首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Enzymatic hydrolysis of cellulosic material is an essential step in the bioethanol production process. However, complete cellulose hydrolysis by cellulase is difficult due to the irreversible adsorption of cellulase onto cellulose. Thus, part of the cellulose remains in crystalline form after hydrolysis. In this study, after 96-h hydrolysis of Avicel crystalline cellulose, 47.1 % of the cellulase was adsorbed on the cellulose surface with 10.8 % crystalline cellulose remaining. In simultaneous saccharification and fermentation of 100 g/L Avicel with 1.0 filter paper unit/mL cellulase, a wild-type yeast strain produced 44.7 g/L ethanol after 96 h. The yield of ethanol was 79.7 % of the theoretical yield. On the other hand, a recombinant yeast strain displaying various cellulases, such as β-glucosidase, cellobiohydrolase, and endoglucanase, produced 48.9 g/L ethanol, which corresponds to 87.3 % of the theoretical yield. Higher ethanol production appears to be attributable to higher efficiency of cellulase displayed on the cell surface. These results suggest that cellulases displayed on the yeast cell surface improve hydrolysis of Avicel crystalline cellulose. Indeed, after the 96-h simultaneous saccharification and fermentation using the cellulase-displaying yeast, the amount of residual cellulose was 1.5 g/L, one quarter of the cellulose remaining using the wild-type strain, a result of the alleviation of irreversible adsorption of cellulases on the crystalline cellulose.  相似文献   

2.
Effect of hydrogen bond breaker (urea) addition on the enzymatic hydrolysis of Avicel and eucalyptus pretreated by dilute acid (Eu-DA) was investigated. Urea enhanced the enzymatic hydrolysis of Eu-DA at 50 or 30 °C when the concentration of urea was below 60 g/L, while it inhibited the hydrolysis of Avicel. Low concentration urea (<?240 g/L) had little effect on the cellulase spatial structure and its activity. But it decreased cellulase binding to cellulose surface to inhibit the cellulose hydrolysis. Meanwhile, urea obviously prevented the adsorption of cellobiohydrolase I (CBHI) on the lignin in spite of little effect on the adsorption of β-glucosidase (BGL) and two endoglucanases (EGIII and EGV) on lignin. It was proposed that urea enhanced the enzymatic efficiency of Eu-DA by decreasing the cellulase adsorption on lignin surface.  相似文献   

3.
The properties of the cellulosome (a cellulose-binding, multiple cellulase-containing protein complex isolated from Clostridium thermocellum) have been compared with the previously reported characteristics for crude cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] preparations. Similar to the crude enzyme system, true cellulolytic activity was demonstrated for the purified cellulosome on the basis of extensive solubilization of microcrystalline cellulose. The cellulolytic activity of the purified cellulosome was enhanced both by calcium ions and by thiols, and was inhibited by cellobiose (the major end product of the cellulosome-mediated cellulose degradation). In addition, at low ionic strength, cellulose-adsorbed cellulosome was detached intact from the cellulose matrix. Using controlled conditions, maximum enzymatic activity was shown to correspond to suboptimal conditions of cellulosome adsorption to cellulose. The results suggest that previous data accumulated for the crude cellulase system in C. thermocellum essentially reflect the contribution of the cellulosome.  相似文献   

4.
Adsorption of Avicel-hydrolyzing activity was examined with respect to: mixed hardwood flour pretreated with 1% sulfuric acid for 9 s at 220 degrees C (PTW220), lignin prepared from PTW220 by either acid or enzymatic hydrolysis, and Avicel. Experiments were conducted at 60 degrees C for all materials, and also at 25 degrees C for PTW220. Based on transient adsorption results and reaction rates, times were selected at which to characterize adsorption at 60 degrees C as follows: PTW220, 1 min; lignin, 30 min; and Avicel, 45 min. Similar results were obtained for adsorption of cellulase activity to PTW220 at 25 and 60 degrees C, and for lignin prepared by enzymatic and acid hydrolysis. For all materials, adsorption was described well by a Langmuir equation, although the reversibility of adsorption was not investigated. Langmuir affinity constants (L/g) were: PTW220, 109; lignin, 17.9; Avicel, 4.3; cellulose from PTW220, >/=187. Langmuir capacity constants were 760 for PTW220 and 42 for Avicel; the cellulase binding capacity of lignin appeared to be very high under the conditions examined, and could not be determined. At low and moderate cellulase loadings at least, the majority of cellulase activity adsorbed to PTW220 is bound to the cellulosic component. The results indicate that PTW220, and its cellulose component in particular, differ radically from Avicel with respect to adsorption. Avicel-hydrolyzing activity and CMC-hydrolyzing activities were found to bind to Avicel with a constant ratio of essentially one, consistent with adsorption of a multi-activity complex. (c) 1993 John Wiley & Sons, Inc.  相似文献   

