首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We systematically classified goldfish ganglion cells according to their spatial summation properties using the same techniques and criteria used in cat and monkey research. Results show that goldfish ganglion cells can be classified as X-, Y-, or W-like based on their responses to contrast-reversal gratings. Like cat X cells, goldfish X-like cells display linear spatial summation. Goldfish Y-like cells, like cat Y cells, respond with frequency doubling at all spatial positions when the contrast-reversal grating consists of high spatial frequencies. There is also a third class of neurons, which is neither X- nor Y-like; many of these cells' properties are similar to those of the "not-X" cells found in the eel retina. Spatial filtering characteristics were obtained for each cell by drifting sinusoidal gratings of various spatial frequencies and contrasts across the receptive field of the cell at a constant temporal rate. The spatial tuning curves of the cell depend on the temporal parameters of the stimulus; at high drift rates, the tuning curves lose their low spatial frequency attenuation. To explore this phenomenon, temporal contrast response functions were derived from the cells' responses to a spatially uniform field whose luminance varied sinusoidally in time. These functions were obtained for the center, the surround, and the entire receptive field. The results suggest that differences in the cells' spatial filtering across stimulus drift rate are due to changes in the interaction of the center and surround mechanisms; at low temporal frequencies, the center and surround responses are out-of-phase and mutually antagonistic, but at higher temporal rates their responses are in-phase and their interaction actually enhances the cell's responsiveness.  相似文献   

2.
Responses from catfish retinal ganglion cells were evoked by a spot or an annulus of light and were analyzed by a procedure identical to the one used previously to study catfish amacrine cells (Sakai H. M., and K.-I. Naka, 1992. Journal of Neurophysiology. 67:430-442.). In two- input white-noise experiments, a response evoked by simultaneous stimulation of the center and surround was decomposed into the components generated by the center and surround through a process of cross-correlation. The center and surround responses were also decomposed into their linear and nonlinear components so that the response dynamics of the linear and nonlinear components could be measured. We found that the concentric organization of the receptive field was determined by linear components, i.e., the first-order kernels generated by the center and surround were of opposite polarity. Both the center and surround generated second-order kernels with similar signatures, i.e., the second-order components formed a monotonic receptive field. The peak response time of the first- and second-order kernels from the surround was longer by approximately 20 ms than that of the center. Except for the DC potential present in the intracellular responses, almost identical first- and second-order kernels for the center and surround were obtained from both the intracellular response and spike discharges. Thus, information on concentric organization of a receptive field is translated into spike discharges with little loss of information. A train of spike discharges carries, simultaneously, at least four kinds of information: two linear and two nonlinear components, which originate in the receptive field center and the surround. A spike train is not a simple signaling device but is a carrier of complex and multiple signals. Victor, J. D., and R. M. Shapley (1979. Journal of General Physiology. 74:671-687.) discovered similarly that, in the cat retina, static second-order nonlinearity is encoded into spike trains. Results obtained in this study support the thesis that signals generated by the preganglionic cells are translated into spike discharges without major modification and that those signals can be recovered from the spike trains (Sakuranaga, M., Y. Ando, and K.-I. Naka. 1987. Journal of General Physiology. 90:229-259.; Korenberg, M. J., H. M. Sakai, and K.-I. Naka. 1989. Journal of Neurophysiology. 61:1110-1120.). Current injection studies have shown that such signal transmission is possible (Sakai, H. M., and K.-I. Naka, 1988a. Journal of Neurophysiology. 60:1549-1567.; 1990. Journal of Neurophysiology. 63:105-119.).  相似文献   

