首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Acetazolamide (Acz), a carbonic anhydrase inhibitor, is used to manage periodic breathing associated with altitude and with heart failure. We examined whether Acz would alter posthypoxic ventilatory behavior in the C57BL/6J (B6) mouse model of recurrent central apnea. Experiments were performed with unanesthetized, awake adult male B6 mice (n = 9), ventilatory behavior was measured using flow-through whole body plethysmography. Mice were given an intraperitoneal injection of either vehicle or Acz (40 mg/kg), and 1 h later they were exposed to 1 min of 8% O(2)-balance N(2) (poikilocapnic hypoxia) or 12% O(2)-3% CO(2)-balance N(2) (isocapnic hypoxia) followed by rapid reoxygenation (100% O(2)). Hypercapnic response (8% CO(2)-balance O(2)) was examined in six mice. With Acz, ventilation, including respiratory frequency, tidal volume, and minute ventilation, in room air was significantly higher and hyperoxic hypercapnic ventilatory responsiveness was generally lower compared with vehicle. Poikilocapnic and isocapnic hypoxic ventilatory responsiveness were similar among treatments. One minute after reoxygenation, animals given Acz exhibited posthypoxic frequency decline, a lower coefficient of variability for frequency, and no tendency toward periodic breathing, compared with vehicle treatment. We conclude that Acz improves unstable breathing in the B6 model, without altering hypoxic response or producing short-term potentiation, but with some blunting of hypercapnic responsiveness.  相似文献   

2.
Buspirone, a partial agonist of the serotonergic 5-HT1A receptor, improves breathing irregularities in humans with Rett syndrome or brain stem injury. The purpose of this study was to examine whether buspirone alters posthypoxic ventilatory behavior in C57BL/6J (B6) and A/J mouse strains. Measurements of ventilatory behavior were collected from unanesthetized adult male mice (n=6 for each strain) using the plethysmographic method. Mice were given intraperitoneal injections of vehicle or several doses of buspirone and exposed to 2 min of hypoxia (10% O2) followed by rapid reoxygenation (100% O2). Twenty minutes later, mice were tested for hypercapnic response (8% CO(2)-92% O2). On a separate day, mice were injected with the 5-HT1A receptor antagonist 4-iodo-N-{2-[4-(methoxyphenyl)-1-piperazinyl] ethyl}-N-2-pyridinylbenzamide (p-MPPI) before the injection of buspirone, and measurements were repeated. In separate studies, arterial blood-gas analysis was performed for each strain (n=12 in B6 and 10 in A/J) with buspirone or vehicle. In both strains, buspirone stimulated ventilation at rest. In the B6 mice, the hypoxic response was unchanged, but the response to hypercapnia was reduced with buspirone (5 mg/kg; P<0.05). With reoxygenation, vehicle-treated B6 exhibited periodic breathing and greater variation in ventilation compared with A/J (P<0.01). In B6 animals, >or=3 mg/kg of buspirone reduced variation and prevented the occurrence of posthypoxic periodic breathing. Both effects were reversed by p-MPPI. Treatment effect of buspirone was not explained by a difference in resting arterial blood gases. We conclude that buspirone improves posthypoxic ventilatory irregularities in the B6 mouse through its agonist effects on the 5-HT1A receptor.  相似文献   

3.
Given the environmental forcing by extremes in hypoxia-reoxygenation, there might be no genetic effect on posthypoxic short-term potentiation of ventilation. Minute ventilation (VE), respiratory frequency (f), tidal volume (VT), and the airway resistance during chemical loading were assessed in unanesthetized unrestrained C57BL/6J (B6) and A/J mice using whole body plethysmography. Static pressure-volume curves were also performed. In 12 males for each strain, after 5 min of 8% O2 exposure, B6 mice had a prominent decrease in VE on reoxygenation with either air (-11%) or 100% O2 (-20%), due to the decline of f. In contrast, A/J animals had no ventilatory undershoot or f decline. After 5 min of 3% CO2-10% O2 exposure, B6 exhibited significant decrease in VE (-28.4 vs. -38.7%, air vs. 100% O2) and f (-13.8 vs. -22.3%, air vs. 100% O2) during reoxygenation with both air and 100% O2; however, A/J mice showed significant increase in VE (+116%) and f (+62.2%) during air reoxygenation and significant increase in VE (+68.2%) during 100% O2 reoxygenation. There were no strain differences in dynamic airway resistance during gas challenges or in steady-state total respiratory compliance measured postmortem. Strain differences in ventilatory responses to reoxygenation indicate that genetic mechanisms strongly influence posthypoxic ventilatory behavior.  相似文献   

