首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
C1q is the first subcomponent of the classical complement pathway that can interact with a range of biochemically and structurally diverse self and nonself ligands. The globular domain of C1q (gC1q), which is the ligand-recognition domain, is a heterotrimeric structure composed of the C-terminal regions of A (ghA), B (ghB), and C (ghC) chains. The expression and functional characterization of ghA, ghB, and ghC modules have revealed that each chain has specific and differential binding properties toward C1q ligands. It is largely considered that C1q-ligand interactions are ionic in nature; however, the complementary ligand-binding sites on C1q and the mechanisms of interactions are still unclear. To identify the residues on the gC1q domain that are likely to be involved in ligand recognition, we have generated a number of substitution mutants of ghA, ghB, and ghC modules and examined their interactions with three selected ligands: IgG1, C-reactive protein (CRP), and pentraxin 3 (PTX3). Our results suggest that charged residues belonging to the apex of the gC1q heterotrimer (with participation of all three chains) as well as the side of the ghB are crucial for C1q binding to these ligands, and their contribution to each interaction is different. It is likely that a set of charged residues from the gC1q surface participate via different ionic and hydrogen bonds with corresponding residues from the ligand, instead of forming separate binding sites. Thus, a recently proposed model suggesting the rotation of the gC1q domain upon ligand recognition may be extended to C1q interaction with CRP and PTX3 in addition to IgG1.  相似文献   

2.
C1q is a versatile recognition protein that binds to an amazing variety of immune and non-immune ligands and triggers activation of the classical pathway of complement. The crystal structure of the C1q globular domain responsible for its recognition properties has now been solved and refined to 1.9 A of resolution. The structure reveals a compact, almost spherical heterotrimeric assembly held together mainly by non-polar interactions, with a Ca2+ ion bound at the top. The heterotrimeric assembly of the C1q globular domain appears to be a key factor of the versatile recognition properties of this protein. Plausible three-dimensional models of the C1q globular domain in complex with two of its physiological ligands, C-reactive protein and IgG, are proposed, highlighting two of the possible recognition modes of C1q. The C1q/human IgG1 model suggests a critical role for the hinge region of IgG and for the relative orientation of its Fab domain in C1q binding.  相似文献   

3.
C1q is a versatile recognition protein which binds to a variety of targets and consequently triggers the classical pathway of complement. C1q is a hetero-trimer composed of three chains (A, B and C) arranged in three domains, a short N-terminal region, followed by a collagenous repeat domain that gives rise to the formation of (ABC) triple helices, each ending in a C-terminal hetero-trimeric globular domain, called gC1q, which is responsible for the recognition properties of C1q. The mechanism of the trimeric assembly of C1q and in particular the role of each domain in the process is unknown. Here, we have investigated if the gC1q domain was able to assemble into functional trimers, in vitro, in the absence of the collagenous domain, a motif known to promote obligatory trimers in other proteins. Acid-mediated gC1q protomers reassembled into functional trimers, once neutralized, indicating that it is the gC1q domain which possesses the information for trimerization. However, reassembly occurred after neutralization, only if the gC1q protomers had preserved a residual tertiary structure at the end of the acidic treatment. Thus, the collagenous domain of C1q might initialize the folding of the gC1q domain so that subsequent assembly of the entire molecule can occur.  相似文献   

4.
C1q is the first subcomponent of the classical complement pathway that binds antigen-bound IgG or IgM and initiates complement activation via association of serine proteases C1r and C1s. The globular domain of C1q (gC1q), which is the ligand-recognition domain, is a heterotrimeric structure composed of the C-terminal regions of A (ghA), B (ghB), and C (ghC) chains. The expression and functional characterization of ghA, ghB, and ghC modules have revealed that each chain has some structural and functional autonomy. Although a number of studies have tried to identify IgG-binding sites on the gC1q domain, no such attempt has been made to localize IgM-binding site. On the basis of the information available via the gC1q crystal structure, molecular modeling, mutational studies, and bioinformatics, we have generated a series of substitution mutants of ghA, ghB, and ghC and examined their interactions with IgM. The comparative analysis of IgM- and IgG-binding abilities of the mutants suggests that the IgG- and IgM-binding sites within the gC1q domain are different but may overlap. Whereas Arg(B108), Arg (B109), and Tyr(B175) mainly constitute the IgM-binding site, the residues Arg(B114), Arg(B129), Arg(B163), and His(B117) that have been shown to be central to IgG binding are not important for the C1q-IgM interaction. Given the location of Arg(B108), Arg (B109), and Tyr(B175) in the gC1q crystal structure, it is likely that C1q interacts with IgM via the top of the gC1q domain.  相似文献   

