrous and monandrous butterflies may be quantitative rather than qualitative. There was also a tendency for females that had mated with a recently mated male to have higher propensity to remate than did females that had mated with a virgin male. We discuss the results relative to the mating system in P. aegeria, including female remating opportunities in the field and male mate‐locating behaviour.  相似文献   

6.
Mate choice for novel partners should evolve when remating with males of varying genetic quality provides females with fitness‐enhancing benefits. We investigated sequential mate choice for same or novel mating partners in females of the cellar spider Pholcus phalangioides (Pholcidae) to understand what drives female remating in this system. Pholcus phalangioides females are moderately polyandrous and show reluctance to remating, but double‐mated females benefit from a higher oviposition probability compared to single‐mated females. We exposed mated females to either their former (same male) or a novel mating partner and assessed mating success together with courtship and copulatory behaviours in both sexes. We found clear evidence for mate discrimination: females experienced three‐fold higher remating probabilities with novel males, being more often aggressive towards former males and accepting novel males faster in the second than in the first mating trial. The preference for novel males suggests that remating is driven by benefits derived from multiple partners. The low remating rates and the strong last male sperm precedence in this system suggest that mating with novel partners that represent alternative genotypes may be a means for selecting against a former mate of lower quality.  相似文献   

7.
Females of many animal species mate several times with different males (polyandry), whereas females of some species mate with a single male (monandry) only once. Little is known about the mechanisms by which these different mating systems evolve. Females of Drosophila prolongata mate serially, unlike Drosophila melanogaster females that refuse to remate for several days after their first mating (remating suppression [RS]). Nevertheless, interestingly, nonvirgin D. prolongata females refuse to remate with males that are prohibited from performing their species-specific courtship behavior, leg vibration (LV), suggesting that LV overrides RS making it cryptic in D. prolongata. In this study, we examined how long this cryptic RS persists. Surprisingly, it was sustained for at least 2 weeks, showing that RS is substantially augmented in D. prolongata compared to that of D. melanogaster. The two most closely related species to D. prolongata, Drosophila rhopaloa and Drosophila carrolli, do not perform LV and showed augmented RS, supporting the idea that augmented RS could have evolved before LV was acquired. These results suggested that D. prolongata females are intrinsically monandrous, whereas the newly evolved courtship behavior makes them polyandrous. This is a rare case in which a proximate mechanism of polyandry evolution from monandry is demonstrated.  相似文献   

8.
We determined the temporal pattern of female remating in the Mediterranean fruit fly, Ceratitis capitata, and how mating with sterile males affects remating. In addition, we examined the hypotheses that sterile male nutrition and age affect the subsequent receptivity of their mates. Temporally, female receptivity varied significantly throughout the experimental period. Relatively high levels of remating (14%) on the days following the first copulation were followed by a decline, with a significantly low point (4.1%) 2 weeks after mating. Subsequently, receptivity is gradually restored (18%) 3 and 4 weeks after the initial copulation. When females were first mated to sterile males, significantly higher remating percentages were recorded. The ability of sterile males to inhibit receptivity of both wild and laboratory reared females on the day of first mating was significantly improved when they were fed a nutrient rich diet. Male age at first mating also affected female receptivity: sterile males of intermediate age (11 days old) inhibited female remating significantly more than younger or older flies. Although further studies are needed to determine the relative roles of natural and sexual selection in modulating patterns of female sexual receptivity, the Sterile Insect Technique may be improved by releasing well nourished, older sterile males.  相似文献   

9.
Schultesia nitor is a gregarious species living in Cacicus and Psarocolius ssp. pouch-like nests. Due to gregariousness, opportunities for multiple copulations in both sexes are not supposed to be restricted. Females produce only one brood during their life and die within a few days following the birth of their nymphs, but this unique brood could be the result of either single or multiple mating events (i.e., monandry vs. polyandry). In this study, we first determined the age of sexual receptivity of both males and females. Larval development in this species is shorter in males than in females and thus, this species is protandric. Males were not able to copulate the day after emergence. Contrary to males, teneral females (i.e., females achieving their imaginal molt but not yet fully sclerotised and colored) were attractive and were able to mate with males. In the second experiment, we tested the existence of multiple matings in both sexes. Our results showed that females were monandrous whereas males were polygynous. Since we had observed that females were monoandrous, we expected them to be choosy and we determined their ability to discriminate between virgin and nonvirgin males. When given the choice, females preferred virgin males and overall, they were more successful at mating than experienced ones. Our results suggest that monandry may be primarily driven by the female's short life-span fecundity. The occurrence of teneral mating in this species calls into question the existence of a male strategy for monopolizing females, and as well as the implication of female choice. Although further work is required, this species provides an interesting model for understanding sexual conflicts.  相似文献   