4.
Periodic breathing in the mouse.   总被引:3,自引:0,他引:3  
The hypothesis was that unstable breathing might be triggered by a brief hypoxia challenge in C57BL/6J (B6) mice, which in contrast to A/J mice are known not to exhibit short-term potentiation; as a consequence, instability of ventilatory behavior could be inherited through genetic mechanisms. Recordings of ventilatory behavior by the plethsmography method were made when unanesthetized B6 or A/J animals were reoxygenated with 100% O(2) or air after exposure to 8% O(2) or 3% CO(2)-10% O(2) gas mixtures. Second, we examined the ventilatory behavior after termination of poikilocapnic hypoxia stimuli in recombinant inbred strains derived from B6 and A/J animals. Periodic breathing (PB) was defined as clustered breathing with either waxing and waning of ventilation or recurrent end-expiratory pauses (apnea) of > or = 2 average breath durations, each pattern being repeated with a cycle number > or = 3. With the abrupt return to room air from 8% O(2), 100% of the 10 B6 mice exhibited PB. Among them, five showed breathing oscillations with apnea, but none of the 10 A/J mice exhibited cyclic oscillations of breathing. When the animals were reoxygenated after 3% CO(2)-10% O(2) challenge, no PB was observed in A/J mice, whereas conditions still induced PB in B6 mice. (During 100% O(2) reoxygenation, all 10 B6 mice had PB with apnea.) Expression of PB occurred in some but not all recombinant mice and was not associated with the pattern of breathing at rest. We conclude that differences in expression of PB between these strains indicate that genetic influences strongly affect the stability of ventilation in the mouse.  相似文献   

5.
Differences in breathing pattern between awake C57BL/6J (B6) and A/J mice are such that A/J mice breathe slower, deeper, and with greater variability than B6. We theorized that urethane anesthesia, by affecting cortical and subcortical function, would test the hypothesis that strain differences require a fully functional neuroaxis. We anesthetized B6 and A/J mice with urethane, placed them in a whole-body plethysmograph, and measured the durations of inspiration and expiration, respiratory frequency (Fr), and peak amplitude during exposure to room air (21% O2), hyperoxia (5 min, 100% O2), hypoxia (5 min, 8% O2), and posthypoxic reoxygenation (5 min, 100% O2). Breathing variability was assessed by calculating the coefficient of variation (CV) and by applying spatial statistics to Poincaré plots constructed from the timing and amplitude data. Even though Fr in anesthetized B6 and A/J mice was greater than that for unanesthetized animals, anesthetized A/J mice still breathed slower, deeper, and with greater variability than B6 mice at rest and during hyperoxia. During the fourth minute of hypoxia, Fr and its CV were not significantly different between strains. Even though Fr was similar between strains immediately after hypoxia, its CV was significantly greater for B6 than A/J mice. Posthypoxic Fr was significantly less than baseline Fr in B6 but not A/J mice, and the CV for posthypoxic Fr was greater for B6 but less for AJ mice compared with baseline CV. This difference in patterning was confirmed by spatial statistical analysis. We conclude that strain-specific differences in respiratory pattern and its variability are robust genetic traits. The neural substrate for these differences, at least partially, exists within subcortical structures generating the breathing pattern.  相似文献   

