首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1) quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2) determine overlap between clusters, (3) quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4) quantify the extent of clustering at the household and neighborhood levels.

Methodologies/Principal Findings

Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [p<0.05] high mosquito abundance) were calculated for each of the 9 entomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters) and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study.

Conclusions/Significance

Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically high levels of transmission may be more effective than targeting Ae. aegypti hotspots.  相似文献   

3.

Background

Current Aedes aegypti larval control methods are often insufficient for preventing dengue epidemics. To improve control efficiency and cost-effectiveness, some advocate eliminating or treating only highly productive containers. The population-level outcome of this strategy, however, will depend on details of Ae. aegypti oviposition behavior.

Methodology/Principal Findings

We simultaneously monitored female oviposition and juvenile development in 80 experimental containers located across 20 houses in Iquitos, Peru, to test the hypothesis that Ae. aegypti oviposit preferentially in sites with the greatest potential for maximizing offspring fitness. Females consistently laid more eggs in large vs. small containers (β = 9.18, p<0.001), and in unmanaged vs. manually filled containers (β = 5.33, p<0.001). Using microsatellites to track the development of immature Ae. aegypti, we found a negative correlation between oviposition preference and pupation probability (β = −3.37, p<0.001). Body size of emerging adults was also negatively associated with the preferred oviposition site characteristics of large size (females: β = −0.19, p<0.001; males: β = −0.11, p = 0.002) and non-management (females: β = −0.17, p<0.001; males: β = −0.11, p<0.001). Inside a semi-field enclosure, we simulated a container elimination campaign targeting the most productive oviposition sites. Compared to the two post-intervention trials, egg batches were more clumped during the first pre-intervention trial (β = −0.17, P<0.001), but not the second (β = 0.01, p = 0.900). Overall, when preferred containers were unavailable, the probability that any given container received eggs increased (β = 1.36, p<0.001).

Conclusions/Significance

Ae. aegypti oviposition site choice can contribute to population regulation by limiting the production and size of adults. Targeted larval control strategies may unintentionally lead to dispersion of eggs among suitable, but previously unoccupied or under-utilized containers. We recommend integrating targeted larval control measures with other strategies that leverage selective oviposition behavior, such as luring ovipositing females to gravid traps or egg sinks.  相似文献   

4.

Background

The domestic dengue vector Aedes aegypti mosquitoes breed in indoor containers. However, in northern peninsular Malaysia, they show equal preference for breeding in both indoor and outdoor habitats. To evaluate the epidemiological implications of this peridomestic adaptation, we examined whether Ae. aegypti exhibits decreased survival, gonotrophic activity, and fecundity due to lack of host availability and the changing breeding behavior.

Methodology/Principal Findings

This yearlong field surveillance identified Ae. aegypti breeding in outdoor containers on an enormous scale. Through a sequence of experiments incorporating outdoors and indoors adapting as well as adapted populations, we observed that indoors provided better environment for the survival of Ae. aegypti and the observed death patterns could be explained on the basis of a difference in body size. The duration of gonotrophic period was much shorter in large-bodied females. Fecundity tended to be greater in indoor acclimated females. We also found increased tendency to multiple feeding in outdoors adapted females, which were smaller in size compared to their outdoors breeding counterparts.

Conclusion/Significance

The data presented here suggest that acclimatization of Ae. aegypti to the outdoor environment may not decrease its lifespan or gonotrophic activity but rather increase breeding opportunities (increased number of discarded containers outdoors), the rate of larval development, but small body sizes at emergence. Size is likely to be correlated with disease transmission. In general, small size in Aedes females will favor increased blood-feeding frequency resulting in higher population sizes and disease occurrence.  相似文献   

5.

Background

Aedes aegypti (L.) is the primary vector of dengue, the most important arboviral infection globally. Until an effective vaccine is licensed and rigorously administered, Ae. aegypti control remains the principal tool in preventing and curtailing dengue transmission. Accurate predictions of vector populations are required to assess control methods and develop effective population reduction strategies. Ae. aegypti develops primarily in artificial water holding containers. Release recapture studies indicate that most adult Ae. aegypti do not disperse over long distances. We expect, therefore, that containers in an area of high development site density are more likely to be oviposition sites and to be more frequently used as oviposition sites than containers that are relatively isolated from other development sites. After accounting for individual container characteristics, containers more frequently used as oviposition sites are likely to produce adult mosquitoes consistently and at a higher rate. To this point, most studies of Ae. aegypti populations ignore the spatial density of larval development sites.