10.
Male parental care and female multiple mating are seen in many species in spite of the cost they entail. Moreover, they even coexist in some species though polyandry, by reducing paternity confidence of caregiving males, seems to hinder the evolution of paternal care. Previous studies have investigated the coevolutionary process of paternal care and polyandry under various simplifying assumptions, including random mating and random provision of male care. We extend these models to examine possible effects of female mate choice and male care bias, assuming that (a) monandrous females mate preferentially with caregiving males while polyandrous females compromise their preference in order to mate with multiple males and (b) caregiving males tend to direct their care to offspring of monandrous females. Our models suggest that both the female preference and the male bias always favor caregiving males while they may not always facilitate the evolution of monandry.  相似文献   

11.
The mating of the Neotropical lycosid Schizocosa malitiosa is long and complex, involving intense genital stimulation and copulatory courtship. This suggests functions other than just insemination. Previous data indicated that mated females of this species are less sexually receptive than virgins. We hypothesise that copulatory characteristics presented by males during prolonged copulations could be responsible for subsequent female sexual reluctance, and may be selected by cryptic female choice. Our objective was to examine the influence of copulatory behaviour on subsequent female sexual receptivity in S. malitiosa, isolating it from the effects of sperm transfer per se. For this purpose, we obtained males without sperm in their copulatory organs (palpal bulbs), and prevented them from charging their palps by sealing their genital pores immediately after their last moult (treated males). Virgin females were separated into three groups: (i) females exposed once to normal males, (ii) females exposed twice to normal males, and (iii) females exposed first to treated and second to normal males. The results showed that, 3 d after their first mating, females first mated with untreated males were frequently refractory to remating, whereas all those first mated with treated males were receptive. Copulations performed by treated males showed some differences from those performed by normal males, but maintained the basic behavioural pattern with abundant sexual stimulation. The presence of sperm fluids in the female receptacles appears to be the most likely factor generating female remating reluctance. Males may manipulate female responses using receptivity inhibiting substances in their sperm, like those described for insects. Females would first ensure sperm supply, becoming more choosy afterwards. All females, whether mated once or twice, generated similar numbers of progeny, indicating no relationship between number of matings and number of spiderlings.  相似文献   

12.
Sexual conflict is now recognised as an important driver of sexual trait evolution. However, due to their variable outcomes and effects on other fitness components, the detection of sexual conflicts on individual traits can be complicated. This difficulty is exemplified in the beetle Callosobruchus maculatus, where longer matings increase the size of nutritious ejaculates but simultaneously reduce female future receptivity. While previous studies show that females gain direct benefits from extended mating duration, females show conspicuous copulatory kicking behaviour, apparently to dislodge mating males prematurely. We explore the potential for sexual conflict by comparing several fitness components and remating propensity in pairs of full sibling females where each female mated with a male from an unrelated pair of full sibling males. For one female, matings were terminated at the onset of kicking, whereas the other’s matings remained uninterrupted. While fecundity (number of eggs) was similar between treatments, uninterrupted matings enhanced adult offspring numbers and fractionally also longevity. However, females whose matings were interrupted at the onset of kicking exhibited an increased propensity to remate. Since polyandry can benefit female fitness in this species, we argue that kicking, rather than being maladaptive, may indicate that females prefer remating over increased ejaculate size. It may thus be difficult to assess the presence of sexual conflict over contested traits such as mating duration when females face a trade off between direct benefits gained from one mating and indirect benefits from additional matings.  相似文献   

13.
OMKAR  Geetanjali MISHRA 《昆虫学报》2014,57(10):1180-1187
【目的】尽管一雌多雄在瓢虫科中常见,但各研究中获得的数据不足以解释雌虫多次交配和一雌多雄的一般适应性意义或适合度后果。本研究以温度为胁迫因子,旨在评价一雌多雄的某些益处(如增加的适合度)是否可传递给后代。【方法】本研究检测了黄斑盘瓢虫Coelophora saucia (Mulsant) 3种交配处理中的适合度:一雌一雄(与同一雄虫交配5次,1次/d),先后一雌多雄(与5头不同的雄虫依次交配5次,即每天与新的雄虫交配1次),以及同时一雌多雄(放进5头雄虫,任由雌虫选择雄虫,交配5次,1次/d)。观察了各交配处理不同温度下(25, 27和 30℃)繁殖力、卵的育性、后代发育和存活。【结果】结果表明,经历一雌多雄然后进行交配选择或竞争的雌性的繁殖能力最强,后代能在更广温度范围内最好地适应发育和存活。但先后一雌多雄交配的雌性与一雌一雄交配的雌性的繁殖能力相似。【结论】结果说明,在无交配选择或雄性竞争的条件下,一雌多雄的益处不明显。这可能是由于在依次射精的雄性间存在精子竞争,或由于雌性的隐性选择。据我们所知,本研究中观察发现的无交配选择时不表现一雌多雄的益处的现象,之前在昆虫中未观察到过。  相似文献   