5.
Cellulase and bovine serum albumin (BSA) were added to Avicel cellulose and solids containing 56% cellulose and 28% lignin from dilute sulfuric acid pretreatment of corn stover. Little BSA was adsorbed on Avicel cellulose, while pretreated corn stover solids adsorbed considerable amounts of this protein. On the other hand, cellulase was highly adsorbed on both substrates. Adding a 1% concentration of BSA to dilute acid pretreated corn stover prior to enzyme addition at 15 FPU/g cellulose enhanced filter paper activity in solution by about a factor of 2 and beta-glucosidase activity in solution by about a factor of 14. Overall, these results suggested that BSA treatment reduced adsorption of cellulase and particularly beta-glucosidase on lignin. Of particular note, BSA treatment of pretreated corn stover solids prior to enzymatic hydrolysis increased 72 h glucose yields from about 82% to about 92% at a cellulase loading of 15 FPU/g cellulose or achieved about the same yield at a loading of 7.5 FPU/g cellulose. Similar improvements were also observed for enzymatic hydrolysis of ammonia fiber explosion (AFEX) pretreated corn stover and Douglas fir treated by SO(2) steam explosion and for simultaneous saccharification and fermentation (SSF) of BSA pretreated corn stover. In addition, BSA treatment prior to hydrolysis reduced the need for beta-glucosidase supplementation of SSF. The results are consistent with non-specific competitive, irreversible adsorption of BSA on lignin and identify promising strategies to reduce enzyme requirements for cellulose hydrolysis.  相似文献   

6.
Addition of L-sorbose, a non-metabolizable non-inducing ketohexose, toTrichoderma reesei cultures growing on cellobiose or Avicel-cellulose lead to increased cellulase activities. Addition of sorbose resulted in a 6-fold increase in cellodextrins (cellotriose, cellotetraose, cellopentaose) concentration on day 3 in cellobiose cultures and 1.3-fold increase in cellodextrins concentrations on day 4 in Avicel cellulose cultures. This increase in intracellular cellodextrins concentration matched closely with the increase in endoglucanase activity at these time points. Treatment of the cell-free extracts with cellulase preparation led to disappearance of the cellodextrins and increase of glucose. These observations suggested a more direct involvement of cellodextrins in cellulase induction process. The cellulases produced in sorbose-supplemented cellobiose medium hydrolyzed microcrystalline cellulose as effectively as the ones produced on Avicel cellulose medium.  相似文献   

7.
A semimechanistic multi‐reaction kinetic model was developed to describe the enzymatic hydrolysis of a lignocellulosic biomass, creeping wild ryegrass (CWR; Leymus triticoides). This model incorporated one homogeneous reaction of cellobiose‐to‐glucose and two heterogeneous reactions of cellulose‐to‐cellobiose and cellulose‐to‐glucose. Adsorption of cellulase onto pretreated CWR during enzymatic hydrolysis was modeled via a Langmuir adsorption isotherm. This is the first kinetic model which incorporated the negative role of lignin (nonproductive adsorption) using a Langmuir‐type isotherm adsorption of cellulase onto lignin. The model also reflected the competitive inhibitions of cellulase by glucose and cellobiose. The Matlab optimization function of “lsqnonlin” was used to fit the model and estimate kinetic parameters based on experimental data generated under typical conditions (8% solid loading and 15 FPU/g‐cellulose enzyme concentration without the addition of background sugars). The model showed high fidelity for predicting cellulose hydrolysis behavior over a broad range of solid loading (4–12%, w/w, dry basis), enzyme concentration (15–150 FPU/ g‐cellulose), sugar inhibition (glucose of 30 and 60 mg/mL and cellobiose of 10 mg/mL). In addition, sensitivity analysis showed that the incorporation of the nonproductive adsorption of cellulase onto lignin significantly improved the predictability of the kinetic model. Our model can serve as a robust tool for developing kinetic models for system optimization of enzymatic hydrolysis, hydrolysis reactor design, and/or other hydrolysis systems with different type of enzymes and substrates. Biotechnol. Bioeng. 2009;102: 1558–1569. © 2008 Wiley Periodicals, Inc.  相似文献   