Methodology

Pupal surveys were carried out from 2004 to 2007 in rural Kamphaeng Phet, Thailand. In total, 84,840 samples of water holding containers were used to estimate model parameters. Regression modeling was used to assess the effect of larval development site density, access to piped water, and seasonal variation on container productivity. A varying-coefficients model was employed to account for the large differences in productivity between container types. A two-part modeling structure, called a hurdle model, accounts for the large number of zeroes and overdispersion present in pupal population counts.

Findings

The number of suitable larval development sites and their density in the environment were the primary determinants of the distribution and abundance of Ae. aegypti pupae. The productivity of most container types increased significantly as habitat density increased. An ecological approach, accounting for development site density, is appropriate for predicting Ae. aegypti population levels and developing efficient vector control programs.  相似文献   

6.

Background

Aedes aegypti is one of the most important mosquito vectors of human disease. The development of spatial models for Ae. aegypti provides a promising start toward model-guided vector control and risk assessment, but this will only be possible if models make reliable predictions. The reliability of model predictions is affected by specific sources of uncertainty in the model.

Methodology/Principal Findings

This study quantifies uncertainties in the predicted mosquito population dynamics at the community level (a cluster of 612 houses) and the individual-house level based on Skeeter Buster, a spatial model of Ae. aegypti, for the city of Iquitos, Peru. The study considers two types of uncertainty: 1) uncertainty in the estimates of 67 parameters that describe mosquito biology and life history, and 2) uncertainty due to environmental and demographic stochasticity. Our results show that for pupal density and for female adult density at the community level, respectively, the 95% prediction confidence interval ranges from 1000 to 3000 and from 700 to 5,000 individuals. The two parameters contributing most to the uncertainties in predicted population densities at both individual-house and community levels are the female adult survival rate and a coefficient determining weight loss due to energy used in metabolism at the larval stage (i.e. metabolic weight loss). Compared to parametric uncertainty, stochastic uncertainty is relatively low for population density predictions at the community level (less than 5% of the overall uncertainty) but is substantially higher for predictions at the individual-house level (larger than 40% of the overall uncertainty). Uncertainty in mosquito spatial dispersal has little effect on population density predictions at the community level but is important for the prediction of spatial clustering at the individual-house level.

Conclusion/Significance

This is the first systematic uncertainty analysis of a detailed Ae. aegypti population dynamics model and provides an approach for identifying those parameters for which more accurate estimates would improve model predictions.  相似文献   

7.

Introduction

The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations.

Methodology/Principal Findings

Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México.

Conclusions/Significance

Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome.  相似文献   

8.

Background and Objectives

The dramatic range expansion of the dengue vector Aedes aegypti is associated with various anthropogenic transport activities, but little is known about the underlying mechanisms driving this geographic expansion. We longitudinally characterized infestation of different vehicle types (cars, boats, etc.) to estimate the frequency and intensity of mosquito introductions into novel locations (propagule pressure).

Methods

Exhaustive adult and immature Ae. aegypti collections were performed on six different vehicle types at five ports and two bus/ taxi departure points in the Amazonian city of Iquitos, Peru during 2013. Aquatic vehicles included 32 large and 33 medium-sized barges, 53 water taxis, and 41 speed boats. Terrestrial vehicles sampled included 40 buses and 30 taxis traveling on the only highway in the region. Ae. aegypti adult infestation rates and immature indices were analyzed by vehicle type, location within vehicles, and sampling date.

Results

Large barges (71.9% infested) and medium barges (39.4% infested) accounted for most of the infestations. Notably, buses had an overall infestation rate of 12.5%. On large barges, the greatest number of Ae. aegypti adults were found in October, whereas most immatures were found in February followed by October. The vast majority of larvae (85.9%) and pupae (76.7%) collected in large barges were produced in puddles formed in cargo holds.

Conclusions

Because larges barges provide suitable mosquito habitats (due to dark, damp cargo storage spaces and ample oviposition sites), we conclude that they likely serve as significant contributors to mosquitoes’ propagule pressure across long distances throughout the Peruvian Amazon. This information can help anticipate vector population mixing and future range expansions of dengue and other viruses transmitted by Ae. aegypti.  相似文献   

9.