14.
Benefits of multiple mating to females may come from the acquisition of water in male ejaculates. This hypothesis seems plausible in species in which males provide females with large ejaculates and has been tested with the prediction that females mate more frequently when an external source of water is unavailable. My study observed that females deprived of water were more likely to remate than females given water in the adzuki bean beetle, Callosobruchus chinensis. This result suggests that females may absorb the water in male ejaculates and thus change their remating receptivity according to the need for additional water. However, compared with related species, the ejaculate size is smaller, so ejaculatory hydration benefits are expected to be small in this species. There were no significant differences in lifetime fecundity and longevity between females that were allowed to receive one ejaculate from remating and females that were not allowed to do so when water was unavailable. This provides no evidence that receiving an additional ejaculate enhances female fitness. Thus, obtaining water from male ejaculates may partly compensate the costs of remating to females, although it alone would be insufficient to explain polyandry in C. chinensis. Increased mating frequency in water‐deprived females would not necessarily support the hypothesis that females remate for ejaculatory hydration benefits.  相似文献   

15.
An evolutionary conflict often exists between the sexes in regard to female mating patterns. Females can benefit from polyandry, whereas males mating with polyandrous females lose reproductive opportunities because of sperm competition. Where this conflict occurs, the evolution of mechanisms whereby males can control female remating, often at a fitness cost to the female, are expected to evolve. The fitness cost to the female will be increased in systems where a few high status males monopolise mating opportunities and thus have limited sperm supplies. Here we show that in the cockroach Nauphoeta cinerea, a species where males enforce female monogamy in the first reproductive cycle, males that have become sperm depleted continue to be able to manipulate female remating behaviour. Although the manipulation severely decreases fecundity in females mated to sperm-depleted males, males benefit, increasing their relative fitness by preventing other males from reproducing. Our results suggest that there is selection on maintaining the mechanism of manipulation rather than maintaining sperm numbers. Taken with previous research on sexual conflict in N. cinerea, this study suggests that the causes and consequences of sexual conflict are complex and can change across the life history of an individual.  相似文献   

16.
It is widely accepted that male age can influence female mating preference and subsequent fitness consequences in many polyandrous species, yet this is seldom investigated in monandrous species. In the present study, we use the monandrous pine moth Dendrolimus punctatus to examine the effects of male age on female mating preference and future reproductive potential. In multiple male trials, when permitted free mating from an aggregation consisting of virgin males aged 0 (young), 2 (middle-aged) and 4 (old) days, virgin females preferentially mate with young and middle-aged males, although mating latency and mating duration are independent of male age. In single male trials, when virgin females are randomly assigned single virgin males of known age, a negative correlation is found between mating success and male age in this species. However, we find that male age also has no effect on mating latency and mating duration. Further fitness analysis reveals that females do not receive benefits in terms of oviposition period, total egg production, average daily egg production, percentage of egg hatching, longevity, expected reproduction and relative expected reproduction from mating with young and middle-aged males compared with mating with old males. The results of the present study are the first demonstrate that females mated preferentially with younger males but gain no apparent fitness benefits in a monandrous moth species.  相似文献   

17.
A potential benefit to females mating with multiple males is the increased probability that their sons will inherit traits enhancing their pre‐ or post‐mating ability to obtain fertilizations. We allowed red flour beetle (Tribolium castaneum) females to mate on three consecutive days either repeatedly to the same male or to three different males. This procedure was carried out in 20 replicate lines, 10 established with wild‐type, and 10 with the Chicago black morph, a partially dominant phenotypic marker. The paternity achieved by the sons of females from polyandrous vs. monandrous lines of contrasting morph was assessed in the F1, F2 and F3 generation by mating wild‐type stock females to two experimental males and assigning the progeny to either sire based on phenotype. The sons of polyandrous wild‐type females achieved significantly higher paternity when mating in the second male role than the sons of monandrous wild‐type females. By contrast, when mating in the first male role, males produced by females from polyandrous lines tended to have lower paternity than males from monandrous lines. Both effects were independent of the number of mates of the black competitor’s mother, and interacted significantly with the number of progeny laid by the female. These results provide the first evidence that manipulating the number of mates of a female can influence her sons’ mating success and suggest a potential trade‐off between offence and defence in this species.  相似文献   