3.
Spatiotemporal frequency responses of cat retinal ganglion cells   总被引:8,自引:1,他引:7       下载免费PDF全文
Spatiotemporal frequency responses were measured at different levels of light adaptation for cat X and Y retinal ganglion cells. Stationary sinusoidal luminance gratings whose contrast was modulated sinusoidally in time or drifting gratings were used as stimuli. Under photopic illumination, when the spatial frequency was held constant at or above its optimum value, an X cell's responsivity was essentially constant as the temporal frequency was changed from 1.5 to 30 Hz. At lower temporal frequencies, responsivity rolled off gradually, and at higher ones it rolled off rapidly. In contrast, when the spatial frequency was held constant at a low value, an X cell's responsivity increased continuously with temporal frequency from a very low value at 0.1 Hz to substantial values at temporal frequencies higher than 30 Hz, from which responsivity rolled off again. Thus, 0 cycles X deg-1 became the optimal spatial frequency above 30 Hz. For Y cells under photopic illumination, the spatiotemporal interaction was even more complex. When the spatial frequency was held constant at or above its optimal value, the temporal frequency range over which responsivity was constant was shorter than that of X cells. At lower spatial frequencies, this range was not appreciably different. As for X cells, 0 cycles X deg-1 was the optimal spatial frequency above 30 Hz. Temporal resolution (defined as the high temporal frequency at which responsivity had fallen to 10 impulses X s-1) for a uniform field was approximately 95 Hz for X cells and approximately 120 Hz for Y cells under photopic illumination. Temporal resolution was lower at lower adaptation levels. The results were interpreted in terms of a Gaussian center-surround model. For X cells, the surround and center strengths were nearly equal at low and moderate temporal frequencies, but the surround strength exceeded the center strength above 30 Hz. Thus, the response to a spatially uniform stimulus at high temporal frequencies was dominated by the surround. In addition, at temporal frequencies above 30 Hz, the center radius increased.  相似文献   

4.
感受野是视觉系统信息处理的基本结构和功能单元。X、Y细胞是两类主要的视网膜神经节细胞。生理实验发现,在经典感受野之外还存在一个大范围的在周边去抑制区。文中采用周边去抑制区对经典外周的去抑制非线性使用方式,建立一个二维的与实验结果联系紧密的X、Y细胞统一的复合感受野模型。该模型不仅能模拟X细胞的null-test反应和Y细胞的on-off反应,还模拟了Y细胞在低空频刺激时的信频反应、圆面积空间的倍频  相似文献   

5.
We examined the dependence of the center radius of X cells on temporal frequency and found that at temporal frequencies above 40 Hz the radius increases in a monotonic fashion, reaching a size approximately 30% larger at 70 Hz. This kind of spatial expansion has been predicted with cable models of receptive fields where inductive elements are included in modeling the neuronal membranes. Hence, the expansion of the center radius is clearly important for modeling X cell receptive fields. On the other hand, we feel that it might be of only minor functional significance, since the responsivity of X cells is attenuated at these high temporal frequencies and the signal-to-noise ratio is considerably worse than at low and midrange temporal frequencies.  相似文献   

6.
. Enroth-Cugell and Robson (1966) first proposed a classification of retinal ganglion cells into X cells, which exhibit approximate linear spatial summation and largely sustained responses, and Y cells, which exhibit nonlinearities and transient responses. Gaudiano (1992a, 1992b, 1994) has suggested that the dominant characteristics of both X and Y cells can be simulated with a single model simply by changing receptive field profiles to match those of the anatomical counterparts of X and Y cells. He also proposed that a significant component of the spatial nonlinearities observed in Y (and sometimes X) cells can result from photoreceptor nonlinearities coupled with push-pull bipolar connections. Specifically, an asymmetry was predicted in the ganglion cell response to rectangular gratings presented at different locations in the receptive field under two conditions: introduction/withdrawal (on-off) or contrast reversal. When measuring the response to these patterns as a function of spatial phase, the standard difference-of-Gaussians model predicts symmetrical responses about the receptive field center, while the push-pull model predicts slight but significant asymmetry in the on-off case only. To test this hypothesis, we have recorded ganglion cell responses from the optic tract fibers of anesthetized cat. The mean and standard deviations of responses to on-off and contrast-reversed patterns were compared. We found that all but one of the cells that yielded statistically significant data confirmed the hypothesis. These results largely support the theoretical prediction. Received: 21 March 1997 / Accepted in revised form: 6 May 1998  相似文献   