8.
Controlled depolymerization of cellulose is essential for the production of valuable cellooligosaccharides and cellobiose from lignocellulosic biomass. However, enzymatic cellulose hydrolysis involves multiple synergistically acting enzymes, making difficult to control the depolymerization process and generate desired product. This work exploits the varying adsorption properties of the cellulase components to the cellulosic substrate and aims to control the enzyme activity. Cellulase adsorption was favored on pretreated cellulosic biomass as compared to synthetic cellulose. Preferential adsorption of exocellulases was observed over endocellulase, while β-glucosidases remained unadsorbed. Adsorbed enzyme fraction with bound exocellulases when used for hydrolysis generated cellobiose predominantly, while the unadsorbed enzymes in the liquid fraction produced cellooligosaccharides majorly, owing to its high endocellulases activity. Thus, the differential adsorption phenomenon of the cellulase components can be used for the controlling cellulose hydrolysis for the production of an array of sugars.  相似文献   

9.
Three strains of Clostridium thermocellum obtained from various sources were found to have nearly identical deoxyribonucleic acid guanosine plus cytosine contents that ranged from 38.1–39.5 mole-%. All strain examined fermented only cellulose and cellulose derivatives, but not glucose, or xylose or other sugars. The principal cellulose fermentation products were ethanol, lactate, acetate, hydrogen and carbon dioxide. Growth of C. thermocellum on cellulose resulted in the production of extracellular cellulase that was non-oxygen labile, was thermally stable at 70° C for 45 min and adsorbed strongly on cellulose. Production of cellulase during fermentation correlated linearly with growth and cellulose degradation. Both the yield and specific activity of crude cellulase varied considerably with the specific growth substrates. Highest cellulase yield was obtained when grown on native cellulose, -cellulose and low degree of polymerization cellulose but not carboxymethylcellulose or other carbohydrate sources. Cellulase activity was not detected when cells were grown on cellobiose. Crude extracellular protein preparations lacked proteolytic and cellobiase activity. The pH and temperafure optima for endoglucanase activity were 5.2 and 65° C, respectively, while that of the exoglucanase activity were 5.4 and 64° C, respectively. The specific activity at 60° c for exoglucanase and endoglucanase of crude cellulase obtained from cells grown on cellulose (MN 300) was 3.6 moles reducing sugar equivalents released per h (unit)/mg of protein and 1.5 mole reducing sugar equivalent released per min (unit)/mg of protein, respectively. The yield of endoglucanase was 125 units per g of cellulose MN 300 degraded and that of exoglucanase was 300 units per g of cellulose MN 300 degraded. Glucose and cellobiose were the hydrolytic end products of crude cellulase action on cellulose, cellotraose and cellotriose in vitro.  相似文献   

10.
Some kinetic parameters of the β-d-glucosidase (cellobiase, β-d-glucoside glucohydrolase, EC 3.2.1.21) component of Sturge Enzymes CP cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Penicillium funiculosum have been determined. The Michaelis constants (Km) for 4-nitrophenyl β-d-glucopyranoside (4NPG) and cellobiose are 0.4 and 2.1 mM, respectively, at pH 4.0 and 50°C. d-Glucose is shown to be a competitive inhibitor with inhibitor constants (Ki) of 1.7 mM when 4NPG is the substrate and 1 mM when cellobiose is the substrate. Cellobiose, at high concentrations, exhibits a substrate inhibition effect on the enzyme. d-Glucono-1,5-lactone is shown to be a potent inhibitor (Ki = 8 μM; 4NPG as substrate) while d-fructose exhibits little inhibition. Cellulose hydrolysis progress curves using Avicel or Solka Floc as substrates and a range of commercial cellulase preparations show that CP cellulase gives the best performance, which can be attributed to the activity of the β-d-glucosidase in this preparation in maintaining the cellobiose at low concentrations during cellulose hydrolysis.  相似文献   