18.
In polyandrous species, male reproductive success will at least partly be determined by males' success in sperm competition. To understand the potential for post‐mating sexual selection, it is therefore important to assess the extent of female remating. In the lekking moth Achroia grisella, male mating success is strongly determined by female choice based on the attractiveness of male ultrasonic songs. Although observations have indicated that some females will remate, only little is known about the level of sperm competition. In many species, females are more likely to remate if their first mating involved an already mated male than if the first male was virgin. Potentially, this is because mated males are less well able to provide an adequate sperm supply, nutrients, or substances inhibiting female remating. This phenomenon will effectively reduce the strength of pre‐copulatory sexual selection because attractive males with high mating success will be more susceptible to sperm competition. We therefore performed an experiment designed both to provide a more precise estimate of female remating probability and simultaneously to test the hypothesis that female remating is influenced by male mating history. Overall, approximately one of five females remated with a second male. Yet, although females mated to non‐virgin males were somewhat more prone to remate, the effect of male mating history was not significant. The results revealed, however, that heavier females were more likely to remate. Furthermore, we found that females' second copulations were longer, suggesting that, in accordance with theory, males may invest more sperm in situations with an elevated risk of sperm competition.  相似文献   

19.
Methoprene (an analogue of juvenile hormone) application and feeding on a protein diet is known to enhance male melon fly, Bactrocera cucurbitae Coquillett (Diptera: Tephritidae), mating success. In this study, we investigated the effect of these treatments on male B. cucurbitae's ability to inhibit female remating. While 14‐d‐old females were fed on protein diet, 6‐d‐old males were exposed to one of the following treatments: (i) topical application of methoprene and fed on a protein diet; (ii) no methoprene but fed on a protein diet; (iii) methoprene and sugar‐fed only; and (iv) sugar‐fed, 14‐d‐old males acted as controls. Treatments had no effect on a male's ability to depress the female remating receptivity in comparison to the control. Females mated with protein‐deprived males showed higher remating receptivity than females first mated with protein‐fed males. Methoprene and protein diet interaction had a positive effect on male mating success during the first and second mating of females. Significantly more females first mated with sugar‐fed males remated with protein‐fed males and females first mated with methoprene treated and protein‐fed males were more likely to remate with similarly treated males. Females mating latency (time to start mating) was significantly shorter with protein‐fed males, and mating duration was significantly longer with protein‐fed males compared with protein‐deprived males. These results are discussed in the context of methoprene and/or dietary protein as prerelease treatment of sterile males in area‐wide control of melon fly integrating the sterile insect technique (SIT).  相似文献   

20.
Female mating rate is fundamental to evolutionary biology as it determines the pattern of sexual selection and sexual conflict. Despite its importance, the genetic basis for female remating rate is largely unknown and has only been demonstrated in one species. In paternally investing species there is often a conflict between the sexes over female mating rate, as females remate to obtain male nutrient donations and males try to prevent female remating to ensure high fertilization success. Butterflies produce two types of sperm: fertilizing, eupyrene sperm, and large numbers of nonfertile, apyrene sperm. The function of apyrene sperm in the polyandrous, paternally investing green‐veined white butterfly, Pieris napi, is to fill the female’s sperm storage organ thereby reducing her receptivity. However, there is large variation in number of apyrene sperm stored. Here, I examine the genetic basis to this variation, and if variation in number of apyrene sperm stored is related to females’ remating rate. The number of apyrene sperm stored at the time of remating has a genetic component and is correlated with female remating tendency, whereas no such relationship is found for fertilizing sperm. The duration of the nonreceptivity period in P. napi also has a genetic component and is inversely related to the degree of polyandry. Sexual conflict over female remating rate appears to be present in this species, with males using their apyrene sperm to exploit a female system designed to monitor sperm in storage. Ejaculates with a high proportion of nonfertile sperm may have evolved to induce females to store more of these sperm, thereby reducing remating. As a counter‐adaptation, females have evolved a better detection system to regain control over their remating rate. Sexually antagonistic co‐evolution of apyrene sperm number and female sperm storage may be responsible for ejaculates with predominantly nonfertile sperm in this butterfly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号