首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
DNA linkage analysis of X-linked retinoschisis   总被引:10,自引:2,他引:8  
Summary Four families with juvenile retionoschisis (RS) have been studied by linkage analysis utilizing eleven polymorphic X-chromosomal markers. The results suggest a close linkage between DXS43, DXS41, and DXS208 and the RS locus at Xp22. The RS locus is distal to the OTC locus, DXS84, and the DMD locus but proximal to DXS85. No recombination events were observed between the RS locus and DXS43 and DXS41. The maximum likelihood estimate of the recombination fraction () was thus zero and the peak lod scores () were 4.98 (DXS43) and 4.09 (DXS41). The linkage data suggest that the gene order on Xp is DXS85-(DXS43, RS, DXS41)-DMD-DXS84-OTC.  相似文献   

2.
Summary We have isolated II-10, a new X-chromosomal probe that identifies a highly informative two-allele TaqI restriction fragment length polymorphism at locus DXS466. Using somatic cell hybrids containing distinct portions of the long arm of the X chromosome, we could localize DXS466 between DXS296 and DXS304, both of which are closely linked distal markers for fragile X. This regional localization was supported by the analysis, in fragile X families, of recombination events between these three loci, the fragile X locus and locus DXS52, the latter being located at a more distal position. DXS466 is closely linked to the fragile X locus with a peak lod score of 7.79 at a recombination fraction of 0.02. Heterozygosity of DXS466 is approximately 50%. Its close proximity and relatively high informativity make DXS466 a valuable new diagnostic DNA marker for fragile X.  相似文献   

3.
The human X-linked hypophosphatemic rickets gene locus (HYP, formerly HPDR) has been previously localized by linkage analysis to Xp22.31-Xp21.3 and the locus order Xpter-DXS43-HYP-DXS41-Xcen established. Recombination between HYP and these flanking markers is frequently observed and additional markers have been sought. The polymorphic loci DXS197 and DXS207 have been localized to Xpter-Xp11 and Xp22-Xp21, respectively. We have further localized DXS197 to Xpter-Xp21.3 by using a panel of rodent-human hybrid cells and have established the map positions of DXS197 and DXS207 in relation to HYP by linkage studies of hypophosphatemic rickets families. Linkage between DXS197 and the loci DXS43, DXS85, and DXS207 was established with peak lod score values of 6.19, 0 = 0.032; 4.14, 0 = 0.000; and 3.01, 0 = 0.000, respectively. Multilocus linkage analysis mapped the DXS197 and DXS207 loci distal to HYP and demonstrated the locus order Xpter-DXS85-(DXS207, DXS43, DXS197)-HYP-DXS41-Xcen. These additional genetic markers DXS197 and DXS207 will be useful as alternative markers in the genetic counseling of some families.  相似文献   

4.
Refined localization of the gene causing X-linked juvenile retinoschisis   总被引:9,自引:0,他引:9  
Previous linkage studies in X-linked juvenile retinoschisis (RS) placed the gene between the loci DXS43 and DXS41 in the region Xp22.2-p22.1. Here we have extended our earlier studies by analyzing 31 RS families with the markers DXS16 (pSE3.2-L), DXS274, DXS92, and ZFX. Pairwise linkage analysis revealed significant linkage of the RS gene to all markers used; locus DXS274 (probe CRI-L1391) was tightly-linked to the disorder, with a lod score of 9.02 at a recombination fraction of 0.05. The genetic map around the RS locus was refined by multilocus linkage studies in an expanded database including a large set of normal families (40 CEPH families). The results indicated that the RS gene locus lies between (DXS207, DXS43) and DXS274 with odds of 1.8 x 10(4):1 favoring this most likely location over the second most likely location, i.e., distal to DXS43. Analysis by LINKMAP gave a maximum location score of 136.4 with the order Xpter-DXS16-(DXS207,DXS43)-RS-DXS274-(D XS41,DXS92)-Xcen. To assess the diagnostic value of the markers in Finnish patients, a total of 12 markers were tested for allele frequencies in 126 Finnish unrelated blood donors. With the exception of the markers DXS207, DXS43, and DXS92, allele frequencies did not show any significant deviation from the data published elsewhere. Haplotype analysis was performed with five DNA markers flanking the RS locus. Patients from southwest Finland had a haplotype association that differed from the haplotype association found in the patients from north central Finland, favoring the hypothesis that the mutations in the two groups arose independently.  相似文献   