11.
The crude extracellular cellulase of Clostridium thermocellum LQRI (virgin strain) was very active and solubilized microcrystalline cellulose at one-half the rate observed for the extracellular cellulase of Trichoderma reesei QM9414 (mutant strain). C. thermocellum cellulase activity differed considerably from that of T. reesei as follows: higher endoglucanase/exoglucanase activity ratio; absence of extracellular cellobiase or β-xylosidase activity; long-chain oligosaccharides instead of short-chain oligosaccharides as initial (15-min) hydrolytic products on microcrystalline cellulose; mainly cellobiose or xylobiose as long-term (24-h) hydrolysis products of Avicel and MN300 or xylan; and high activity and stability at 60 to 70°C. Under optimized reaction conditions, the kinetic properties (Vmax, 0.4 μmol/min per mg of protein; energy of activation, 33 kJ; temperature coefficient, 1.8) of C. thermocellum cellulose-solubilizing activity were comparable to those reported for T. reesei, except that the dyed Avicel concentration at half-maximal velocity was twofold higher (182 μM). The cellulose-solubilizing activity of the two crude cellulases differed considerably in response to various enzyme inhibitors. Most notably, Ag2+ and Hg2+ effectively inhibited C. thermocellum but not T. reesei cellulase at <20 μM, whereas Ca2+, Mg2+, and Mn2+ inhibited T. reesei but not C. thermocellum cellulase at >10 mM. Both enzymes were inhibited by Cu2+ (>20 mM), Zn2+ (>1.0 mM), and ethylene glycol-bis(β-aminoethyl ether)- N,N-tetraacetic acid (>10 mM). T. reesei but not C. thermocellum cellulose-solubilizing activity was 20% inhibited by glucose (73 mM) and cellobiose (29 mM). Both cellulases preferentially cleaved the internal glycosidic bonds of cellooligosaccharides. The overall rates of cellooligosaccharide degradation were higher for T. reesei than for C. thermocellum cellulase, except that the rates of conversion of cellohexaose to cellotriose were equivalent.  相似文献   

12.
Cellulosome synthesis by Clostridium cellulovorans was investigated by growing the cells in media containing different carbon sources. Supernatant from cells grown with cellobiose contained no cellulosomes and only the free forms of cellulosomal major subunits CbpA, P100, and P70 and the minor subunits with enzymatic activity. Supernatant from cells grown on pebble-milled cellulose and Avicel contained cellulosomes capable of degrading crystalline cellulose. Supernatants from cells grown with cellobiose, pebble-milled cellulose, and Avicel contained about the same amount of carboxymethyl cellulase activity. Although the supernatant from the medium containing cellobiose did not initially contain active cellulosomes, the addition of crystalline cellulose to the cell-free supernatant fraction converted the free major forms to cellulosomes with the ability to degrade crystalline cellulose. The binding of P100 and P70 to crystalline cellulose was dependent on their attachment to the endoglucanase-binding domains of CbpA. These data strongly indicate that crystalline cellulose promotes cellulosome assembly.  相似文献   

13.
Adsorption of cellulase on solids resulting from pretreatment of poplar wood by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid (DA), flowthrough (FT), lime, and sulfur dioxide (SO2) and pure Avicel glucan was measured at 4°C, as were adsorption and desorption of cellulase and adsorption of β‐glucosidase for lignin left after enzymatic digestion of the solids from these pretreatments. From this, Langmuir adsorption parameters, cellulose accessibility to cellulase, and the effectiveness of cellulase adsorbed on poplar solids were estimated, and the effect of delignification on cellulase effectiveness was determined. Furthermore, Avicel hydrolysis inhibition by enzymatic and acid lignin of poplar solids was studied. Flowthrough pretreated solids showed the highest maximum cellulase adsorption capacity (σsolids = 195 mg/g solid) followed by dilute acid (σsolids = 170.0 mg/g solid) and lime pretreated solids (σsolids = 150.8 mg/g solid), whereas controlled pH pretreated solids had the lowest (σsolids = 56 mg/g solid). Lime pretreated solids also had the highest cellulose accessibility (σcellulose = 241 mg/g cellulose) followed by FT and DA. AFEX lignin had the lowest cellulase adsorption capacity (σlignin = 57 mg/g lignin) followed by dilute acid lignin (σlignin = 74 mg/g lignin). AFEX lignin also had the lowest β‐glucosidase capacity (σlignin = 66.6 mg/g lignin), while lignin from SO2lignin = 320 mg/g lignin) followed by dilute acid had the highest (301 mg/g lignin). Furthermore, SO2 followed by dilute acid pretreated solids gave the highest cellulase effectiveness, but delignification enhanced cellulase effectiveness more for high pH than low pH pretreatments, suggesting that lignin impedes access of enzymes to xylan more than to glucan, which in turn affects glucan accessibility. In addition, lignin from enzymatic digestion of AFEX and dilute acid pretreated solids inhibited Avicel hydrolysis less than ARP and flowthrough lignin, whereas acid lignin from unpretreated poplar inhibited enzymes the most. Irreversible binding of cellulase to lignin varied with pretreatment type and desorption method. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