5.
The first step in the activation of the classical complement pathway by immune complexes involves the binding of the globular domain (gC1q) of C1q to the Fc regions of aggregated IgG or IgM. Each gC1q domain is a heterotrimer of the C-terminal halves of one A (ghA), one B (ghB), and one C (ghC) chain. Our recent studies have suggested a modular organization of gC1q, consistent with the view that ghA, ghB, and ghC are functionally autonomous modules and have distinct and differential ligand-binding properties. Although C1q binding sites on IgG have been previously identified, the complementary interacting sites on the gC1q domain have not been precisely defined. The availability of the recombinant constructs expressing ghA, ghB, and ghC has allowed us, for the first time, to engineer single-residue substitution mutations and identify residues on the gC1q domain, which are involved in the interaction between C1q and IgG. Because C1q is a charge pattern recognition molecule, we have sequentially targeted arginine and histidine residues in each chain. Consistent with previous chemical modification studies and the recent crystal structure of gC1q, our results support a central role for arginine and histidine residues, especially Arg(114) and Arg(129) of the ghB module, in the C1q-IgG interaction.  相似文献   

6.
The first step in the activation of the classical complement pathway by immune complexes involves the binding of the six globular heads of C1q to the Fc regions of IgG or IgM. The globular heads of C1q (gC1q domain) are located C-terminal to the six triple-helical stalks present in the molecule, each head being composed of the C-terminal halves of one A, one B, and one C chain. The gC1q modules are also found in a variety of noncomplement proteins, such as type VIII and X collagens, precerebellin, hibernation protein, multimerin, Acrp-30, and saccular collagen. In several of these proteins, the chains containing these gC1q modules appear to form a homotrimeric structure. Here, we report expression of an in-frame fusion of a trimerizing neck region of surfactant protein D with the globular head region of C1q B chain as a fusion to Escherichia coli maltose binding protein. Following cleavage by factor Xa and removal of the maltose binding protein, the neck and globular region, designated ghB(3), formed a soluble, homotrimeric structure and could inhibit C1q-dependent hemolysis of IgG- and IgM-sensitized sheep erythrocytes. The functional properties of ghB(3) indicate that the globular regions of C1q may adopt a modular organization in which each globular head of C1q may be composed of three structurally and functionally independent domains, thus retaining multivalency in the form of a heterotrimer. The finding that ghB(3) is an inhibitor of C1q-mediated complement activation opens up the possibility of blocking activation at the first step of the classical complement pathway.  相似文献   

7.
Classical complement pathway is an important innate immune mechanism, which is usually triggered by binding of C1q to immunoglobulins, pentraxins and other target molecules. Although the activation of the classical pathway is crucial in the host defence, its undesirable and uncontrolled activation can lead to tissue damage. Thus, understanding the molecular basis of complement activation and its inhibition are of great biomedical importance. Recently, we proposed a mechanism for target recognition and classical pathway activation by C1q, which is likely governed by calcium-controlled reorientation of macromolecular electric moment vectors. Here we sought to define the mechanism of C1q inhibition by low molecular weight disulphate compounds that bind to the globular (gC1q) domain, using experimental, computational docking and theoretical modelling approaches. Our experimental results demonstrate that betulin disulphate (B2S) and 9,9-bis(4'-hydroxyphenyl)fluorene disulphate (F2S) inhibit the interaction of C1q and its recombinant globular modules with target molecules IgG1, C-reactive protein (CRP) and long pentraxin 3 (PTX3). In most C1q-inhibitor docked complexes, there is a reduction of electric moment scalar values and similarly altered direction of electric/dipole moment vectors. This could explain the inhibitory effect by impaired electrostatic steering, lacking optimal target recognition and formation of functional complex. In the presence of the inhibitor, the tilt of gC1q domains is likely to be blocked by the altered direction of the electric moment vector. Thus, the transition from the inactive (closed) towards the active (open) conformation of C1q (i.e. the complement activation signal transmission) will be impaired and the cascade initiation disrupted. These results could serve as a starting point for the exploration of a new form of 'electric moment inhibitors/effectors'.  相似文献   