5.
X-linked inherited hearing impairment is a group of heterogeneous disorders accounting for less than 2% of hereditary hearing loss. DFN4, a sex-linked hearing impairment associated with profound sensorineural hearing loss, has been previously mapped to Xp21.2, a region containing the DMD locus. We have identified a family from Turkey with deafness in which the disease maps to and refines the DFN4 locus. In contrast to the previous family, the crossover points are entirely within the DMD locus. Two-point lod score analysis for the markers DXS 997, DXS 1214, and DXS 1219 showed a lod score of 2.59. 5′ and 3′ crossovers were between DMD 44 and DXS 1219 and between DXS 1214 and DXS 985, respectively, suggesting that DFN4 is either an allele of DMD or a mutation in a DMD nested gene. The restriction of the DFN4 locus to DMD suggests that dystrophin may play an important role in hearing.  相似文献   

6.
X-linked recessive retinoschisis (RS) is a hereditary disorder with variable clinical features. The main symptoms are poor sight; radial, cystic macula degeneration; and peripheral superficial retinal detachment. The disease is quite common in Finland, where at least 300 hemizygous males have been diagnosed. We used nine polymorphic DNA markers to study the localization of RS on the short arm of the X chromosome in 31 families comprising 88 affected persons. Two-point linkage results confirmed close linkage of the RS gene to the marker loci DXS43, DXS16, DXS207, and DXS41 and also revealed close linkage to the marker loci DXS197 and DXS9. Only one recombination was observed between DXS43 and RS in 59 informative meioses, giving a maximum lod score of 13.87 at the recombination fraction .02. No recombinations were observed between the RS locus and DXS9 and DXS197 (lods between 3 and 4), but at neither locus was the number of informative meioses sufficient to provide reliable estimates of recombination fractions. The most likely gene order on the basis of multilocus analysis was Xpter-DXS85-(DXS207,DXS43)-RS-DXS41-DXS 164-Xcen. Because multilocus linkage analysis indicated that the most probable location of RS is proximal to DXS207 and DXS43 and distal to DXS41, these three flanking markers are the closest and most informative markers currently available for carrier detection.  相似文献   

7.
Progressive X-linked cone-rod dystrophy (COD1) is a retinal disease affecting primarily the cone photoreceptors. The COD1 locus originally was localized, by the study of three independent families, to a region between Xp11.3 and Xp21.1, encompassing the retinitis pigmentosa (RP) 3 locus. We have refined the COD1 locus to a limited region of Xp11.4, using two families reported elsewhere and a new extended family. Genotype analysis was performed by use of eight microsatellite markers (tel-M6CA, DXS1068, DXS1058, DXS993, DXS228, DXS1201, DXS1003, and DXS1055-cent), spanning a distance of 20 cM. Nine-point linkage analysis, by use of the VITESSE program for X-linked disorders, established a maximum LOD score (17.5) between markers DXS1058 and DXS993, spanning 4.0 cM. Two additional markers, DXS977 and DXS556, which map between DXS1058 and DXS993, were used to further narrow the critical region. The RP3 gene, RPGR, was excluded on the basis of two obligate recombinants, observed in two independent families. In a third family, linkage analysis did not exclude the RPGR locus. The entire coding region of the RPGR gene from two affected males from family 2 was sequenced and was found to be normal. Haplotype analysis of two family branches, containing three obligate recombinants, two affected and one unaffected, defined the COD1 locus as distal to DXS993 and proximal to DXS556, a distance of approximately 1.0 Mb. This study excludes COD1 as an allelic variant of RP3 and establishes a novel locus that is sufficiently defined for positional cloning.  相似文献   

