首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of the physiological actions of melatonin have been hindered by the lack of specific, potent and subtype selective agonists and antagonists. In the present study, we describe the utility of a melanophore cell line from Xenopus laevis for exploring structure-activity relationships among novel melatonin analogues and report a novel MT2-selective agonist (IIK7) and MT2-selective receptor antagonist (K185). IIK7 is a potent melatonin receptor agonist in the melanophore model, and in NIH3T3 cells expressing human mt1 and MT2 receptor subtypes. In radioligand binding experiments IIK7 is 90-fold selective for the MT2 subtype. K185 is devoid of agonist activity, but acts as a competitive melatonin antagonist in melanophores. A low concentration (10(-9) M) antagonizes melatonin inhibition of forskolin stimulation of cyclic AMP in NIH3T3 cells expressing human MT2 receptors, but has no effect in cells expressing mt1 receptors. In binding assays, K185 is 140-fold selective for the MT2 subtype.  相似文献   

2.
A series of naphthalenic analogues of melatonin were prepared and evaluated as melatonin receptor MT(2) selective ligands. Activity and MT(2) selectivity can be modulated with suitable variations of the C-3 phenyl and the acyl group on the C-1 side chain. Surprisingly, in contrast with what had been previously described in other series (2-benzylindoles, 2-benzylbenzofurans and 3-phenyltetralins), the presence of a C-3 phenyl with a functional group on the meta position seems to be primordial for MT(2) affinity and selectivity. Indeed, N-[2-(3-(3-hydroxymethylphenyl)-7-methoxynaphth-1-yl)ethyl]acetamide (21) is one of the best MT(2) selective ligands described until now and behaves as an antagonist.  相似文献   

3.
A series of 7-substituted melatonin and 1-methylmelatonin analogues were prepared and tested against human and amphibian melatonin receptors. 7-Substituents reduced the agonist potency of all the analogues in the Xenopus laevis melanophore assay, 7-bromomelatonin (5d) and N-butanoyl 7-bromo-5-methoxytryptamine (5f) being the most active compounds, but both were 42-fold less potent than melatonin (1). Whereas all the analogues bind with lower affinity at the human MT(1) receptor than melatonin, 5d, 5f and N-propanoyl 7-bromo-5-methoxytryptamine (5e) show a similar binding affinity to melatonin at the MT(2) receptor and consequently show some MT(2) selectivity. These results suggest that the receptor pocket around C-7 favours binding by an electronegative group, suggesting an electropositive region in this area of the receptor.  相似文献   

4.
The pineal neurohormone melatonin modulates a variety of physiological processes through different receptors. It has recently been reported that the cloned melatonin receptors (MT1, MT2 and Mel1c) exhibit differential abilities to stimulate phospholipase C (PLC) via G(16). Here we examined the molecular basis of such differences in melatonin receptor signaling. Coexpression of MT1 or MT2 with the alpha subunit of G(16) (Galpha(16) ) allowed COS-7 cells to accumulate inositol phosphates in response to 2-iodomelatonin. In contrast, Mel1c did not activate Galpha(16) even though its expression was demonstrated by radioligand binding and agonist-induced inhibition of adenylyl cyclase. As Mel1c possesses an exceptionally large C-terminal tail, we further asked if this structural feature prevented productive coupling to Galpha(16). Eleven chimeric melatonin or mutant receptors were constructed by swapping all or part of the C-terminal tail between MT1, MT2 and Mel1c. All chimeras were fully capable of binding 2-[(125) I]iodomelatonin and inhibiting adenylyl cyclase. Chimeras containing the full-length Mel1c tail were incapable of activating Galpha(16), while those that contained the complete C-terminal region of either MT1 or MT2 stimulated PLC. Incorporation of the extra portion of the C-terminal tail of Mel1c to either MT1 or MT2 completely abolished the chimeras' ability to stimulate PLC via Galpha(16). In contrast, truncation of the C-terminal tail of Mel1c allowed interaction with Galpha(16). Our results suggest that Galpha(16) can discern structural differences amid the three melatonin receptors and provide evidence for functional distinction of Mel1c from MT1 and MT2 receptors.  相似文献   