8.
Gram-negative bacteria can bind complement protein C1q in an antibody-independent manner and activate classical pathway via their lipopolysaccharides (LPS). Earlier studies have implicated the collagen-like region of human C1q in binding LPS. In recent years, a number of C1q target molecules, previously considered to interact with collagen-like region of C1q, have been shown to bind via the globular domain (gC1q). Here we report, using recombinant forms of the globular head regions of C1q A, B and C chains, that LPS derived from Salmonella typhimurium interact specifically with the B-chain of the gC1q domain in a calcium-dependent manner. LPS and IgG-binding sites on the gC1q domain appear to be overlapping and this interaction can be inhibited by a synthetic C1q inhibitor, suggesting common interacting mechanisms.  相似文献   

9.
The long pentraxin 3 (PTX3), serum amyloid P component (SAP), and C-reactive protein belong to the pentraxin family of pattern recognition molecules involved in tissue homeostasis and innate immunity. They interact with C1q from the classical complement pathway. Whether this also occurs via the analogous mannose-binding lectin (MBL) from the lectin complement pathway is unknown. Thus, we investigated the possible interaction between MBL and the pentraxins. We report that MBL bound PTX3 and SAP partly via its collagen-like domain but not C-reactive protein. MBL-PTX3 complex formation resulted in recruitment of C1q, but this was not seen for the MBL-SAP complex. However, both MBL-PTX3 and MBL-SAP complexes enhanced C4 and C3 deposition and opsonophagocytosis of Candida albicans by polymorphonuclear leukocytes. Interaction between MBL and PTX3 led to communication between the lectin and classical complement pathways via recruitment of C1q, whereas SAP-enhanced complement activation occurs via a hitherto unknown mechanism. Taken together, MBL-pentraxin heterocomplexes trigger cross-activation of the complement system.  相似文献   

10.
C1q is the recognition subunit of the first component of the classical complement pathway. It participates in clearance of immune complexes and apoptotic cells as well as in defense against pathogens. Inappropriate activation of the complement contributes to cellular and tissue damage in different pathologies, urging the need for the development of therapeutic agents that are able to inhibit the complement system. In this study, we report heme as an inhibitor of C1q. Exposure of C1q to heme significantly reduced the activation of the classical complement pathway, mediated by C-reactive protein (CRP) and IgG. Interaction analyses revealed that heme reduces the binding of C1q to CRP and IgG. Furthermore, we demonstrated that the inhibition of C1q interactions results from a direct binding of heme to C1q. Formation of complex of heme with C1q caused changes in the mechanism of recognition of IgG and CRP. Taken together, our data suggest that heme is a natural negative regulator of the classical complement pathway at the level of C1q. Heme may play a role at sites of excessive tissue damage and hemolysis where large amounts of free heme are released.  相似文献   

11.
The prototypic long pentraxin PTX3 is a unique fluid-phase pattern recognition receptor that plays a nonredundant role in innate immunity and female fertility. The PTX3 C-terminal domain is required for C1q recognition and complement activation and contains a single N-glycosylation site on Asn 220. In the present study, we characterized the structure of the human PTX3 glycosidic moiety and investigated its relevance in C1q interaction and activation of the complement classical pathway. By specific endo and exoglycosidases digestion and direct mass spectrometric analysis, we found that both recombinant and naturally occurring PTX3 were N-linked to fucosylated and sialylated complex-type sugars. Interestingly, glycans showed heterogeneity mainly in the relative amount of bi, tri, and tetrantennary structures depending on the cell type and inflammatory stimulus. Enzymatic removal of sialic acid or the entire glycosidic moiety equally enhanced PTX3 binding to C1q compared to that in the native protein, thus indicating that glycosylation substantially contributes to modulate PTX3/C1q interaction and that sialic acid is the main determinant of this contribution. BIAcore kinetic measurements returned decreasing K(off) values as sugars were removed, pointing to a stabilization of the PTX3/C1q complex. No major rearrangement of PTX3 quaternary structure was observed after desialylation or deglycosylation as established by size exclusion chromatography. Consistent with C1q binding, PTX3 desialylation enhanced the activation of the classical complement pathway, as assessed by C4 and C3 deposition. In conclusion, our results provided evidence of an involvement of the PTX3 sugar moiety in C1q recognition and complement activation.  相似文献   

