首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M L Barkon  B L Haller    H W Virgin  th 《Journal of virology》1996,70(2):1109-1116
Reoviruses are encapsidated double-stranded RNA viruses that cause systemic disease in mice after peroral (p.o.) inoculation and primary replication in the intestine. In this study, we define components of the immune system involved in the clearing of reovirus from the proximal small intestine. The intestines of immunocompetent adult CB17, 129, and C57BL/6 mice were cleared of reovirus serotype 3 clone 9 (T3C9) within 7 days of p.o. inoculation. Antigen-specific lymphocytes were important for the clearance of intestinal infection, since severe combined immunodeficient (SCID) mice failed to clear T3C9 infection. To define specific immune components required for intestinal clearance, reovirus infection of mice with null mutations in the immunoglobulin M (IgM) transmembrane exon (MuMT; B cell and antibody deficient) or beta 2 microglobulin gene (beta 2-/-; CD8 deficient) was evaluated. beta 2-/- mice cleared reovirus infection with normal kinetics, while MuMT mice showed delayed clearance of T3C9 7 to 11 days after p.o. inoculation. Adoptive transfer of splenic lymphocytes from reovirus-immune CB17 mice inhibited growth of T3C9 in CB17 SCID mouse intestine 11 days after p.o. inoculation. The efficiency of viral clearance by adoptively transferred cells was significantly diminished by depletion of B cells prior to adoptive transfer. Results in SCID and MuMT mice demonstrate an important role for B cells or IgG in clearance of reovirus from the intestines. Polyclonal reovirus-immune rabbit serum, protein A-purified immune IgG, and murine monoclonal IgG2a antibody specific for reovirus outer capsid protein sigma 3 administered intraperitoneally all normalized clearance of reovirus from intestinal tissue in MuMT mice. This result demonstrates an IgA-independent role for IgG in the clearance of intestinal virus infection. Polyclonal reovirus-immune serum also significantly decreased reovirus titers in the intestines of SCID mice, demonstrating a T-cell-independent role for antibody in the clearance of intestinal reovirus infection. B cells and circulating IgG play an important role in the clearance of reovirus from intestines, suggesting that IgG may play a more prominent functional role at mucosal sites of primary viral replication than was previously supposed.  相似文献   

2.
Respiratory virus infections in the elderly result in increased rates of hospitalization and death. Respiratory syncytial virus (RSV) is a leading cause of severe virus-induced respiratory disease in individuals over the age of 65. CD8 T cells play a critical role in mediating RSV clearance. While it is clear that T cell immunity declines with age, it is not clear to what extent the CD8 T cell response to RSV is altered. Using aged BALB/c mice, we demonstrated that RSV-specific CD8 T cell responses were significantly reduced in the lungs of aged mice at the peak of the T cell response and that this decrease correlated with delayed viral clearance. Despite a decrease in the overall numbers of RSV-specific CD8 T cells during acute infection, their capacity to produce effector cytokines was not impaired. Following viral clearance, the RSV-specific memory CD8 T cells were similar in total number and phenotype in young and aged mice. Furthermore, following infection with a heterologous pathogen expressing an RSV epitope, RSV-specific memory CD8 T cells exhibited similar activation and ability to provide early control of the infection in young and aged mice. These data demonstrate a decrease in the capacity of aged mice to induce a high-magnitude acute CD8 T cell response, leading to prolonged viral replication, which may contribute to the increased disease severity of RSV infection observed for aged individuals.  相似文献   