5.
The mechanisms that mediate the various effects of melatonin in mammalian tissues are not always known. Therefore, the aim of this study was to investigate whether MT(1) and MT(2) melatonin receptors are expressed in certain tissues of the rat. The expression of MT(1) and MT(2) melatonin receptor mRNA was determined using a real-time quantitative RT-PCR method. In addition, we examined whether mRNA for either subtype of receptor shows any difference in the expression between midnight and noon, similar to the changes in melatonin concentrations in plasma and tissue samples. MT(1) and MT(2) melatonin receptor mRNAs were found in the rat hypothalamus, retina and small intestine. We also showed a low expression of MT(2) mRNA in the rat liver and heart SA node. In the heart apex and the Harderian gland, no appearance of either of the receptor mRNAs was detectable. A significant difference in the expression of MT(1) mRNA between day and night was found in the hypothalamus. In conclusion, our findings suggest that at least some effects of melatonin are mediated through membrane MT(1) and MT(2) receptors in the hypothalamus, the retina and the small intestine. Down-regulation of receptors might be one reason for the difference in the hypothalamic MT(1) melatonin receptor mRNA expression between midnight and noon. In the liver and the heart SA node, the physiological significance of possible MT(2) receptors remains unclear. According to our negative midnight and noon results in the Harderian gland and heart apex melatonin may exert its effect on these tissues by a non-receptor mechanism.  相似文献   

6.
A series of 4-substituted anilides with human melatonergic affinity is reported. Butyramides 26, 39, 42, 52, 57, and 58 all demonstrated subnanomolar MT(2) binding affinity and MT(2) selectivity of at least 70-fold over the MT(1) receptor. Compound 26 demonstrated full agonism at the MT(2) receptor.  相似文献   

7.
The aim of this study was to identify the melatonin receptor type(s) (MT(1) or MT(2)) mediating circadian clock resetting by melatonin in the mammalian suprachiasmatic nucleus (SCN). Quantitative receptor autoradiography with 2-[(125)I]iodomelatonin and in situ hybridization histochemistry, with either (33)P- or digoxigenin-labeled antisense MT(1) and MT(2) melatonin receptor mRNA oligonucleotide probes, revealed specific expression of both melatonin receptor types in the SCN of inbred Long-Evans rats. The melatonin receptor type mediating phase advances of the circadian rhythm of neuronal firing rate in the SCN slice was assessed using competitive melatonin receptor antagonists, the MT(1)/MT(2) nonselective luzindole and the MT(2)-selective 4-phenyl-2-propionamidotetraline (4P-PDOT). Luzindole and 4P-PDOT (1 nM-1 microM) did not affect circadian phase on their own; however, they blocked both the phase advances (approximately 4 h) in the neuronal firing rate induced by melatonin (3 pM) at temporally distinct times of day [i.e., subjective dusk, circadian time (CT) 10; and dawn, CT 23], as well as the associated increases in protein kinase C activity. We conclude that melatonin mediates phase advances of the SCN circadian clock at both dusk and dawn via activation of MT(2) melatonin receptor signaling.  相似文献   

8.
Tetrahydronaphthalenic analogues of melatonin have been synthesized and evaluated as melatonin receptor ligands. Introduction of a phenyl substituent in the 3-position of the tetraline ring allows to obtain MT(2) selective ligands. Activity and MT(2) selectivity can be modulated with suitable modifications of the N-acyl substituent. The (+)-(RR)-cis enantiomer of the N-[2-(7-methoxy-3-phenyl-1,2,3,4-tetrahydro-naphthalen-1-yl)ethyl]cyclobutyl carboxamide (14) is one of the most MT(2) selective ligands described until now and behaves as an antagonist.  相似文献   