14.
The fermentation of various saccharides derived from cellulosic biomass to ethanol was examined in mono- and cocultures of Clostridium thermocellum strain LQRI and C. thermohydrosulfuricum strain 39E. C. thermohydrosulfuricum fermented glucose, cellobiose, and xylose, but not cellulose or xylan, and yielded ethanol/acetate ratios of >7.0. C. thermocellum fermented a variety of cellulosic substrates, glucose, and cellobiose, but not xylan or xylose, and yielded ethanol/acetate ratios of ~1.0. At nonlimiting cellulosic substrate concentrations (~1%), C. thermocellum cellulase hydrolysis products accumulated during monoculture fermentation of Solka Floc cellulose and included glucose, cellobiose, xylose, and xylobiose. A stable coculture that contained nearly equal numbers of C. thermocellum and C. thermohydrosulfuricum was established that fermented a variety of cellulosic substrates, and the ethanol yield observed was twofold higher than in C. thermocellum monoculture fermentations. The metabolic basis for the enhanced fermentation effectiveness of the coculture on Solka Floc cellulose included: the ability of C. thermocellum cellulase to hydrolyze α-cellulose and hemicellulose; the enhanced utilization of mono- and disaccharides by C. thermohydrosulfuricum; increased cellulose consumption; threefold increase in the ethanol production rate; and twofold decrease in the acetate production rate. The coculture actively fermented MN300 cellulose, Avicel, Solka Floc, SO2-treated wood, and steam-exploded wood. The highest ethanol yield obtained was 1.8 mol of ethanol per mol of anhydroglucose unit in MN300 cellulose.  相似文献   

15.
Moderate loadings of cellulase enzyme supplemented with beta-glucosidase were applied to solids produced by ammonia fiber expansion (AFEX), ammonia recycle (ARP), controlled pH, dilute sulfuric acid, lime, and sulfur dioxide pretreatments to better understand factors that control glucose and xylose release following 24, 48, and 72 h of hydrolysis and define promising routes to reducing enzyme demands. Glucose removal was higher from all pretreatments than from Avicel cellulose at lower enzyme loadings, but sugar release was a bit lower for solids prepared by dilute sulfuric acid in the Sunds system and by controlled pH pretreatment than from Avicel at higher protein loadings. Inhibition by cellobiose was observed to depend on the type of substrate and pretreatment and hydrolysis times, with a corresponding impact of beta-glucosidase supplementation. Furthermore, for the first time, xylobiose and higher xylooligomers were shown to inhibit enzymatic hydrolysis of pure glucan, pure xylan, and pretreated corn stover, and xylose, xylobiose, and xylotriose were shown to have progressively greater effects on hydrolysis rates. Consistent with this, addition of xylanase and beta-xylosidase improved performance significantly. For a combined mass loading of cellulase and beta-glucosidase of 16.1 mg/g original glucan (about 7.5 FPU/g), glucose release from pretreated solids ranged from 50% to75% of the theoretical maximum and was greater for all pretreatments at all protein loadings compared to pure Avicel cellulose except for solids from controlled pH pretreatment and from dilute acid pretreatment by the Sunds pilot unit. The fraction of xylose released from pretreated solids was always less than for glucose, with the upper limit being about 60% of the maximum for ARP and the Sunds dilute acid pretreatments at a very high protein mass loading of 116 mg/g glucan (about 60 FPU).  相似文献   