12.
刘阁逄越  李庆伟刘欣 《遗传》2013,35(9):1072-1080
C1q蛋白家族由众多含C1q结构域的蛋白组成, 从细菌到高等哺乳动物中都有分布。这类蛋白由一条信号肽、胶原样区(Collage-like region, CLR)和C1q球状结构域(Globular C1q domain, gC1q)组成。C1q蛋白家族根据其结构特点, 可分为三大类分子:C1q、C1q-like和ghC1q。C1q是补体经典途径的起始分子, 能够识别免疫复合物, 启动补体系统经典途径; 此外, 作为一种模式识别受体分子(Pattern recognition receptor, PRR), 它可以结合种类繁多的配体。C1q-like蛋白的结构类似于C1q分子, 含有CLR和gC1q结构域, 在水蛭中参与神经系统的修复, 在脊椎动物中实现从凝集素到免疫球蛋白结合分子的功能转变, 参与补体系统的激活。ghC1q蛋白只具有gC1q结构域和一段短的N末端序列, 包括分泌型蛋白(sghC1q)和非分泌型蛋白(cghC1q)。sghC1q在无脊椎动物固有免疫系统中发挥重要作用; 脊椎动物中的sghC1q可作为一类新型跨神经元调节因子, 在大脑的许多区域调节突触发育和突触可塑性。cghC1q基因最早可追溯至芽孢杆菌属的细菌中, 具有典型的gC1q果冻卷结构, 说明gC1q结构域有着非常悠久的进化历程且结构高度保守。文章对C1q蛋白家族的结构、分布、分类以及功能进行综述, 以期为从事该领域研究的科研人员提供有益参考。  相似文献   

13.
14.
Glycoprotein C (gC) of herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) binds complement component C3b and protects virus from complement-mediated neutralization. Differences in complement interacting domains exist between gC of HSV-1 (gC1) and HSV-2 (gC2), since the amino terminus of gC1 blocks complement C5 from binding to C3b, while gC2 fails to interfere with this activity. We previously reported that neutralization of HSV-1 gC-null virus by HSV antibody-negative human serum requires activation of C5 but not of downstream components of the classical complement pathway. In this report, we evaluated whether activation of C5 is sufficient to neutralize HSV-2 gC-null virus, or whether formation of the membrane attack complex by C6 to C9 is required for neutralization. We found that activation of the classical complement pathway up to C5 was sufficient to neutralize HSV-2 gC-null virus by HSV antibody-negative human serum. We evaluated the mechanisms by which complement activation occurred in seronegative human serum. Interestingly, natural immunoglobulin M antibodies bound to virus, which triggered activation of C1q and the classical complement pathway. HSV antibody-negative sera obtained from four individuals differed over an approximately 10-fold range in their potency for complement-mediated virus neutralization. These findings indicate that humans differ in the ability of their innate immune systems to neutralize HSV-1 or HSV-2 gC-null virus and that a critical function of gC1 and gC2 is to prevent C5 activation.  相似文献   