7.
This article makes use of a push-pull shunting network, which was introduced in the companion article, to model certain properties of X and Y retinal ganglion cells. Input to the push-pull network is preprocessed by a nonlinear mechanism for temporal adaptation, which is ascribed here to photoreceptor dynamics. The complete circuit is used to show that a simple change in receptive field morphology within a single model equation can change the network's response characteristics to closely resemble those of either X or Y cells. Specifically, an increase in width of the receptive field center mechanism is sufficient to account for generation of on-off (Y-like) instead of null (X-like) responses to modulated gratings. In agreement with experimental data, the Y cell on-off response is independent of spatial phase. Also, the model accurately predicts that on-off responses can be observed in X cells for particular stimulus configurations. Taken together, the results show how the retina combines individually inadequate modules to efficiently handle the tasks required for accurate spatial and temporal visual information processing. The model is also able to clarify a number of controversial experimental findings on the nature of spatiotemporal visual processing in the retina.  相似文献   

8.
同心圆感受野去抑制特性的数学模拟   总被引:6,自引:1,他引:5  
以感受野外周区内各亚区之间的抑制性相互作用为基础,提出了一个能描述视网膜神经节细胞传输特性的数学模型,此模型能很好地解释传统感受野外大范围去抑制区产生的机制。当用来处理亮度对比边缘时,它既能很好地增强边缘对比,又可有效地提升被传统感受野中心/外周拮抗机制所滤除了的区域亮度对比和亮度梯度信息。本文也用不同空间频率的光栅和真实图像检验了模型的空间频率传递特性,并与其它模型进行了比较。  相似文献   

9.
A spatio-temporal model of ganglion cell receptive fields is proposed on the basis of receptive field characteristics of cat retinal ganglion cells reported in our previous paper. The model consists of the linear and nonlinear mechanisms in the ganglion cell receptive field. The linear mechanism is assumed to be composed of antagonistic center and surround mechanisms. Then, by integrating these mechanisms we construct a spatio-temporal impulse response function of ganglion cell receptive field. Here we assume that spatio-temporal impulse response function may be factored into spatial and temporal terms. By Fouriertransforming the spatio-temporal impulse response function, we can obtain the spatio-temporal transfer function. Contrast sensitivity characteristics of X-and Y-cells in the cat retina may be explained by the transfer function.  相似文献   

10.
在前文建立的二维视网膜神经节细胞含大周边感受野模型基础上 ,结合生理实验结果模拟了神经节细胞的方位选择性特性。文中采用椭圆感受野的观点解释了方位选择性的成因。并通过中心区以外区域对中心区方位选择性的复杂调制组合 ,展示了感受野不同亚单元对方位选择性的影响作用 ;指出方位选择性的成因是感受野椭圆亚单元的存在;感受野复杂的方位选择性是由于中心和周边在不同刺激条件下竞争的不同结果造成的;同时指出对椭圆感受野 ,倍频反应也会有相应的方位选择性。  相似文献   

11.
ON-center and OFF-center receptive fields of cat retinal ganglion cells can be divided into two categories: sensitive (type N) and insensitive (type L) to three statistical temporal visual stimuli with different second order statistics but identical first order statistics (Tsukada et al. 1982). The temporal pattern sensitivity of type N response is closely related to the nonlinear stage of Y cells depending on the interaction between center and surround mechanism. The temporal pattern sensitivity of type N responses has a spatial profile within the receptive field; it is highly sensitive in the center region of the receptive field and less sensitive toward the field periphery. The temporal pattern sensitivity in the center region of the receptive field to statistical properties (irregular or regular) of a surrounding flash annulus shows modulation like a switching element: when the surrounding area is stimulated by a more regular flash stimulus with normal distribution of inter-stimulus intervals the system is sensitive (switching on) to the temporal pattern, while a change to an irregular one with an exponential distribution makes it insensitive (switching off) to the temporal pattern.  相似文献   

12.
The transient visual response of feline dorsal lateral geniculate nucleus (dLGN) cells was studied under control conditions and during the application of repetitive transcranial magnetic stimulation at 1 Hz (rTMS@1Hz) on the primary visual cortex (V1). The results show that rTMS@1Hz modulates the firing mode of Y cells, inducing an increase in burst spikes and a decrease in tonic firing. On the other hand, rTMS@1Hz modifies the spatiotemporal characteristics of receptive fields of X cells, inducing a delay and a decrease of the peak response, and a change of the surround/center amplitude ratio of RF profiles. These results indicate that V1 controls the activity of the visual thalamus in a different way in the X and Y pathways, and that this feedback control is consistent with functional roles associated with each cell type.  相似文献   