Background

Dengue fever, a mosquito-borne viral disease, is now the fastest spreading tropical disease globally. Previous studies indicate that climate and human behavior interact to influence dengue virus and vector (Aedes aegypti) population dynamics; however, the relative effects of these variables depends on local ecology and social context. We investigated the roles of climate and socio-ecological factors on Ae. aegypti population dynamics in Machala, a city in southern coastal Ecuador where dengue is hyper-endemic.

Methods/Principal findings

We studied two proximate urban localities where we monitored weekly Ae. aegypti oviposition activity (Nov. 2010-June 2011), conducted seasonal pupal surveys, and surveyed household to identify dengue risk factors. The results of this study provide evidence that Ae. aegypti population dynamics are influenced by social risk factors that vary by season and lagged climate variables that vary by locality. Best-fit models to predict the presence of Ae. aegypti pupae included parameters for household water storage practices, access to piped water, the number of households per property, condition of the house and patio, and knowledge and perceptions of dengue. Rainfall and minimum temperature were significant predictors of oviposition activity, although the effect of rainfall varied by locality due to differences in types of water storage containers.

Conclusions

These results indicate the potential to reduce the burden of dengue in this region by conducting focused vector control interventions that target high-risk households and containers in each season and by developing predictive models using climate and non-climate information. These findings provide the region''s public health sector with key information for conducting time and location-specific vector control campaigns, and highlight the importance of local socio-ecological studies to understand dengue dynamics. See Text S1 for an executive summary in Spanish.  相似文献   

10.

Background

The reduced rainfall in southeast Australia has placed this region''s urban and rural communities on escalating water restrictions, with anthropogenic climate change forecasts suggesting that this drying trend will continue. To mitigate the stress this may place on domestic water supply, governments have encouraged the installation of large domestic water tanks in towns and cities throughout this region. These prospective stable mosquito larval sites create the possibility of the reintroduction of Ae. aegypti from Queensland, where it remains endemic, back into New South Wales and other populated centres in Australia, along with the associated emerging and re-emerging dengue risk if the virus was to be introduced.

Methodology/Principal Findings

Having collated the known distribution of Ae. aegypti in Australia, we built distributional models using a genetic algorithm to project Ae. aegypti''s distribution under today''s climate and under climate change scenarios for 2030 and 2050 and compared the outputs to published theoretical temperature limits. Incongruence identified between the models and theoretical temperature limits highlighted the difficulty of using point occurrence data to study a species whose distribution is mediated more by human activity than by climate. Synthesis of this data with dengue transmission climate limits in Australia derived from historical dengue epidemics suggested that a proliferation of domestic water storage tanks in Australia could result in another range expansion of Ae. aegypti which would present a risk of dengue transmission in most major cities during their warm summer months.

Conclusions/Significance

In the debate of the role climate change will play in the future range of dengue in Australia, we conclude that the increased risk of an Ae. aegypti range expansion in Australia would be due not directly to climate change but rather to human adaptation to the current and forecasted regional drying through the installation of large domestic water storing containers. The expansion of this efficient dengue vector presents both an emerging and re-emerging disease risk to Australia. Therefore, if the installation and maintenance of domestic water storage tanks is not tightly controlled, Ae. aegypti could expand its range again and cohabit with the majority of Australia''s population, presenting a high potential dengue transmission risk during our warm summers.  相似文献   

11.

Background

Based on spatiotemporal clustering of human dengue virus (DENV) infections, transmission is thought to occur at fine spatiotemporal scales by horizontal transfer of virus between humans and mosquito vectors. To define the dimensions of local transmission and quantify the factors that support it, we examined relationships between infected humans and Aedes aegypti in Thai villages.