3.
Adaptive immunity in response to virus infection involves the generation of Th1 cells, cytotoxic T cells, and antibodies. This type of immune response is crucial for the clearance of virus infection and for long-term protection against reinfection. Type I interferons (IFNs), the primary innate cytokines that control virus growth and spreading, can influence various aspects of adaptive immunity. The development of antiviral immunity depends on many viral and cellular factors, and the extent to which type I IFNs contribute to the generation of adaptive immunity in response to a viral infection is controversial. Using two strains (Cantell and 52) of the murine respiratory Sendai virus (SeV) with differential abilities to induce type I IFN production from infected cells, together with type I IFN receptor-deficient mice, we examined the role of type I IFNs in the generation of adaptive immunity. Our results show that type I IFNs facilitate virus clearance and enhance the migration and maturation of dendritic cells after SeV infection in vivo; however, soon after infection, mice clear the virus from their lungs and efficiently generate cytotoxic T cells independently of type I IFN signaling. Furthermore, animals that are unresponsive to type I IFN develop long-term anti-SeV immunity, including CD8+ T cells and antibodies. Significantly, this memory response is able to protect mice against challenge with a lethal dose of virus. In conclusion, our results show that primary and secondary anti-SeV adaptive immunities are developed normally in the absence of type I IFN responsiveness.  相似文献   

4.
The obligate intracellular pathogen Chlamydia trachomatis is the most common cause of bacterial sexually transmitted diseases in the United States. In women C. trachomatis can establish persistent genital infections that lead to pelvic inflammatory disease and sterility. In contrast to natural infections in humans, experimentally induced infections with C. trachomatis in mice are rapidly cleared. The cytokine interferon-γ (IFNγ) plays a critical role in the clearance of C. trachomatis infections in mice. Because IFNγ induces an antimicrobial defense system in mice but not in humans that is composed of a large family of Immunity Related GTPases (IRGs), we questioned whether mice deficient in IRG immunity would develop persistent infections with C. trachomatis as observed in human patients. We found that IRG-deficient Irgm1/m3((-/-)) mice transiently develop high bacterial burden post intrauterine infection, but subsequently clear the infection more efficiently than wildtype mice. We show that the delayed but highly effective clearance of intrauterine C. trachomatis infections in Irgm1/m3((-/-)) mice is dependent on an exacerbated CD4(+) T cell response. These findings indicate that the absence of the predominant murine innate effector mechanism restricting C. trachomatis growth inside epithelial cells results in a compensatory adaptive immune response, which is at least in part driven by CD4(+) T cells and prevents the establishment of a persistent infection in mice.  相似文献   

5.
Recent studies have demonstrated that viral and bacterial infections can induce dramatic in vivo expansion of Ag-specific T lymphocytes. Although presentation of Ag is critical for activation of naive T cells, it is less clear how dependent subsequent in vivo T cell proliferation and memory generation are upon Ag. We investigated T cell expansion and memory generation in mice infected alternately with strains of Listeria monocytogenes that contained or lacked an immunodominant, MHC class I-restricted T cell epitope. We found substantial differences in the responses of effector and memory T cells to inflammatory stimuli. Although effector T cells undergo in vivo expansion in response to bacterial infection in the absence of Ag, memory T cells show no evidence for such bystander activation. However, Ag-independent expansion of effector T cells does not result in increased memory T cell frequencies, indicating that Ag presentation is critical for effective memory T cell generation. Early reinfection of mice with L. monocytogenes before the maximal primary T cell response induces typical memory expansion, suggesting that the capacity for a memory T cell response exists within the primary effector population. Our findings demonstrate that T cell effector proliferation and memory generation are temporally overlapping processes with differing requirements for Ag.  相似文献   

6.
Suppression of cell-mediated immunity has been proposed as a mechanism that promotes maternal tolerance of the fetus but also contributes to increased occurrence and severity of certain infections during pregnancy. Despite decades of research examining the effect of pregnancy on Ag-specific T cell responses, many questions remain. In particular, quantitative examination of memory CD8 T cell generation following infection during pregnancy remains largely unknown. To examine this issue, we evaluated the generation of protective immunity following infection during pregnancy with a nonpersistent strain of lymphocytic choriomeningitis virus (LCMV) in mice. The CD8 T cell response to LCMV occurred normally in pregnant mice compared with the nonpregnant cohort with rapid viral clearance in all tissues tested except for the placenta. Despite significant infiltration of CD8 T cells to the maternal-fetal interface, virus persisted in the placenta until delivery. Live pups were not infected and generated normal primary immune responses when challenged as adults. Memory CD8 T cell development in mice that were pregnant during primary infection was normal with regards to the proliferative capacity, number of Ag-specific cells, cytokine production upon re-stimulation, and the ability to protect from re-infection. These data suggest that virus-specific adaptive memory is normally generated in mice during pregnancy.  相似文献   