6.
The pattern of breathing during sleep could be a heritable trait. Our intent was to test this genetic hypothesis in inbred mouse strains known to vary in breathing patterns during wakefulness (Han F, Subramanian S, Dick TE, Dreshaj IA, and Strohl KP. J Appl Physiol 91: 1962-1970, 2001; Han F, Subramanian S, Price ER, Nadeau J, and Strohl KP, J Appl Physiol 92: 1133-1140, 2002) to determine whether such differences persisted into non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Measures assessed in C57BL/6J (B6; Jackson Laboratory) and two A/J strains (A/J Jackson and A/J Harlan) included ventilatory behavior [respiratory frequency, tidal volume, minute ventilation, mean inspiratory flow, and duty cycle (inspiratory time/total breath time)], and metabolism, as performed by the plethsmography method with animals instrumented to record EEG, electromyogram, and heart rate. In all strains, there were reductions in minute ventilation and CO2 production in NREM compared with wakefulness (P < 0.001) and a further reduction in REM compared with NREM (P < 0.001), but no state-by-stain interactions. Frequency showed strain (P < 0.0001) and state-by-strain interactions (P < 0.0001). The A/J Jackson did not change frequency in REM vs. NREM [141 +/- 15 (SD) vs. 139 +/- 14 breaths/min; P = 0.92], whereas, in the A/J Harlan, it was lower in REM vs. NREM (168 +/- 14 vs. 179 +/- 12 breaths/min; P = 0.0005), and, in the B6, it was higher in REM vs. NREM (209 +/- 12 vs. 188 +/- 13 breaths/min; P < 0.0001). Heart rate exhibited strain (P = 0.003), state (P < 0.0001), and state-by-strain interaction (P = 0.017) and was lower in NREM sleep in the A/J Harlan (P = 0.035) and B6 (P < 0.0001). We conclude that genetic background affects features of breathing during NREM and REM sleep, despite broad changes in state, metabolism, and heart rate.  相似文献   

7.
We wished to determine the severity of posthypoxic ventilatory decline in patients with sleep apnea relative to normal subjects during sleep. We studied 11 men with sleep apnea/hypopnea syndrome and 11 normal men during non-rapid eye movement sleep. We measured EEG, electrooculogram, arterial O(2) saturation, and end-tidal P(CO2). To maintain upper airway patency in patients with sleep apnea, nasal continuous positive pressure was applied at a level sufficient to eliminate apneas and hypopneas. We compared the prehypoxic control (C) with posthypoxic recovery breaths. Nadir minute ventilation in normal subjects was 6.3 +/- 0.5 l/min (83.8 +/- 5.7% of room air control) vs. 6.7 +/- 0.9 l/min, 69.1 +/- 8.5% of room air control in obstructive sleep apnea (OSA) patients; nadir minute ventilation (% of control) was lower in patients with OSA relative to normal subjects (P < 0.05). Nadir tidal volume was 0.55 +/- 0.05 liter (80.0 +/- 6.6% of room air control) in OSA patients vs. 0.42 +/- 0.03 liter, 86.5 +/- 5.2% of room air control in normal subjects. In addition, prolongation of expiratory time (Te) occurred in the recovery period. There was a significant difference in Te prolongation between normal subjects (2.61 +/- 0.3 s, 120 +/- 11.2% of C) and OSA patients (5.6 +/- 1.5 s, 292 +/- 127.6% of C) (P < 0.006). In conclusion, 1) posthypoxic ventilatory decline occurred after termination of hypocapnic hypoxia in normal subjects and patients with sleep apnea and manifested as decreased tidal volume and prolongation of Te; and 2) posthypoxic ventilatory prolongation of Te was more pronounced in patients with sleep apnea relative to normal subjects.  相似文献   

8.
Genetic determinants of lung structure and function have been demonstrated by differential phenotypes among inbred mice strains. For example, previous studies have reported phenotypic variation in baseline ventilatory measurements of standard inbred murine strains as well as segregant and nonsegregant offspring of C3H/HeJ (C3) and C57BL/6J (B6) progenitors. One purpose of the present study is to test the hypothesis that a genetic basis for differential baseline breathing pattern is due to variation in lung mechanical properties. Quasi-static pressure-volume curves were performed on standard and recombinant inbred strains to explore the interactive role of lung mechanics in determination of functional baseline ventilatory outcomes. At airway pressures between 0 and 30 cmH2O, lung volumes are significantly (P < 0.01) greater in C3 mice relative to the B6 and A/J strains. In addition, the B6C3F1/J offspring demonstrate lung mechanical properties significantly (P < 0.01) different from the C3 progenitor but not distinguishable from the B6 progenitor. With the use of recombinant inbred strains derived from C3 and B6 progenitors, cosegregation analysis between inspiratory timing and measurements of lung volume and compliance indicate that strain differences in baseline breathing pattern and pressure-volume relationships are not genetically associated. Although strain differences in lung volume and compliance between C3 and B6 mice are inheritable, this study supports a dissociation between differential inspiratory time at baseline, a trait linked to a putative genomic region on mouse chromosome 3, and differential lung mechanics among C3 and B6 progenitors and their progeny.  相似文献   