15.
C1q is the first subcomponent of classical pathway in the complement system and a major link between innate and acquired immunities. The globular (gC1q) domain similar with C1q was also found in many non-complement C1q-domain-containing (C1qDC) proteins which have similar crystal structure to that of the multifunctional tumor necrosis factor (TNF) ligand family, and also have diverse functions. In this study, we identified a total of 52 independent gene sequences encoding C1q-domain-containing proteins through comprehensive searches of zebrafish genome, cDNA and EST databases. In comparison to 31 orthologous genes in human and different numbers in other species, a significant selective pressure was suggested during vertebrate evolution. Domain organization of C1q-domain-containing (C1qDC) proteins mainly includes a leading signal peptide, a collagen-like region of variable length, and a C-terminal C1q domain. There are 11 highly conserved residues within the C1q domain, among which 2 are invariant within the zebrafish gene set. A more extensive database searches also revealed homologous C1qDC proteins in other vertebrates, invertebrates and even bacterium, but no homologous sequences for encoding C1qDC proteins were found in many species that have a more recent evolutionary history with zebrafish. Therefore, further studies on C1q-domain-containing genes among different species will help us understand evolutionary mechanism of innate and acquired immunities.  相似文献   

16.
17.
Human centrin 2 is a component of the nucleotide excision repair system, as a subunit of the heterotrimer including xeroderma pigmentosum group C protein (XPC) and hHR23B. The C-terminal domain of centrin (C-HsCen2) binds strongly a peptide from the XPC protein (P1-XPC: N(847)-R(863)). Here, we characterize the solution Ca(2+)-dependent structural and molecular features of the C-HsCen2 in complex with P1-XPC, mainly using NMR spectroscopy and molecular modeling. The N-terminal half of the peptide, organized as an alpha helix is anchored into a deep hydrophobic cavity of the protein, because of three bulky hydrophobic residues in position 1-4-8 and electrostatic contacts with the centrin helix E. Investigation of the whole centrin interactions shows that the N-terminal domain of the protein is not involved in the complex formation and is structurally independent from the peptide-bound C-terminal domain. The complex may exist in three different binding conformations corresponding to zero, one, and two Ca(2+)-bound states, which may exchange with various rates and have distinct structural stability. The various features of the intermolecular interaction presented here constitute a centrin-specific mode for the target binding.  相似文献   

18.
19.
The primary structure of human Elastin microfibril interface-located protein (EMILIN), an elastic fiber-associated glycoprotein, consists of a globular C1q domain (gC1q) at the C terminus, a short collagenous stalk, a long region with a high potential for forming coiled-coil alpha helices, and a cysteine-rich N-terminal sequence. It is not known whether the EMILIN gC1q domain is involved in the assembly process and in the supramolecular organization as shown for the similar domain of collagen X. By employing the yeast two-hybrid system the EMILIN gC1q domains interacted with themselves, proving for the first time that this interaction occurs in vivo. The gC1q domain formed oligomers running as trimers in native gels that were less stable than the comparable trimers of the collagen X gC1q domain since they did not withstand heating. The collagenous domain was trypsin-resistant and migrated at a size corresponding to a triple helix under native conditions. In reducing agarose gels, EMILIN also migrated as a trimer, whereas under non-reducing conditions it formed polymers of many millions of daltons. A truncated fragment lacking gC1q and collagenous domains assembled to a much lesser extent, thus deducing that the C-terminal domain(s) are essential for the formation of trimers that finally assemble into large EMILIN multimers.  相似文献   

20.
C1q is the first subcomponent of classical pathway in the complement system and a major link between innate and acquired immunities. The globular (gC1q) domain similar with C1q was also found in many non-complement C1q-domain-containing (C1qDC) proteins which have similar crystal structure to that of the multifunctional tumor necrosis factor (TNF) ligand family, and also have diverse functions. In this study, we identified a total of 52 independent gene sequences encoding C1q-domain-containing proteins through comprehensive searches of zebrafish genome, cDNA and EST databases. In comparison to 31 orthologous genes in human and different numbers in other species, a significant selective pressure was suggested during vertebrate evolution. Domain organization of C1q-domain-containing (C1qDC) proteins mainly includes a leading signal peptide, a collagen-like region of variable length, and a C-terminal C1q domain. There are 11 highly conserved residues within the C1q domain, among which 2 are invariant within the zebrafish gene set. A more extensive database searches also revealed homologous C1qDC proteins in other vertebrates, invertebrates and even bacterium, but no homologous sequences for encoding C1qDC proteins were found in many species that have a more recent evolutionary history with zebrafish. Therefore, further studies on C1q-domain-containing genes among different species will help us understand evolutionary mechanism of innate and acquired immunities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号