7.
Severely burned patients are susceptible to infections with opportunistic organisms due to altered immune responses and frequent wound contamination. Immunomodulation to enhance systemic and local responses to wound infections may be protective after burn injury. We previously demonstrated that pretreatments with fms-like tyrosine kinase-3 (Flt3) ligand (Flt3L), a dendritic cell growth factor, increase the resistance of mice to a subsequent burn injury and wound infection by a dendritic cell-dependent mechanism. This study was designed to test the hypothesis that Flt3L administration after burn injury decreases susceptibility to wound infections by enhancing global immune cell activation. Mice were treated with Flt3L after burn injury and examined for survival, wound and systemic bacterial clearance, and immune cell activation after wound inoculation with Pseudomonas aeruginosa. To gain insight into the local effects of Flt3L at the burn wound, localization of Langerhans cells was examined. Mice treated with Flt3L had significantly greater numbers of CD25-expressing T cells and CD69-expressing T and B cells, neutrophils, and macrophages after, but not before, infection. Overall leukocyte apoptosis in response to infection was decreased with Flt3L treatment. Survival and local and systemic bacterial clearance were enhanced by Flt3L. Langerhans cells appeared in the dermis of skin bordering the burn wound, and further increased in response to wound infection. Flt3L augmented the appearance of Langerhans cells in response to both injury and infection. These data suggest that dendritic cell enhancement by Flt3L treatments after burn injury protects against opportunistic infections through promotion of local and systemic immune responses to infection.  相似文献   

8.
CD40-CD154 interactions are of central importance in the induction of humoral and cellular immune responses. In the present study, CD154-deficient (CD154-/-) mice were used to assess the role of CD40-CD154 interactions in regulating the immune response to a systemic Salmonella infection. Compared with C57BL/6 (CD154+/+) controls, CD154-/- mice were hypersusceptible to infection by an attenuated strain of Salmonella enterica serovar Typhimurium (S. typhimurium), as evidenced by decreased survival rate and mean time to death, which correlated with increased bacterial burden and persistence in target organs. CD154-/- mice exhibited a defect both in the production of IL-12, IFN-gamma, and NO during the acute phase of the disease and in the generation of Salmonella-specific Ab responses and Ig isotype switching. Furthermore, when CD154-/- animals were administered a sublethal dose of attenuated S. typhimurium and subsequently challenged with a virulent homologous strain, all mice succumbed to an overwhelming infection. Similar treatment of CD154+/+ mice consistently resulted in > or =90% protection. The lack of protective immunity in CD154-/- mice correlated with a decreased T cell recall response to Salmonella Ags. Significant protection against virulent challenge was conferred to presensitized CD154-/- mice by transfer of serum or T cells from immunized CD154+/+ mice. For best protection, however, a combination of immune serum and T cells was required. We conclude that intercellular communications via the CD40-CD154 pathway play a critical role in the induction of type 1 cytokine responses, memory T cell generation, Ab formation, and protection against primary as well as secondary Salmonella infections.  相似文献   