Methodology/Principal Findings

Geographic cluster investigations of 100-meter radius were conducted around DENV-positive and DENV-negative febrile “index” cases (positive and negative clusters, respectively) from a longitudinal cohort study in rural Thailand. Child contacts and Ae. aegypti from cluster houses were assessed for DENV infection. Spatiotemporal, demographic, and entomological parameters were evaluated. In positive clusters, the DENV infection rate among child contacts was 35.3% in index houses, 29.9% in houses within 20 meters, and decreased with distance from the index house to 6.2% in houses 80–100 meters away (p<0.001). Significantly more Ae. aegypti were DENV-infectious (i.e., DENV-positive in head/thorax) in positive clusters (23/1755; 1.3%) than negative clusters (1/1548; 0.1%). In positive clusters, 8.2% of mosquitoes were DENV-infectious in index houses, 4.2% in other houses with DENV-infected children, and 0.4% in houses without infected children (p<0.001). The DENV infection rate in contacts was 47.4% in houses with infectious mosquitoes, 28.7% in other houses in the same cluster, and 10.8% in positive clusters without infectious mosquitoes (p<0.001). Ae. aegypti pupae and adult females were more numerous only in houses containing infectious mosquitoes.

Conclusions/Significance

Human and mosquito infections are positively associated at the level of individual houses and neighboring residences. Certain houses with high transmission risk contribute disproportionately to DENV spread to neighboring houses. Small groups of houses with elevated transmission risk are consistent with over-dispersion of transmission (i.e., at a given point in time, people/mosquitoes from a small portion of houses are responsible for the majority of transmission).  相似文献   

12.

Background

Dengue is the most important mosquito-borne viral disease affecting humans. The only prevention measure currently available is the control of its vectors, primarily Aedes aegypti. Recent advances in genetic engineering have opened the possibility for a new range of control strategies based on genetically modified mosquitoes. Assessing the potential efficacy of genetic (and conventional) strategies requires the availability of modeling tools that accurately describe the dynamics and genetics of Ae. aegypti populations.

Methodology/Principal findings

We describe in this paper a new modeling tool of Ae. aegypti population dynamics and genetics named Skeeter Buster. This model operates at the scale of individual water-filled containers for immature stages and individual properties (houses) for adults. The biology of cohorts of mosquitoes is modeled based on the algorithms used in the non-spatial Container Inhabiting Mosquitoes Simulation Model (CIMSiM). Additional features incorporated into Skeeter Buster include stochasticity, spatial structure and detailed population genetics. We observe that the stochastic modeling of individual containers in Skeeter Buster is associated with a strongly reduced temporal variation in stage-specific population densities. We show that heterogeneity in container composition of individual properties has a major impact on spatial heterogeneity in population density between properties. We detail how adult dispersal reduces this spatial heterogeneity. Finally, we present the predicted genetic structure of the population by calculating FST values and isolation by distance patterns, and examine the effects of adult dispersal and container movement between properties.

Conclusions/Significance

We demonstrate that the incorporated stochasticity and level of spatial detail have major impacts on the simulated population dynamics, which could potentially impact predictions in terms of control measures. The capacity to describe population genetics confers the ability to model the outcome of genetic control methods. Skeeter Buster is therefore an important tool to model Ae. aegypti populations and the outcome of vector control measures.  相似文献   

13.

Background

Aedes aegypti and Aedes albopictus are potential vectors of chikungunya virus (CHIKV). The recent CHIKV outbreaks were caused by a new variant characterized by a mutation in the E1 glycoprotein gene (E1-226V) which has favored a better transmissibility by Ae. albopictus. As Ae. albopictus tends to replace Ae. aegypti in many regions, one question remained: is Ae. albopictus as efficient as Ae. aegypti to transmit the variant E1-226V of CHIKV?

Methodology and Findings

We infected orally both species with the variant E1-226V and estimated the infection, the viral dissemination, and the transmission rate by real time RT-PCR. Additionally, we used an in vitro assay to determine the amount of virus delivered by mosquitoes in their saliva. We found that Ae. aegypti as well as Ae. albopictus ensured a high replication of the virus which underwent an efficient dissemination as detectable in the salivary glands at day 2 post-infection (pi). Infectious CHIKV particles were delivered by salivary glands from day 2 with a maximum at day 6 pi for Ae. albopictus (103.3 PFU) and day 7 pi for Ae. aegypti (102.5 PFU).

Conclusions

Ae. albopictus is slightly more efficient than Ae. aegypti to transmit the variant E1-226V of CHIKV. These results will help to design an efficient vector control to limit transmission as soon as the first human cases are diagnosed.  相似文献   

14.

Background

Much effort is being devoted for developing new indicators to evaluate the human exposure to Aedes mosquito bites and the risk of arbovirus transmission. Human antibody (Ab) responses to mosquito salivary components could represent a promising tool for evaluating the human-vector contact.