9.
A series of new N-acyl 8,9-dihydro-4-methoxy-7H-2-benzo[de]quinolinalkanamines have been prepared and tested for their ability to activate pigment granule aggregation in Xenopus laevis melanophores and bind to the recombinant human MT(1) and MT(2) melatonin receptor subtypes expressed in NIH 3T3 cells. Compounds with a single methylene spacer in the side chain (7) have no agonist activity, but are weak antagonists in the Xenopus melanophore assay, irrespectively of the size or shape of the R substituent (R=CH(3) to c-C(4)H(7)). In contrast, compounds with two (8) or three (9) methylene spacers show partial agonist activity, though this does vary with the nature of the R substituent. Interestingly, the cyclopropane and cyclobutane R substituents, which are usually linked with antagonism, render the cyclopropanecarboxamido analog 9d and its cyclobutanecarboxamido congener 9e weak agonists. It seems, therefore, that in these compounds the R substituent constitutes a functional probe in the dynamic agonist-antagonist conformational equilibrium. One of the new molecules, antagonist 8c, exhibits a noteworthy MT(2) subtype selectivity (13-fold), whereas the acetamido analog 9a (with a three methylene units spacer) also acts as an antagonist and is the only analog exhibiting MT(1) selectivity (>10-fold). In contrast to the analogous N1-C7 annulated indole derivatives, recently reported, the new C1-C8 condensed isoquinolines are not all pure antagonists. Despite their modest receptor affinity at the binding site these compounds demonstrate that the nature of the response (agonist or antagonist activity) is dependent, in this case, on both the side chain spacer's length and the size and shape of the R group.  相似文献   

10.
Spleen is an important lymphoid organ which exerts immune activities throughout the life in mammals. In this study, we investigated the age- and sex-dependent effect of exogenous melatonin on expression pattern of MT1 and MT2 melatonin receptor proteins in spleen of laboratory Swiss albino mice in three different age-groups – 2, 4, and 8 months. The melatonin receptor expression patterns were studied by immunohistochemical localization and Western blot analysis. Immunohistochemical study showed reactivity of MT1 and MT2 melatonin receptors in spleen of both male and female mice. Exogenous melatonin significantly showed age- and sex-dependent expression pattern of MT1 receptor protein, while MT2 receptors showed only age-dependent differential expression patterns in both male and female mice. Therefore, this study may suggest that exogenous melatonin is modulating MT1 and MT2 receptor protein expression pattern in age- and sex-dependent manner in spleen of mice.  相似文献   

11.
Daily variation in melatonin receptor (MT1 and MT2) density in three specific tissues-brain, retina, and ovary-and its temporal relationship with serum melatonin were evaluated for the first time in a freshwater teleost, the carp Catla catla, under natural as well as altered photoperiods in different reproductive phases of the annual cycle. Cosinor analysis was used to determine rhythmic features of the serum melatonin and receptors (MT1 and MT2) in different tissues. In each photoperiodic group, irrespective of season, the daily minimum serum melatonin level was noted at midday. However, the daily peak value of melatonin varied in relation to both photo-schedules and reproductive phases. Under natural photoperiods (NPs; duration varied with seasons) and short photoperiods (SPs; light [L]:dark [D] 8:16), it occurred in the late dark phase during the preparatory phase, and at midnight in the remaining parts of the annual cycle. On the other hand, in each reproductive phase, compared to corresponding NP carp, the daily melatonin peak under long photoperiods (LPs; L:D 16:8) exhibited a phase delay of ~2-3?h (occurring during the late dark phase). The melatonin levels at each sampling point were highest during the postspawning phase and lowest during the spawning phase, irrespective of the photoperiodic history of the fish. In each tissue, Western blot analysis revealed a band at ~37?kDa and a band at ~36?kDa corresponding to the molecular weights of native MT1 and MT2 receptor proteins, respectively, with the band intensity of MT1 always being higher than that of a 36-kDa protein. The content of both melatonin receptor proteins varied significantly according to the studied tissue (being highest in the retina, intermediate in the brain, and lowest in the ovary), time in the daily cycle (peak at midnight and fall at midday), and reproductive phase in the annual cycle (highest in the spawning phase and lowest in the postspawning phase). Remarkably, no significant effects of altered photoperiod were detected on any rhythm parameters of either MT1 or MT2 in any of the studied tissues. Collectively, the results of the present study suggest a role of photoperiod in determining daily and seasonal profiles of serum melatonin, but not its receptor proteins, on the ovary or on any nongonad tissues in carp.  相似文献   