9.
Although cells of the innate inflammatory response, such as macrophages and neutrophils, have been extensively studied in the arena of Gram-negative bacterial pneumonia, a role for T cells remains unknown. To study the role of specific T cell populations in bacterial pneumonia, mice deleted of their TCR beta- and/or delta-chain were intratracheally inoculated with Klebsiella pneumoniae. Gamma delta T cell knockout mice displayed increased mortality at both early and late time points. In contrast, mice specifically lacking only alpha beta-T cells were no more susceptible than wild-type mice. Pulmonary bacterial clearance in gamma delta-T cell knockout mice was unimpaired. Interestingly, these mice displayed increased peripheral blood dissemination. Rapid up-regulation of IFN-gamma and TNF-alpha gene expression, critical during bacterial infections, was markedly impaired in lung and liver tissue from gamma delta-T cell-deficient mice 24 h postinfection. The increased peripheral blood bacterial dissemination correlated with impaired hepatic bacterial clearance following pulmonary infection and increased hepatic injury as measured by plasma aspartate aminotransferase activity. Combined, these data suggest that mice lacking gamma delta-T cells have an impaired ability to resolve disseminated bacterial infections subsequent to the initial pulmonary infection. These data indicate that gamma delta-T cells comprise a critical component of the acute inflammatory response toward extracellular Gram-negative bacterial infections and are vital for the early production of the proinflammatory cytokines IFN-gamma and TNF-alpha.  相似文献   

10.
A protective role for CD8+ T cells during viral infections is generally accepted, but little is known about how CD8+ T cell responses develop during primary infections in infants, their efficacy, and how memory is established after viral clearance. We studied CD8+ T cell responses in bronchoalveolar lavage (BAL) samples and blood of infants with a severe primary respiratory syncytial virus (RSV) infection. RSV-specific CD8+ T cells with an activated effector cell phenotype: CD27+CD28+CD45RO+CCR7-CD38+HLA-DR+Granzyme B+CD127- could be identified in BAL and blood. A high proportion of these CD8+ T cells proliferated and functionally responded upon in vitro stimulation with RSV Ag. Thus, despite the very young age of the patients, a robust systemic virus-specific CD8+ T cell response was elicited against a localized respiratory infection. RSV-specific T cell numbers as well as the total number of activated effector type CD8+ T cells peaked in blood around day 9-12 after the onset of primary symptoms, i.e., at the time of recovery. The lack of a correlation between RSV-specific T cell numbers and parameters of disease severity make a prominent role in immune pathology unlikely, in contrast the T cells might be involved in the recovery process.  相似文献   

11.
The role of CD4 T cell help in primary and secondary CD8 T cell responses to infectious pathogens remains incompletely defined. The primary CD8 T response to infections was initially thought to be largely independent of CD4 T cells, but it is not clear why some primary, pathogen-specific CD8 T cell responses are CD4 T cell dependent. Furthermore, although the generation of functional memory CD8 T cells is CD4 T cell help dependent, it remains controversial when the "help" is needed. In this study, we demonstrated that CD4 T cell help was not needed for the activation and effector differentiation of CD8 T cells during the primary response to vaccinia virus infection. However, the activated CD8 T cells showed poor survival without CD4 T cell help, leading to a reduction in clonal expansion and a diminished, but stable CD8 memory pool. In addition, we observed that CD4 T cell help provided during both the primary and secondary responses was required for the survival of memory CD8 T cells during recall expansion. Our study indicates that CD4 T cells play a crucial role in multiple stages of CD8 T cell response to vaccinia virus infection and may help to design effective vaccine strategies.  相似文献   

12.
13.
Regulatory T cells (Tregs) play an important role in counter-regulating effector T cell responses in many infectious diseases. However, they can also contribute to the development of T cell dysfunction and pathogen persistence in chronic infections. Tregs have been reported to suppress virus-specific T cell responses in hepatitis B virus (HBV) infection of human patients as well as in HBV animal models. However, the phenotype and expansion of Tregs has so far only been investigated in other infections, but not in HBV. We therefore performed hydrodynamic injections of HBV plasmids into mice and analyzed the Treg response in the spleen and liver. Absolute Treg numbers significantly increased in the liver but not the spleen after HBV injection. The cells were natural Tregs that surprisingly did not show any activation or proliferation in response to the infection. However, they were able to suppress effector T cell responses, as selective depletion of Tregs significantly increased HBV-specific CD8+ T cell responses and accelerated viral antigen clearance. The data implies that natural Tregs infiltrate the liver in HBV infection without further activation or expansion but are still able to interfere with T cell mediated viral clearance.  相似文献   