9.
In a previous study, DBA/2J and A/J inbred mice showed extremely different hypoxic ventilatory responses, suggesting variations in their carotid bodies. We have assessed the morphological and functional differences of the carotid bodies in these mice. Histological examination revealed a clearly delineated carotid body only in the DBA/2J mice. Many typical glomus cells and glomeruli appeared in the DBA/2J but not in the A/J mice. The size of the carotid body in the DBA/2J and A/J mice was 6.3 +/- 0.5 x 10(6) and 1.5 +/- 0.3 x 10(6) micro m(3), respectively. The area immunostained for tyrosine hydroxylase, an estimation of the glomus cell quantity, was four times larger in the DBA/2J mice than in the A/J mice. The individual data points in the DBA/2J mice segregated from those in the A/J mice. ACh increased intracellular Ca(2+) in most clusters (81%) of cultured carotid body cells from the DBA/2J mice, but only in 18% of clusters in the A/J mice. These data suggest that genetic determinants account for the strain differences in the structure and function of the carotid body.  相似文献   

10.
In a comparative study of A/J (Gpi-1a) and C57BL/6J (Gpi-1b) mice, we observed that erythrocytes of A/J mice exhibited significantly higher glucose phosphate isomerase (GPI) activity compared to erythrocytes of C57BL/6J mice on a per cell, per gram of protein, or per gram of hemoglobin basis. Higher GPI activity per cell was detected for peripheral blood lymphocytes of A/J compared to C57BL/6J mice. (A/J X C57BL/6J)F1 mice expressed erythrocyte and peripheral blood lymphocyte GPI activities intermediate to those of the parental mouse strains. The GPI activities of spleen lymphocytes from A/J, C57BL/6J, or (A/J X C57BL/6J)F1 mice were not significantly different from each other. The higher activity in the A/J mice could be due to GPI of a higher catalytic rate or to the presence of more GPI molecules. In order to distinguish these two possibilities, GPI was purified to homogeneity from both strains of mice. The specific activities (activity per milligram of protein) of the purified enzymes from the two strains were found to be similar, indicating that GPI from the A/J strain was not a more active enzyme. Antibody to the purified enzymes was prepared and used in an enzyme-linked immunosorbent assay (ELISA) to compare the relative amounts of enzyme molecules in cells of A/J and C57BL/6J mice. Results of the ELISA tests on peripheral blood lymphocytes indicated that A/J mice contain more molecules of GPI per cell and, therefore, have a higher GPI activity than C57BL/6J mice.  相似文献   

11.
Studies in C57BL/6J, DBA/2J and C3H/HeJ mice and in two F1 hybrid strains (B6D2F1 and B6C3HF1) 2-5 months old revealed marked genotypic differences among inbred strains. C57 mice had three times as many regular (3-6 days) cycles as DBA and C3H mice, due largely to fewer pseudopregnant-like (7-14 day) cycles. C57 had longer regular cycles than DBA and C3H mice. Although the frequencies of regular cycles of DBA and C3H mice were similar, the cycles of C3H mice were shorter than those of DBA mice. The results indicated that the genetic determinants of the frequency of regular cycles differ from those specifying cycle length. Frequency of regular cycles of F1 hybrids was either intermediate between the parent strains (B6D2F1) or similar to the C57 strain (B6C3HF1), suggesting that regular cycle frequency shows additive genetic variation in the former crosses, but mostly dominant variance in the latter background. Regular cycles were either shorter than in both parent strains (B6D2F1) or similar to one of them (B6C3HF1), indicating heterosis and dominance for genes specifying short cycles. Although the lack of reciprocal crosses meant that maternal effects and possible genomic imprinting effects could not be assessed, these results reveal marked genetic influences on cycle length and frequency and suggest that some of the genes specifying these two traits differ.  相似文献   