12.
Identification of the melatonin-binding site MT3 as the quinone reductase 2   总被引:9,自引:0,他引:9  
The regulation of the circadian rhythm is relayed from the central nervous system to the periphery by melatonin, a hormone synthesized at night in the pineal gland. Besides two melatonin G-coupled receptors, mt(1) and MT(2), the existence of a novel putative melatonin receptor, MT(3), was hypothesized from the observation of a binding site in both central and peripheral hamster tissues with an original binding profile and a very rapid kinetics of ligand exchange compared with mt(1) and MT(2). In this report, we present the purification of MT(3) from Syrian hamster kidney and its identification as the hamster homologue of the human quinone reductase 2 (QR(2), EC ). Our purification strategy included the use of an affinity chromatography step which was crucial in purifying MT(3) to homogeneity. The protein was sequenced by tandem mass spectrometry and shown to align with 95% identity with human QR(2). After transfection of CHO-K1 cells with the human QR(2) gene, not only did the QR(2) enzymatic activity appear, but also the melatonin-binding sites with MT(3) characteristics, both being below the limit of detection in the native cells. We further confronted inhibition data from MT(3) binding and QR(2) enzymatic activity obtained from samples of Syrian hamster kidney or QR(2)-overexpressing Chinese hamster ovary cells, and observed an overall good correlation of the data. In summary, our results provide the identification of the melatonin-binding site MT(3) as the quinone reductase QR(2) and open perspectives as to the function of this enzyme, known so far mainly for its detoxifying properties.  相似文献   

13.
The indolamine melatonin is an important rhythmic endocrine signal in the circadian system. Exogenous melatonin can entrain circadian rhythms in physiology and behavior, but the role of endogenous melatonin and the two membrane-bound melatonin receptor types, MT1 and MT2, in reentrainment of daily rhythms to light-induced phase shifts is not understood. The present study analyzed locomotor activity rhythms and clock protein levels in the suprachiasmatic nuclei (SCN) of melatonin-deficient (C57BL/6J) and melatonin-proficient (C3H/HeN) mice, as well as in melatonin-proficient (C3H/HeN) mice with targeted deletion of the MT1, MT2, or both receptors, to determine effects associated with phase delays or phase advances of the light/dark (LD) cycle. In all mouse strains and genotypes, reentrainment of locomotor activity rhythms was significantly faster after a 6-h phase delay than a 6-h phase advance. Reentrainment after the phase advance was, however, significantly slower than in melatonin-deficient animals and in mice lacking functional MT2 receptors than melatonin-proficient animals with intact MT2 receptors. To investigate whether these behavioral differences coincide with differences in reentrainment of clock protein levels in the SCN, mPER1, mCRY1 immunoreactions were compared between control mice kept under the original LD cycle and killed at zeitgeber time 04 (ZT04) or at ZT10, respectively, and experimental mice subjected to a 6-h phase advance of the LD cycle and sacrificed at ZT10 on the third day after phase advance. This ZT corresponds to ZT04 of the original LD cycle. Under the original LD cycle, the numbers of mPER1- and mCRY1-immunoreactive cell nuclei were low at ZT04 and high at ZT10 in the SCN of all mouse strains and genotypes investigated. Notably, mouse strains with intact melatonin signaling and functional MT2 receptors showed a significant increase in the number of mPER1- and mCRY1-immunoreactive cell nuclei at the new ZT10 as compared to the former ZT04. These data suggest the endogenous melatonin signal facilitates reentrainment of the circadian system to phase advances on the level of the SCN molecular clockwork by acting upon MT2 receptors.  相似文献   

14.
The incidence of endometrial cancer is increasing, making it the fifth most common cancer worldwide. To date, however, there is no standard therapy for patients with recurrent endometrial cancer. Melatonin, a hormone secreted by the pineal gland, has been shown to have anti-tumor effects in various tumor types. Although melatonin is available as a supplement, it has not been approved for cancer treatment. Ramelteon, a selective melatonin receptor type 1 and 2 (MT1/MT2) receptor agonist, has been approved to treat sleep disorders, suggesting that ramelteon may be effective in the treatment of endometrial cancer. To determine whether this agent may be effective in the treatment of endometrial cancer, this study investigated the ability of ramelteon to suppress the proliferation and invasiveness of HHUA cells, an estrogen receptor-positive endometrial cancer cell line. Ramelteon at 10?8 M maximally suppressed the proliferation of HHUA cells, reducing the percentage of Ki-67 positive proliferating cells. This effect was completely blocked by luzindole, a MT1/MT2 receptor antagonist. Furthermore, ramelteon inhibited HHUA cell invasion and reduced the expression of the MMP-2 and MMP-9 genes. These results suggested that ramelteon may be a candidate for the treatment of recurrent endometrial cancer, with activity similar to that of melatonin.  相似文献   