14.
Longitudinal studies of T cell immune responses during viral infections in humans are essential for our understanding of how effector T cell responses develop, clear infection, and provide long-lasting immunity. Here, following an outbreak of a Puumala hantavirus infection in the human population, we longitudinally analyzed the primary CD8 T cell response in infected individuals from the first onset of clinical symptoms until viral clearance. A vigorous CD8 T cell response was observed early following the onset of clinical symptoms, determined by the presence of high numbers of Ki67(+)CD38(+)HLA-DR(+) effector CD8 T cells. This response encompassed up to 50% of total blood CD8 T cells, and it subsequently contracted in parallel with a decrease in viral load. Expression levels of perforin and granzyme B were high throughout the initial T cell response and likewise normalized following viral clearance. When monitoring regulatory components, no induction of regulatory CD4 or CD8 T cells was observed in the patients during the infection. However, CD8 as well as CD4 T cells exhibited a distinct expression profile of inhibitory PD-1 and CTLA-4 molecules. The present results provide insight into the development of the T cell response in humans, from the very onset of clinical symptoms following a viral infection to resolution of the disease.  相似文献   

15.
The immune response to viral infection is ideally rapid and specific, resulting in viral clearance and establishment of immune memory. Some viruses such as HIV can evade such responses leading to chronic infection, while others like Influenza A can elicit a severe inflammatory response with immune-related complications including death. Cytokines play a major role in shaping the appropriate outcomes to infection. While Interleukin-7 (IL-7) has a critical role in T and B cell development, treatment with IL-7 has recently been shown to aid the adaptive T cell response in clearance of chronic viral infection. In contrast, the IL-7-related cytokine thymic stromal lymphopoietin (TSLP) has a limited role in lymphocyte development but is important in the immune response to parasitic worms and allergens. The role for these cytokines in the immune response to an acute viral infection is unclear. IL-7 and TSLP share IL-7Rα as part of their heterodimeric receptors with the gamma common chain (γc) and TSLPR, respectively. We investigated the role of IL-7 and TSLP in the primary immune response to influenza A infection using hypomorphic IL-7Rα (IL-7Rα449F) and TSLPR−/− mice. We found that IL-7, but not TSLP, plays an important role in control of influenza A virus. We also showed that IL-7 signaling was necessary for the generation of a robust influenza A-specific CD4 and CD8 T cell response and that this requirement is intrinsic to CD8 T cells. These findings demonstrate a significant role for IL-7 during acute viral infection.  相似文献   

16.
17.
Neonates, including mice and humans, are highly susceptible to cytomegalovirus (CMV) infection. However, many aspects of neonatal CMV infections such as viral cell tropism, spatio-temporal distribution of the pathogen as well as genesis of antiviral immunity are unknown. With the use of reporter mutants of the murine cytomegalovirus (MCMV) we identified the lung as a primary target of mucosal infection in neonatal mice. Comparative analysis of neonatal and adult mice revealed a delayed control of virus replication in the neonatal lung mucosa explaining the pronounced systemic infection and disease in neonates. This phenomenon was supplemented by a delayed expansion of CD8+ T cell clones recognizing the viral protein M45 in neonates. We detected viral infection at the single-cell level and observed myeloid cells forming “nodular inflammatory foci” (NIF) in the neonatal lung. Co-localization of infected cells within NIFs was associated with their disruption and clearance of the infection. By 2-photon microscopy, we characterized how neonatal antigen-presenting cells (APC) interacted with T cells and induced mature adaptive immune responses within such NIFs. We thus define NIFs of the neonatal lung as niches for prolonged MCMV replication and T cell priming but also as sites of infection control.  相似文献   