12.
Fluid licking in mice is an example of a rhythmic behavior thought to be under the control of a central pattern generator. Inbred strains of mice have been shown to differ in mean or modal interlick interval (ILI) duration, suggesting a genetic-based variation. We investigated water licking in the commonly used inbred strains C57BL/6J (B6) and DBA/2J (D2), using a commercially available contact lickometer. Results from 20-min test sessions indicated that D2 mice lick at a faster rate than B6 mice (10.6 licks/s vs. 8.5 licks/s), based on analysis of the distribution of short-duration ILIs (50-160 ms). This strain difference was independent of sex, extent of water deprivation or total number of licks. D2 mice also displayed a faster lick rate when the strains were tested with a series of brief (5 s) trials. However, when ingestion over the entire 20-min session was analyzed, it was evident that D2 mice had an overall slower rate of ingestion than B6 mice. This was because of the tendency for D2 mice to have more very long pauses (>30 s) between sequences of licking bursts. Overall, it appeared that D2 mice licked more efficiently, ingesting more rapidly during excursions to the spout that were fewer and farther between.  相似文献   

13.
The genetic basis for differences in the regulation of breathing is certainly multigenic. The present paper builds on a well-established genetic model of differences in breathing using inbred mouse strains. We tested the interactive effects of hypoxia and hypercapnia in two strains of mice known for variation in hypercapnic ventilatory sensitivity (HCVS); i.e., high gain in C57BL/6J (B6) and low gain in C3H/HeJ (C3) mice. Strain differences in the magnitude and pattern of breathing were measured during normoxia [inspired O(2) fraction (Fi(O(2))) = 0.21] and hypoxia (Fi(O(2)) = 0.10) with mild or severe hypercapnia (inspired CO(2) fraction = 0.03 or 0.08) using whole body plethysmography. At each level of Fi(O(2)), the change in minute ventilation (Ve) from 3 to 8% CO(2) was computed, and the strain differences between B6 and C3 mice in HCVS were maintained. Inheritance patterns showed potentiation effects of hypoxia on HCVS (i.e., CO(2) potentiation) unique to the B6C3F1/J offspring of B6 and C3 progenitors; i.e., the change in Ve from 3 to 8% CO(2) was significantly greater (P < 0.01) with hypoxia relative to normoxia in F1 mice. Linkage analysis using intercross progeny (F2; n = 52) of B6 and C3 progenitors revealed two significant quantitative trait loci associated with variable HCVS phenotypes. After normalization for body weight, variation in Ve responses during 8% CO(2) in hypoxia was linked to mouse chromosome 1 (logarithm of the odds ratio = 4.4) in an interval between 68 and 89 cM (i.e., between D1Mit14 and D1Mit291). The second quantitative trait loci linked differences in CO(2) potentiation to mouse chromosome 5 (logarithm of the odds ratio = 3.7) in a region between 7 and 29 cM (i.e., centered at D5Mit66). In conclusion, these results support the hypothesis that a minimum of two significant genes modulate the interactive effects of hypoxia and hypercapnia in this genetic model.  相似文献   

14.
15.
Previous studies have shown large differences in taste responses to several sweeteners between mice of the C57BL/6ByJ (B6) and 129P3/J (129) inbred strains. The goal of this study was to compare behavioral responses of B6 and 129 mice to a wider variety of sweeteners. Seventeen sweeteners were tested using two-bottle preference tests with water. Three main patterns of strain differences were evident. First, sucrose, maltose, saccharin, acesulfame-K, sucralose and SC-45647 were preferred by both strains, but the B6 mice had lower preference thresholds and higher solution intakes. Second, the amino acids D-phenylalanine, D-tryptophan, L-proline and glycine were highly preferred by B6 mice, but not by 129 mice. Third, glycyrrhizic acid, neohesperidin dihydrochalcone, thaumatin and cyclamate did not evoke strong preferences in either strain. Aspartame was neutral to all 129 and some B6 mice, but other B6 mice strongly preferred it. Thus, compared with the 129 mice the B6 mice had higher preferences for sugars, sweet tasting amino acids and several but not all non-caloric sweeteners. Glycyrrhizic acid, neohesperidin, thaumatin and cyclamate are not palatable to B6 or 129 mice.  相似文献   