15.
Following our studies of the melatoninergic receptors, we have developed new tetrahydronaphthalenic derivatives of melatonin that have been tested as selective melatonin receptors ligands. Regarding the role of the phenyl substituent to obtain selective ligands, modulation of selectivity and activity have been achieved by modifications of the acyl group and substitutions on the phenyl ring. Ten of the seventeen evaluated derivatives have MT2 receptor affinity similar to that of melatonin. Moreover, we have achieved remarkable MT2 selectivity over MT1 (selectivity >100) and have been able to further extend the RSA of the tetrahydrophthalenic series. However, the compounds presented here display partial agonist or antagonist behavior instead of full agonist.  相似文献   

16.
Age-dependent declining level of melatonin induces free radical load and thereby deteriorates immune function. However, reports are lacking about age-dependent melatonin membrane receptor (MT1 & MT2) expression, their role in regulation of reactive nitrogen species (RNS) and eventually how they affect immunity of a tropical rodent F. pennanti. We checked MT1R, MT2R and iNOS expression in lymphoid organs of young middle and old aged squirrels. Nitrite and nitrate ion concentration (NOx) in lymphoid organs, testes and plasma, lymphocyte proliferation and IL-2 level was recorded. Age-dependent decrease in MT1 and MT2 receptor expression, lymphocyte proliferation, IL-2 level and increased RNS in lymphoid organs, testes and plasma was observed with decreased circulatory melatonin. Androgen and AR expression was increased in middle-aged while declined in old-aged squirrels. Present study suggests that age associated immunosenescence is consequence of increased RNS which might have important relationship with melatonin membrane receptors in F. pennanti.  相似文献   

17.
《Free radical research》2013,47(2):194-203
Age-dependent declining level of melatonin induces free radical load and thereby deteriorates immune function. However, reports are lacking about age-dependent melatonin membrane receptor (MT1 & MT2) expression, their role in regulation of reactive nitrogen species (RNS) and eventually how they affect immunity of a tropical rodent F. pennanti. We checked MT1R, MT2R and iNOS expression in lymphoid organs of young middle and old aged squirrels. Nitrite and nitrate ion concentration (NOx) in lymphoid organs, testes and plasma, lymphocyte proliferation and IL-2 level was recorded. Age-dependent decrease in MT1 and MT2 receptor expression, lymphocyte proliferation, IL-2 level and increased RNS in lymphoid organs, testes and plasma was observed with decreased circulatory melatonin. Androgen and AR expression was increased in middle-aged while declined in old-aged squirrels. Present study suggests that age associated immunosenescence is consequence of increased RNS which might have important relationship with melatonin membrane receptors in F. pennanti.  相似文献   

18.
Melatonin modulates immune function through its membrane-bound MT1 and MT2 receptors in mammalian system. Adrenal glucocorticoid, an important metabolic hormone is known as a immuno-compromising agent. In the present study, we investigated the effect of dexamethasone on melatonin receptor proteins in spleen tissue and anti-klh-IgG response in Swiss albino mice. Melatonin treatment increased the MT1 and MT2 receptor proteins and anti-klh-IgG than control mice. Dexamethasone treatment increased MT2 receptor protein and anti-klh-IgG than melatonin-treated group. Dexamethasone treatment to melatonin-treated mice showed additive effects and maximally increased the anti-klh-IgG than other experimental groups. A decrease in glucocorticoid receptor (GR) protein was noted in melatonin treated as well as dexamethasone-treated mice. Dexamethasone significantly increased MT2 melatonin receptor protein in spleen and anti-klh-IgG and additively increased anti-klh-IgG when supplemented along with melatonin. Therefore, the present study may suggest that dexamethasone increased humoral immune response permissively by enhancing MT2 receptor expression in splenic tissue of mice.  相似文献   