18.
Resident cells of the respiratory and gastrointestinal tracts, including epithelial and fibroblast cells, are the initial sites of entry for many viral pathogens. We investigated the role that these cells play in the inflammatory process in response to infection with reovirus 1/L. In A549 human bronchial or HT-29 human colonic epithelial cells, interferon (IFN)-beta, regulated on activation T cell expressed and secreted (RANTES), IFN-gamma-inducible protein (IP)-10, and interleukin-8 were upregulated regardless of whether cells were infected with replication-competent or replication-deficient reovirus 1/L. However, in CCD-34Lu human lung fibroblast cells, IFN-beta, IP-10, and RANTES were expressed only after infection with replication-competent reovirus 1/L. Expression of interleukin-8 in CCD-34Lu fibroblast cells was viral replication independent. This differential expression of IFN-beta, RANTES, and IP-10 was shown to be due to the lack of induction of IFN regulatory factor-1 and -2 in CCD-34Lu fibroblast cells treated with replication-deficient reovirus 1/L. We have shown that cytokine and/or chemokine expression may not be dependent on viral replication. Therefore, treatment of viral infections with inhibitors of replication may not effectively alleviate inflammatory mediators because most viral infections result in the generation of replication-competent and replication-deficient virions in vivo.  相似文献   

19.
Reovirus type 1 Lang (T1L) infects the mouse intestinal mucosa by adhering specifically to epithelial M cells and exploiting M-cell transport to enter the Peyer's patches. Oral inoculation of adult mice has been shown to elicit cellular and humoral immune responses that clear the infection within 10 days. This study was designed to determine whether adult mice that have cleared a primary infection are protected against viral entry upon oral rechallenge and, if so, whether antireovirus secretory immunoglobulin A (S-IgA) is a necessary component of protection. Adult BALB/c mice that were orally inoculated on day 0 with reovirus T1L produced antiviral S-IgA in feces and IgG in serum directed primarily against the reovirus sigma1 attachment protein. Eight hours after oral reovirus challenge on day 21, the Peyer's patches of previously exposed mice contained no detectable virus whereas Peyer's patches of naive controls contained up to 2,300 PFU of reovirus/mg of tissue. Orally inoculated IgA knockout (IgA(-/-)) mice cleared the initial infection as effectively as wild-type mice and produced higher levels of reovirus-specific serum IgG and secretory IgM than C57BL/6 wild-type mice. When IgA(-/-) mice were rechallenged on day 21, however, their Peyer's patches became infected. These results indicate that intestinal S-IgA is an essential component of immune protection against reovirus entry into Peyer's patch mucosa.  相似文献   

20.
We undertook the present study to elucidate the pathogenesis of the pathologic response to reovirus infection in the lungs and further understand the interactions of reoviruses with pulmonary cells. We found that reoviruses were capable of causing acute pneumonia in 25- to 28-day-old Sprague-Dawley rats following intratracheal inoculation with the reoviruses type 1 Lang (T1L) and type 3 Dearing (T3D). The onset of the pneumonia was rapid, marked by type I alveolar epithelial cell degeneration, type II alveolar epithelial cell hyperplasia, and the infiltration of leukocytes into the alveolar spaces. More neutrophils were recruited into the lungs during T3D infection than during T1L infection, and the serotype difference in the neutrophil response was mapped to the S1 gene of reovirus. Viral replication in the lungs was required for the development of pneumonia due to T1L and T3D infections, and replication occurred in type I alveolar epithelial cells. T1L grew to higher titers in the lungs than did either T3D or type 3 clone 9, and the S1 gene was found to play a role in determining the level of viral replication. We propose that experimental reovirus infection in the lungs can serve as a model for the pathogenesis of viral pneumonia in which pulmonary inflammation results following direct infection of lung epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号