16.
Respiratory and arousal state control are heritable traits in mice. B6.V-Lep(ob) (ob) mice are leptin deficient and differ from C57BL/6J (B6) mice by a variation in the gene coding for leptin. The ob mouse has morbid obesity and disordered breathing that is homologous to breathing of obese humans. This study tested the hypothesis that microinjecting neostigmine into the pontine reticular nucleus, oral part (PnO), of B6 and ob mice alters sleep and breathing. In B6 and ob mice, neostigmine caused a concentration-dependent increase (P < 0.0001) in percentage of time spent in a rapid eye movement (REM) sleeplike state (REM-Neo). Relative to saline (control), higher concentrations of neostigmine increased REM-Neo duration and the number of REM-Neo episodes in B6 and ob mice and decreased percent wake, percent non-REM, and latency to onset of REM-Neo (P < 0.001). In B6 and ob mice, REM sleep enhancement by neostigmine was blocked by atropine. Differences in control amounts of sleep and wakefulness between B6 and the congenic ob mice also were identified. After PnO injection of saline, ob mice spent significantly (P < 0.05) more time awake and less time in non-REM sleep. B6 mice displayed more (P < 0.01) baseline locomotor activity than ob mice, and PnO neostigmine decreased locomotion (P < 0.0001) in B6 and ob mice. Whole body plethysmography showed that PnO neostigmine depressed breathing (P < 0.001) in B6 and ob mice and caused greater respiratory depression in B6 than ob mice (P < 0.05). Western blot analysis identified greater (P < 0.05) expression of M2 muscarinic receptor protein in ob than B6 mice for cortex, midbrain, cerebellum, and pons, but not medulla. Considered together, these data provide the first evidence that pontine cholinergic control of sleep and breathing varies between mice known to differ by a spontaneous mutation in the gene coding for leptin.  相似文献   

17.
Genetic determinants confer variation between inbred mouse strains with respect to the magnitude and pattern of ventilation during hypercapnic challenge. Specifically, inheritance patterns derived from low-responsive C3H/HeJ (C3) and high-responsive C57BL/6J (B6) mouse strains suggest that differential hypercapnic ventilatory sensitivity (HCVS) is controlled by two independent genes. The present study also tests whether differential neuronal activity in respiratory control regions of the brain is positively associated with strain variation in HCVS. With the use of whole body plethysmography, ventilation was assessed in C3 and B6 strains at baseline and during 30 min of hypercapnia (inspired CO(2) fraction = 0.15, inspired O(2) fraction = 0.21 in N(2)). Subsequently, in situ hybridization histochemistry was performed to determine changes in c-fos gene expression in the commissural subnucleus of the nucleus tractus solitarius (NTS). During hypercapnia, breathing frequency and tidal volume were significantly (P < 0.01) different between strains: C3 mice showed a slow, deep-breathing pattern relative to a rapid, shallow phenotype of B6 mice. CO(2)-induced increase in c-fos gene expression was significantly (P < 0.01) greater in NTS regions of B6 compared with C3 mice. In this genetic model of differential HCVS, the results suggest that a genomic basis for varied hypercapnic chemoreception or transduction confers greater afferent neuronal activity in the caudal NTS for high-responsive B6 mice compared with low-responsive C3 mice.  相似文献   