Methodology/Principal findings

To develop a specific biomarker of human exposure to Aedes aegypti bites, we measured IgG Ab response to Ae. aegypti Nterm-34 kDa salivary peptide in exposed children in 7 villages of Southern Benin (West Africa). Results showed that specific IgG response presented high inter-individual heterogeneity between villages. IgG response was associated with rainfall and IgG level increased from dry (low exposure) to rainy (high exposure) seasons. These findings indicate that IgG Ab to Nterm-34 kDa salivary peptide may represent a reliable biomarker to detect variation in human exposure to Ae. aegypti bites.

Conclusion/Significance

This preliminary study highlights the potential use of Ab response to this salivary peptide for evaluating human exposure to Ae. aegypti. This biomarker could represent a new promising tool for assessing the risk of arbovirus transmission and for evaluating the efficacy of vector control interventions.  相似文献   

15.

Background

Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application.

Methods

Contact irritancy (escape) behavior, knockdown and 24 hour mortality rates were quantified in populations of female Ae. aegypti under laboratory conditions and validated in the field (Thailand and Peru) using experimental huts. Evaluations were conducted using varying concentrations and treatment surface area coverage (SAC) of three pyrethroid insecticides: alphacypermethrin, lambacyhalothrin and deltamethrin.

Results

Under laboratory conditions, exposure of Ae. aegypti to alphacypermethrin using the standard field application rate (FAR) resulted in escape responses at 25% and 50% SAC that were comparable with escape responses at 100% SAC. Significant escape responses were also observed at <100% SAC using ½FAR of all test compounds. In most trials, KD and 24 hour mortality rates were higher in mosquitoes that did not escape than in those that escaped. In Thailand, field validation studies indicated an early time of exit (by four hours) and 40% increase in escape using ½FAR of alphacypermethrin at 75% SAC compared to a matched chemical-free control. In Peru, however, the maximum increase in Ae. aegypti escape from alphacypermethrin-treated huts was 11%.

Conclusions/Significance

Results presented here suggest a potential role for sublethal and focal application of contact irritant chemicals in an Ae. aegypti push-pull strategy to reduce human–vector contact inside treated homes. However, the impact of an increase in escape response on dengue virus transmission is currently unknown and will depend on rate of biting on human hosts prior to house exiting.  相似文献   

16.

Background

Aedes aegypti is the most important vector of dengue fever in Brazil, where severe epidemics have recently taken place. Ae. aegypti in Brazil was the subject of an intense eradication program in the 1940s and 50s to control yellow fever. Brazil was the largest country declared free of this mosquito by the Pan-American Health Organization in 1958. Soon after relaxation of this program, Ae. aegypti reappeared in this country, and by the early 1980s dengue fever had been reported. The aim of this study is to analyze the present-day genetic patterns of Ae. aegypti populations in Brazil.

Methodology/Principal Findings

We studied the genetic variation in samples of 11 widely spread populations of Ae. aegypti in Brazil based on 12 well-established microsatellite loci. Our principal finding is that present-day Brazilian Ae. aegypti populations form two distinct groups, one in the northwest and one in the southeast of the country. These two groups have genetic affinities to northern South American countries and the Caribbean, respectively. This is consistent with what has been reported for other genetic markers such as mitochondrial DNA and allele frequencies at the insecticide resistance gene, kdr.

Conclusions/Significance

We conclude that the genetic patterns in present day populations of Ae. aegypti in Brazil are more consistent with a complete eradication of the species in the recent past followed by re-colonization, rather than the alternative possibility of expansion from residual pockets of refugia. At least two colonizations are likely to have taken place, one from northern South American countries (e.g., Venezuela) that founded the northwestern group, and one from the Caribbean that founded the southeastern group. The proposed source areas were never declared free of Ae. aegypti.  相似文献   

17.
18.

Background

Heterogeneous mosquito biting results in different individuals in a population receiving an uneven number of bites. This is a feature of many vector-borne disease systems that, if understood, could guide preventative control efforts toward individuals who are expected to contribute most to pathogen transmission. We aimed to characterize factors determining biting patterns of Aedes aegypti, the principal mosquito vector of dengue virus.