8.
A DNA marker closely linked to the factor IX (haemophilia B) gene   总被引:4,自引:0,他引:4  
Summary We have isolated a DNA segment, pX58dIIIc, from an X-chromosome library which identifies an SstI restriction fragment length polymorphism (RFLP) at locus DXS99. Linkage analysis in six informative families has shown that the DXS99 locus lies close to the factor IX gene (F9). No recombination was detected between these loci in 39 informative meioses (Z=9.79, =0.0). Therefore, DXS99 will be useful as a DNA marker for the assessment of carrier status in families with haemophilia B where intragenic markers are not informative. Heterozygosity at DXS99 is approximately 50% and, in conjunction with the RFLPs at F9, 90% of females at risk for being haemophilia B carriers should be diagnosed.  相似文献   

9.
Summary Linkage data for familial incontinentia pigmenti (IP2) and nine X chromosomal markers are reported. Previously found linkage between IP2 and the DXS52 locus is confirmed with the maximum lod score of 6.19 at a recombination fraction of 0.03. Linkage is also established with loci DXS134, DXS15 and DXS33. Multipoint analysis allows us to localize the IP2 locus outside a block of seven linked markers of the Xq28 region.  相似文献   

10.
The X-STRs are important tools in forensic application, particularly in complex cases of kinship testing. In deficiency paternity testing when alleged father cannot be typed, investigation of X-STR markers yields the desired information. Blood samples were collected from unrelated individual (118 females and 94 males) and 84 trios families (father, mother and daughter). DNA extraction from whole blood was performed with Phenol chloroform method. Five X-linked STR markers DXS6800, DXS7133, DXS6797, DXS981 and GATA165B12 were selected. The amplicons were analyzed through ABI 3100 Genetic Analyzer. Pentaplex PCR system was developed for multilocus amplification at the same time. For each locus 4–9 alleles were noted. Altogether, 32 alleles were observed from five markers. Eighty-four trios families were analysed to check the mutation rate and no mutation was observed. Stutter peaks were observed maximum at locus DXS6797 (12.44%) while the minimum at locus DXS7133 (4.5%). For sensitivity study, amplification of X chromosomal short tandem repeats loci was successfully performed using 0.15 ng quantity of DNA as template. In conclusion; this pentaplex represents a convenient method to study X chromosome markers. It works with reasonable amounts of DNA and is suitable for paternity cases.  相似文献   

11.
Summary This paper presents three markers, 16D/E, pHMAI (DXS208), and CRI-L1391 (DXS274), that show close linkage for X-linked hypophosphataemic rickets (HYP). DXS274 is closely linked to HYP ( max= 0.00, Zmax = 4.20), and DXS41 (99.6), ( max= 0.00, Zmax = 5.20). Marker 16D/E maps distal to the disease locus ( max= 0.05, Zmax = 3.11). The pHMAI probe recognises the same restriction fragment length polymorphism (RFLP) as 99.6. Multipoint analysis suggests that the most probable order of loci is Xpter-(DXS43, 16D/E)-HYP-DXS274-(DXS208, DXS41)-Xcen. The location of DXS274 distal to HYP cannot be excluded, as no recombinants were observed between DXS274 and HYP, or between DXS274 and DXS41/DXS208. One of the families contains a large number of recombinants, four of which are double recombinants. This most probably means that the disease in this family maps elsewhere on the X chromosome or on an autosome, indicating locus heterogeneity.  相似文献   