13.
The eel retina. Ganglion cell classes and spatial mechanisms   总被引:1,自引:0,他引:1       下载免费PDF全文
We have been able to separate optic fibers in the eye of the eel Anguilla rostrata into two distinct classes on the basis of spatial summation properties. X fibers, the first class, are like X ganglion cells in the cat: they have null positions for contrast reversal sine gratings; they respond at the modulation frequency; and many have a strong surround mechanism. X fibers, the second class, respond with an "on-off" response to local stimulation, to diffuse light modulation, to coarse drifting gratings, and to contrast reversal gratings. We have put forward a model for the receptive field of X fibers which involves two subunits, with rectification before the subunits add their signals. This model accounts for many of the quirks of X fibers.  相似文献   

14.
Off-center bipolar cells show hyperpolarizing responses to spot illumination in the receptive field center and depolarization responses to an annulus in the surround. To understand the ionic mechanisms underlying these responses, we examined the current-voltage relationship of these bipolar cells, input resistance changes during their light-evoked responses, and the reversal potentials of these responses. Off-center bipolar cells generally showed inward rectification when they were hyperpolarized and outward rectification when they were strongly depolarized. The membrane potential at which the I-V relationship deviated from linearity varied in individual cells. Hyperpolarizing center responses were generally accompanied by a resistance increase, irrespective of signal inputs either from red- sensitive cones or from rods, and the response polarities reversed at greater than +50 mV. Depolarizing surround responses were accompanied by a resistance decrease with a reversal potential at about +28 mV (one case). From the above observations, it is suggested that the center responses are generated by a decrease in sodium conductance (gNa) and the surround response is generated by an increase in gNa.  相似文献   

15.
The effect of intravenous strychnine and the GABA antagonists picrotoxin and bicuculline upon the discharge pattern of center-surround-organized cat retinal ganglion cells of X and Y type were studied. Stimuli (mostly scotopic, and some photopic) were selected such that responses from both on and off-center cells were either due to the center, due to the surround, or clearly mixed. Pre-drug control responses were obtained, and their behavior following administration of the antagonists was observed for periods up to several hours. X-cell responses were affected in a consistent manner by strychnine while being unaffected by GABA antagonists. All observed changes following strychnine were consistent with a shift in center-surround balance of X cells in favor of the center. For Y-cell responses to flashing annuli following strychnine, there was either no shift or a relatively small shift in center-surround balance. Compared to X-cell responses to flashing lights, those of Y cells were very little affected by strychnine and in most cases were unaffected. It thus appears that glycine plays a similar role in receptive field organization of X cells as does GABA in Y cells (Kirby and Enroth-Cugell, 1976. J. Gen. Physiol. 68:465-484).  相似文献   

16.
Neural responses to visual stimuli are strongest in the classical receptive field, but they are also modulated by stimuli in a much wider region. In the primary visual cortex, physiological data and models suggest that such contextual modulation is mediated by recurrent interactions between cortical areas. Outside the primary visual cortex, imaging data has shown qualitatively similar interactions. However, whether the mechanisms underlying these effects are similar in different areas has remained unclear. Here, we found that the blood oxygenation level dependent (BOLD) signal spreads over considerable cortical distances in the primary visual cortex, further than the classical receptive field. This indicates that the synaptic activity induced by a given stimulus occurs in a surprisingly extensive network. Correspondingly, we found suppressive and facilitative interactions far from the maximum retinotopic response. Next, we characterized the relationship between contextual modulation and correlation between two spatial activation patterns. Regardless of the functional area or retinotopic eccentricity, higher correlation between the center and surround response patterns was associated with stronger suppressive interaction. In individual voxels, suppressive interaction was predominant when the center and surround stimuli produced BOLD signals with the same sign. Facilitative interaction dominated in the voxels with opposite BOLD signal signs. Our data was in unison with recently published cortical decorrelation model, and was validated against alternative models, separately in different eccentricities and functional areas. Our study provides evidence that spatial interactions among neural populations involve decorrelation of macroscopic neural activation patterns, and suggests that the basic design of the cerebral cortex houses a robust decorrelation mechanism for afferent synaptic input.  相似文献   