19.
Daily variation in melatonin receptor (MT1 and MT2) density in three specific tissues—brain, retina, and ovary—and its temporal relationship with serum melatonin were evaluated for the first time in a freshwater teleost, the carp Catla catla, under natural as well as altered photoperiods in different reproductive phases of the annual cycle. Cosinor analysis was used to determine rhythmic features of the serum melatonin and receptors (MT1 and MT2) in different tissues. In each photoperiodic group, irrespective of season, the daily minimum serum melatonin level was noted at midday. However, the daily peak value of melatonin varied in relation to both photo-schedules and reproductive phases. Under natural photoperiods (NPs; duration varied with seasons) and short photoperiods (SPs; light [L]:dark [D] 8:16), it occurred in the late dark phase during the preparatory phase, and at midnight in the remaining parts of the annual cycle. On the other hand, in each reproductive phase, compared to corresponding NP carp, the daily melatonin peak under long photoperiods (LPs; L:D 16:8) exhibited a phase delay of ~2–3?h (occurring during the late dark phase). The melatonin levels at each sampling point were highest during the postspawning phase and lowest during the spawning phase, irrespective of the photoperiodic history of the fish. In each tissue, Western blot analysis revealed a band at ~37?kDa and a band at ~36?kDa corresponding to the molecular weights of native MT1 and MT2 receptor proteins, respectively, with the band intensity of MT1 always being higher than that of a 36-kDa protein. The content of both melatonin receptor proteins varied significantly according to the studied tissue (being highest in the retina, intermediate in the brain, and lowest in the ovary), time in the daily cycle (peak at midnight and fall at midday), and reproductive phase in the annual cycle (highest in the spawning phase and lowest in the postspawning phase). Remarkably, no significant effects of altered photoperiod were detected on any rhythm parameters of either MT1 or MT2 in any of the studied tissues. Collectively, the results of the present study suggest a role of photoperiod in determining daily and seasonal profiles of serum melatonin, but not its receptor proteins, on the ovary or on any nongonad tissues in carp. (Author correspondence: )  相似文献   

20.
The indolamine melatonin is an important rhythmic endocrine signal in the circadian system. Exogenous melatonin can entrain circadian rhythms in physiology and behavior, but the role of endogenous melatonin and the two membrane-bound melatonin receptor types, MT1 and MT2, in reentrainment of daily rhythms to light-induced phase shifts is not understood. The present study analyzed locomotor activity rhythms and clock protein levels in the suprachiasmatic nuclei (SCN) of melatonin-deficient (C57BL/6J) and melatonin-proficient (C3H/HeN) mice, as well as in melatonin-proficient (C3H/HeN) mice with targeted deletion of the MT1, MT2, or both receptors, to determine effects associated with phase delays or phase advances of the light/dark (LD) cycle. In all mouse strains and genotypes, reentrainment of locomotor activity rhythms was significantly faster after a 6-h phase delay than a 6-h phase advance. Reentrainment after the phase advance was, however, significantly slower than in melatonin-deficient animals and in mice lacking functional MT2 receptors than melatonin-proficient animals with intact MT2 receptors. To investigate whether these behavioral differences coincide with differences in reentrainment of clock protein levels in the SCN, mPER1, mCRY1 immunoreactions were compared between control mice kept under the original LD cycle and killed at zeitgeber time 04 (ZT04) or at ZT10, respectively, and experimental mice subjected to a 6-h phase advance of the LD cycle and sacrificed at ZT10 on the third day after phase advance. This ZT corresponds to ZT04 of the original LD cycle. Under the original LD cycle, the numbers of mPER1- and mCRY1-immunoreactive cell nuclei were low at ZT04 and high at ZT10 in the SCN of all mouse strains and genotypes investigated. Notably, mouse strains with intact melatonin signaling and functional MT2 receptors showed a significant increase in the number of mPER1- and mCRY1-immunoreactive cell nuclei at the new ZT10 as compared to the former ZT04. These data suggest the endogenous melatonin signal facilitates reentrainment of the circadian system to phase advances on the level of the SCN molecular clockwork by acting upon MT2 receptors. (Author correspondence: )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号