12.
The Lowe oculocerebrorenal syndrome (OCRL) is characterized by congenital cataract, mental retardation, and renal tubular dysfunction. We are using the approaches of linkage analysis, mapping with somatic cell hybrids, and long-range restriction mapping to determine the order of Xq24-q26 markers with respect to each other and to the OCRL locus. DXS42 and DXS100 are proximal to the translocation breakpoint in a female patient with OCRL and a de novo translocation t(X;3)(q25;q27). DXS10, DXS86, HPRT, and DXS177 are distal to the breakpoint. These flanking markers show tight linkage to the disease locus in 11 families segregating for OCRL. Results from field inversion gel analysis show that DXS86 and DXS10 share a 460-kb BssHII fragment. Multipoint analysis to determine the position of HPRT with respect to (DXS10,DXS86) suggests that HPRT is proximal to (DXS10,DXS86). We propose the following order for markers in Xq24-q26: Xcen-(DXS42,DXS37,DXS100)-OCRL-DXS53 -HPRT-[(DXS10,DXS86),DXS177]-Xqter. The identification of additional tightly linked flanking markers extends the number of markers available for use in genetic counseling and begins to define the physical map of the region containing the gene for OCRL.  相似文献   

13.
Summary Congenital stationary night blindness is characterized by disturbed or absent night vision that is always present at or shortly after birth and nonprogressive. The X-linked form of the disease (CSNBX; McKusick catalog no. 31050) differs from the autosomal types in that the former is frequently associated with myopia. X-chromosome-specific polymorphic DNA markers were used to carry out linkage analysis in three European families segregating for CSNBX. Close linkage without recombination was found between the disease locus and the anonymous locus DXS7, mapped to Xp11.3, assigning the mutation to the proximal short arm of the X chromosome. Linkage data obtained with markers flanking DXS7 provided further support for this localization of the gene locus. Thus, in addition to retinitis pigmentosa and Norrie disease, CSNBX represents the third well-known hereditary eye disease the locus of which is mapped on the proximal Xp and closely linked to DXS7.  相似文献   

14.
The most common form of human severe combined immunodeficiency (SCID) is inherited as an X-linked recessive genetic defect, MIM 300400. The disease locus, SCIDX1, has previously been placed in Xq13.1-q21.1 by demonstration of linkage to polymorphic markers between DXS159 and DXS3 and by exclusion from interstitial deletions of Xq21.1-q21.3. We report an extension of previous linkage studies, with new markers and a total of 25 SCIDX1 families including female carriers identified by nonrandom X chromosome inactivation in their T lymphocytes. SCIDX1 was nonrecombinant with DXS441, with a lod score of 17.96. Linkage relationships of new markers in the SCIDX1 families were consistent with the linkage map generated in the families of the Centre d'Etude du Polymorphisme Humain (CEPH) and with available physical map data. The most likely locus order was DXS1-(DXS159,DXS153)-DXS106-DXS132-DXS4 53-(SCIDX1,PGK1, DXS325,DXS347,DXS441)-DXS447-DXS72-DXYS 1X-DXS3. The SCIDX1 region now spans approximately 10 Mb of DNA in Xq13; this narrowed genetic localization will assist efforts to identify gene candidates and will improve genetic management for families with SCID.  相似文献   

15.
The locus responsible for X-linked, nonsyndromic cleft palate and/or ankyloglossia (CPX) has previously been mapped to the proximal long arm of the human X chromosome between Xq21.31 and q21.33 in an Icelandic kindred. We have extended these studies by analyzing an additional 14 informative markers in the family as well as including several newly investigated family members. Recombination analysis indicates that the CPX locus is more proximal than previously thought, within the interval Xq21.1-q21.31. Two recombinants place DXYS1X as the distal flanking marker, while one recombinant defines DXS326 as the proximal flanking marker, an interval of less than 5 cM. Each of the flanking markers recombines with the CPX locus, giving 2-point lod scores of Zmax = 4.16 at θ = 0.08 (DXS326) and Zmax = 5.80 at θ = 0.06 (DXYS1X).  相似文献   