17.
The postsynaptic potentials (PSPs) that form the ganglion cell light response were isolated by polarizing the cell membrane with extrinsic currents while stimulating at either the center or surround of the cell's receptive field. The time-course and receptive field properties of the PSPs were correlated with those of the bipolar and amacrine cells. The tiger salamander retina contains four main types of ganglion cell: "on" center, "off" center, "on-off", and a "hybrid" cell that responds transiently to center, but sustainedly, to surround illumination. The results lead to these inferences. The on-ganglion cell receives excitatory synpatic input from the on bipolars and that synapse is "silent" in the dark. The off-ganglion cell receives excitatory synaptic input from the off bipolars with this synapse tonically active in the dark. The on-off and hybrid ganglion cells receive a transient excitatory input with narrow receptive field, not simply correlated with the activity of any presynaptic cell. All cell types receive a broad field transient inhibitory input, which apparently originates in the transient amacrine cells. Thus, most, but not all, ganglion cell responses can be explained in terms of synaptic inputs from bipolar and amacrine cells, integrated at the ganglion cell membrane.  相似文献   

18.
LGN Y-cells in 3 anaesthetized (N2O/O2) and paralyzed rhesus monkeys were investigated with stimuli, intensity modulated by gaussian white noise, and with moving and counterphase modulated spatial sine wave gratings. The results support the model, postulated on the base of electrophysiological recordings in the retina of cat and mudpuppy, which consists of a linear centre and surround mechanism whose responses are modified in a frequency-selective multiplicative way by a nonlinear mechanism in the receptive field. This nonlinear mechanism is also held responsible for the second-order harmonic responses, which are the defining characteristic of Y-cells. The temporal and spatial characteristics of these mechanisms were determined. The responses obtained with the GWN stimulation and with modulated spatial sine wave gratings both indicate that the optimal temporal frequency of the linear mechanisms is near 7 Hz at 70 td and near 5 Hz for the nonlinear mechanism. The optimal spatial frequency for the linear mechanism is between 0.5–2 cycles/deg and between 6–12 cycles/deg for the nonlinear mechanism.  相似文献   

19.
The influence of cortical feedback on thalamic visual responses has been a source of much discussion in recent years. In this study we examine the possible role of cortical feedback in shaping the spatiotemporal receptive field (STRF) responses of thalamocortical (TC) cells in the lateral geniculate nucleus (LGN) of the thalamus. A population-based computational model of the thalamocortical network is used to generate a representation of the STRF response of LGN TC cells within the corticothalamic feedback circuit. The cortical feedback is shown to have little influence on the spatial response properties of the STRF organization. However, the model suggests that cortical feedback may play a key role in modifying the experimentally observed biphasic temporal response property of the STRF, that is, the reversal over time of the polarity of ON and OFF responses of the centre and surround of the receptive field, in particular accounting for the experimentally observed mismatch between retinal cells and TC cells in respect of the magnitude of the second (rebound) phase of the temporal response. The model results also show that this mismatch may result from an anti-phase corticothalamic feedback mechanism.  相似文献   

20.
Huang X  Albright TD  Stoner GR 《Neuron》2007,53(5):761-770
Visual motion perception relies on two opposing operations: integration and segmentation. Integration overcomes motion ambiguity in the visual image by spatial pooling of motion signals, whereas segmentation identifies differences between adjacent moving objects. For visual motion area MT, previous investigations have reported that stimuli in the receptive field surround, which do not elicit a response when presented alone, can nevertheless modulate responses to stimuli in the receptive field center. The directional tuning of this "surround modulation" has been found to be mainly antagonistic and hence consistent with segmentation. Here, we report that surround modulation in area MT can be either antagonistic or integrative depending upon the visual stimulus. Both types of modulation were delayed relative to response onset. Our results suggest that the dominance of antagonistic modulation in previous MT studies was due to stimulus choice and that segmentation and integration are achieved, in part, via adaptive surround modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号