Methodology/Principal Findings

Engorged female Ae. aegypti and human cheek swabs were collected from 19 houses in Iquitos, Peru. We recorded the body size, age, and sex of 275 consenting residents. Movement in and out of the house over a week (time in house) and mosquito abundance were recorded on eight separate occasions in each household over twelve months. We identified the individuals bitten by 96 engorged mosquitoes over this period by amplifying specific human microsatellite markers in mosquito blood meals and human cheek swabs. Using a multinomial model assuming a saturating relationship (power), we found that, relative to other residents of a home, an individual''s likelihood of being bitten in the home was directly proportional to time spent in their home and body surface area (p<0.05). A linear function fit the relationship equally well (ΔAIC<1).

Conclusions/Significance

Our results indicate that larger people and those who spend more time at home are more likely to receive Ae. aegypti bites in their homes than other household residents. These findings are consistent with the idea that measurable characteristics of individuals can inform predictions of the extent to which different people will be bitten. This has implications for an improved understanding of heterogeneity in different people''s contributions to pathogen transmission, and enhanced interventions that include the people and places that contribute most to pathogen amplification and spread.  相似文献   

19.

Background

Vector competence of Aedes aegypti mosquitoes is a quantitative genetic trait that varies among geographic locations and among different flavivirus species and genotypes within species. The subspecies Ae. aegypti formosus, found mostly in sub-Saharan Africa, is considered to be refractory to both dengue (DENV) and yellow fever viruses (YFV) compared to the more globally distributed Ae. aegypti aegypti. Within Senegal, vector competence varies with collection site and DENV-2 viral isolate, but knowledge about the interaction of West African Ae. aegypti with different flaviviruses is lacking. The current study utilizes low passage isolates of dengue-2 (DENV-2-75505 sylvatic genotype) and yellow fever (YFV BA-55 -West African Genotype I, or YFV DAK 1279-West African Genotype II) from West Africa and field derived Ae. aegypti collected throughout Senegal to determine whether vector competence is flavivirus or virus genotype dependent.

Methodology/Principal Findings

Eight collections of 20–30 mosquitoes from different sites were fed a bloodmeal containing either DENV-2 or either isolate of YFV. Midgut and disseminated infection phenotypes were determined 14 days post infection. Collections varied significantly in the rate and intensity of midgut and disseminated infection among the three viruses.

Conclusions/Significance

Overall, vector competence was dependent upon both viral and vector strains. Importantly, contrary to previous studies, sylvatic collections of Ae. aegypti showed high levels of disseminated infection for local isolates of both DENV-2 and YFV.  相似文献   

20.

Background

Aedes aegypti Linnaeus is a peridomestic mosquito that lays desiccation-resistant eggs in water-filled human-made containers. Previous investigations connected egg hatching with declining dissolved oxygen (DO) that is associated with bacterial growth. However, past studies failed to uncouple DO from other potential stimulatory factors and they contained little quantitative information about the microbial community; consequently, a direct role for bacteria or compounds associated with bacteria in stimulating egg hatching cannot be dismissed.

Methodology/Principal Findings

Environmental factors stimulating hatch of Ae. aegypti eggs were investigated using non-sterile and sterile white oak leaf (WOL) infusions and a bacterial culture composed of a mix of 14 species originally isolated from bamboo leaf infusion. In WOL infusion with active microbes, 92.4% of eggs hatched in 2-h at an average DO concentration of 2.4 ppm. A 24-h old bacterial culture with a DO concentration of 0.73 ppm also stimulated 95.2% of eggs hatch within 1-h. In contrast, only 4.0% of eggs hatched in sterile infusion, whose DO averaged 7.4 ppm. Effects of bacteria were uncoupled from DO by exposing eggs to bacterial cells suspended in NaCl solution. Over a 4-h exposure period, 93.8% of eggs hatched while DO concentration changed minimally from 7.62 to 7.50 ppm. Removal of bacteria by ultra-filtration and cell-free filtrate resulted in only 52.0% of eggs hatching after 4-h at an average DO concentration of 5.5 ppm.

Conclusions/Significance

Collectively, the results provide compelling evidence that bacteria or water-soluble compounds secreted by bacteria, not just low DO concentration, stimulate hatching of Ae. aegypti eggs. However, the specific cues involved remain to be identified. These research findings contribute new insight into an important aspect of the oviposition biology of Ae. aegypti, a virus vector of global importance, providing the basis for a new paradigm of environmental factors involved in egg hatching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号