18.
To identify ways to improve the efficiency of generating chimeric mice via microinjection of blastocysts with ES cells, we compared production and performance of ES-cell derived chimeric mice using blastocysts from two closely related and commonly used sub-strains of C57BL/6. Chimeras were produced by injection of the same JM8.N4 (C57BL/6NTac) derived ES cell line into blastocysts of mixed sex from either C57BL/6J (B6J) or C57BL/6NTac (B6NTac) mice. Similar efficiency of production and sex-conversion of chimeric animals was observed with each strain of blastocyst. However, B6J chimeric males had fewer developmental abnormalities involving urogenital and reproductive tissues (1/12, 8?%) compared with B6NTac chimeric males (7/9, 78?%). The low sample size did not permit determination of statistical significance for many parameters. However, in each category analyzed the B6J-derived chimeric males performed as well, or better, than their B6NTac counterparts. Twelve of 14 (86?%) B6J male chimeras were fertile compared with 6 of 11 (55?%) B6NTac male chimeras. Ten of 12 (83?%) B6J chimeric males sired more than 1 litter compared with only 3 of 6 (50?%) B6NTac chimeras. B6J male chimeras produced more litters per productive mating (3.42?±?1.73, n?=?12) compared to B6NTac chimeras (2.17?±?1.33, n?=?6). Finally, a greater ratio of germline transmitting chimeric males was obtained using B6J blastocysts (9/14; 64?%) compared with chimeras produced using B6NTac blastocysts (4/11; 36?%). Use of B6J host blastocysts for microinjection of ES cells may offer improvements over blastocysts from B6NTac and possibly other sub-strains of C57BL/6 mice.  相似文献   

19.
MRL mice display unusual healing properties. When MRL ear pinnae are hole punched, the holes close completely without scarring, with regrowth of cartilage and reappearance of both hair follicles and sebaceous glands. Studies using (MRL/lpr × C57BL/6)F2 and backcross mice first showed that this phenomenon was genetically determined and that multiple loci contributed to this quantitative trait. The lpr mutation itself, however, was not one of them. In the present study we examined the genetic basis of healing in the Large (LG/J) mouse strain, a parent of the MRL mouse and a strain that shows the same healing phenotype. LG/J mice were crossed with Small (SM/J) mice and the F2 population was scored for healing and their genotypes determined at more than 200 polymorphic markers. As we previously observed for MRL and (MRL × B6)F2 mice, the wound-healing phenotype was sexually dimorphic, with female mice healing more quickly and more completely than male mice. We found quantitative trait loci (QTLs) on chromosomes (Chrs) 9, 10, 11, and 15. The heal QTLs on Chrs 11 and 15 were linked to differential healing primarily in male animals, whereas QTLs on Chrs 9 and 10 were not sexually dimorphic. A comparison of loci identified in previous crosses with those in the present report using LG/J × SM/J showed that loci on Chrs 9, 11, and 15 colocalized with those seen in previous MRL crosses, whereas the locus on Chr 10 was not seen before and is contributed by SM/J.  相似文献   

20.
Epilepsy is one of the most common but genetically complex neurological disorders in humans. Identifying animal models that recapitulate human epilepsies is important for pharmacological studies of anticonvulsants, dissection of molecular and biochemical pathogenesis of epilepsy, and discovery of epilepsy susceptibility genes. We discovered that the PL/J inbred mouse strain is susceptible to handling- and rhythmic tossing–induced seizure. The tonic–clonic and generalized seizures observed after induction were accompanied by abnormal EEGs, similar to seizures observed in EL and SWXL-4 mice. PL/J mice also had an extremely low threshold to electroconvulsive seizures compared to other strains and showed variable sensitivity to pentylenetetrazole-induced seizures. Gross neurostructural abnormalities were not found in PL/J mice. Crosses with the seizure-resistant C57BL/6 J strain revealed semidominant inheritance of the rhythmic tossing seizure trait with low penetrance. F2 progeny indicated that the genetic inheritance of seizure susceptibility in PL/J is non-Mendelian. We crossed DBA/2 J mice, which are resistant to rhythmic tossing seizure but susceptible to audiogenic seizures, to PL/J. We found that seizure penetrance in (DBA/2 J × PL/J)F1 mice was similar to the penetrance in (C57BL/6 J × PL/J)F1 mice but the severity and frequency of seizure were higher in (DBA/2 J × PL/J)F1 mice. The PL/J strain serves as an interesting new model for studying the genetics, neurobiology, and pharmacology of epilepsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号