16.
A recombinant chromosome in a male affected with X-linked congenital stationary night blindness (CSNB1) provides new information on the location of the CSNB1 locus. A four-generation family with five males affected with X-linked CSNB was analyzed with five polymorphic markers for four X-chromosome loci spanning the region OTC (Xp21.1) to DXS255 (Xp11.22). Four of the males inherited the same X chromosome; one male inherited a chromosome that from OTC to DXS7, inclusive, was derived from the normal X chromosome of his unaffected grandfather and that from a location between DXS7 and DXS426 proximally was derived from the chromosome carrying the CSNB1 locus. This recombinant maps the CSNB1 locus in this family to a region on the short arm of the X chromosome proximal to the DXS7 locus.  相似文献   

17.
Summary In order to localize the gene for the X-linked form of Alport syndrome (ATS) more precisely, we performed restriction fragment length polymorphism analysis with nine different X-chromosomal DNA markers in 107 members of twelve Danish families segregating for classic ATS or progressive hereditary nephritis without deafness. Two-point linkage analysis confirmed close linkage to the markers DXS17(S21) (Z max = 4.44 at = 0.04), DXS94(pXG-12) (Z max=8.07 at =0.04), and DXS101(cX52.5) (Z max=6.04 at =0.00), and revealed close linkage to two other markers: DXS88(pG3-1) (Z max =6.36 at =0.00) and DXS11(p22–33) (z max=3.45 at =0.00). Multipoint linkage analysis has mapped the gene to the region between the markers DXS17 and DXS94, closely linked to DXS101. By taking into account the consensus map and results from other studies, the most probable order of the loci is: DXYS1(pDP34)-DXS3(p19-2)-DXS17-(ATS, DXS101)-DXS94-DXS11-DXS42(p43-15)-DXS51(52A). DXS88 was found to be located between DXS17 and DXS42, but the order in relation to the ATS locus and the other markers used in this study could not be determined.  相似文献   

18.
We report a new polymorphic DNA marker (pJH89, DXS539) proximal to the fragile-X site. The pJH89 probe identifies a TaqI and a NcoI restriction fragment length polymorphism (combined heterozygosity of 42%) and is linked to the fragile-X locus with a maximal LOD score of 12 at 4 cM. Multipoint linkage analysis and physical mapping studies indicate that the pJH89 probe is located within the interval defined by the markers DXS369 and DXS548.  相似文献   

19.
Summary The polymorphic DNA marker DXS304 detected by probe U6.2 has recently been shown to be closer to the fragile X locus than previously available markers. Its usefulness has however been limited by its relatively low heterozygosity. We have isolated, by cosmid cloning, a 67 kilobase region around probe U6.2 and have characterized a new probe (U6.2-20E) that detects BanI and BstEII restriction fragment length polymorphisms (RFLPs). The BanI RFLP has a heterozygosity of 0.49 and is in partial linkage disequilibrium with the previously described polymorphism, with a combined heterozygosity of 0.63. Furthermore, we have found that the U6.2 original probe, which probably detects an insertion-deletion polymorphism, is also informative in BanI digests. Thus, the two informative RFLPs at the DXS304 locus can be conveniently tested in a single hybridization with a single digest. An updated linkage analysis confirms that DXS304 is distal to the fragile X locus. This informative locus can now be used effectively for genetic mapping of the Xq27–q28 region, and for diagnostic applications in fragile X or Hunter syndrome families.  相似文献   

20.
The Wieacker-Wolff syndrome (WWS, MIM* 314580), first described clinically in 1985, is an X-linked recessive disorder. In earlier studies, linkage between the WWS gene and DXYS1 at Xq21.2 and DXS1 at Xq11 as well as AR at Xq12 was reported. Here we report on a linkage analysis using highly polymorphic, short terminal repeat markers located in the segment from Xp21 to Xq24. No recombination between the WWS locus and ALAS2 or with AR (z = 4.890 at θ = 0.0) was found. Therefore, the WWS locus was assigned to a segment of approximately 8 cM between PFC (Xp11.3–Xp 11.23) and DXS339 (Xq11.2–Xq13). Received: 14 March 1997 / Accepted: 9 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号