16.
Biological pretreatment of rice straw and production of reducing sugars by hydrolysis of bio-pretreated material with Streptomyces griseorubens JSD-1 was investigated. After 10 days of incubation, various chemical compositions of inoculated rice straw were degraded and used for further enzymatic hydrolysis studies. The production of cellulolytic enzyme by S. griseorubens JSD-1 favored the conversion of cellulose to reducing sugars. The culture medium for cellulolytic enzyme production by using agro-industrial wastes was optimized through response surface methodology. According to the response surface analysis, the concentrations of 11.13, 20.34, 4.61, and 2.85 g L?1 for rice straw, wheat bran, peptone, and CaCO3, respectively, were found to be optimum for cellulase and xylanase production. Then the hydrolyzed spent Streptomyces cells were used as a nitrogen source and the maximum filter paper cellulase, carboxymethylcellulase, and xylanase activities of 25.79, 78.91, and 269.53 U mL?1 were achieved. The crude cellulase produced by S. griseorubens JSD-1 was subsequently used for the hydrolysis of bio-pretreated rice straw, and the optimum saccharification efficiency of 88.13% was obtained, indicating that the crude enzyme might be used instead of commercial cellulase during a saccharification process. These results give a basis for further study of bioethanol production from agricultural cellulosic waste.  相似文献   

17.
Trichoderma viride ITCC-1433 secretes a cellulase complex that is rich in β-glucosidase and therefore well suited for the saccharification of cellulosic materials. The cellulase was investigated with respect to optimum conditions of reaction and enzyme stability. Avicelase, CMCase, and β-glucosidase differed considerably in their physicochemical properties. At temperatures above 50°C, β-glucosidase is not very stable. Therefore, as a compromise the conditions of hydrolysis were chosen to be 50°C and pH 4.5. With the crude culture filtrate of T. viride ITCC-1433 a nearly pure glucose solution of 4% is reached from a 10% cellulose suspension. Wood pulp and newsprint are hydrolyzed to a much smaller extent. With an enzyme concentrate up to 8% glucose accumulated in the reaction fluid within 48 hr. At this time the glucose-cellobiose ratio was 75:1. Glucose was demonstrated to be the most potent inhibitor of total hydrolysis. The addition of glucose to the enzyme-substrate solution at zero time completely stopped its own formation and cellobiose and reducing groups (oligosaccharides) accumulated. By removing glucose through an ultrafilter device about 90% saccharification of cellulose to glucose was achieved in 48 hr without any accumulation of cellobiose.  相似文献   

18.
Pretreatment of cellulose with an industrial cellulosic solvent, N-methylmorpholine-N-oxide, showed promising results in increasing the rate of subsequent enzymatic hydrolysis. Cotton linter was used as high crystalline cellulose. After the pretreatment, the cellulose was almost completely hydrolyzed in less than 12 h, using low enzyme loading (15 FPU/g cellulose). The pretreatment significantly decreased the total crystallinity of cellulose from 7.1 to 3.3, and drastically increased the enzyme adsorption capacity of cellulose by approximately 42 times. A semi-mechanistic model was used to describe the relationship between the cellulose concentration and the enzyme loading. In this model, two reactions for heterogeneous reaction of cellulose to glucose and cellobiose, and a homogenous reaction for cellobiose conversion to glucose was incorporated. The Langmuir model was applied to model the adsorption of cellulase onto the treated cellulose. The competitive inhibition was also considered for the effects of sugar inhibition on the rate of enzymatic hydrolysis. The kinetic parameters of the model were estimated by experimental results and evaluated.  相似文献   

19.
The production of cellulases from Stachybotrys microspora strain (A19) has been improved by fed-batch fermentation on Avicel cellulose 10 mg/ml. An endoglucanase EG2 was purified to homogeneity. This cellulase has a molecular mass estimated to 50 kDa when analyzed by a denaturant gel electrophoresis. It exhibited an optimal activity at 50 °C, pH 7.0 and 0.85 M NaCl. Specifically, these results show the thermo-active, alkali-tolerant and halo-tolerant properties of EG2. In addition, this endoglucanase showed its highest activity on barley-β-glucan, compared to the CMC. Moreover, it was less active on Avicel cellulose. Furthermore, the EG2 activity was stimulated in the presence of EDTA, urea and β-mercaptoethanol whereas it was reduced in the presence of SDS. This cellulase was highly stable in the presence of organic solvents such as acetone and n-hexane. TLC showed that the main hydrolysis products from EG2 were cellobiose and glucose. This fungal endoglucanase could be potentially important in the conversion of grass-derived biomass into fermentable sugars.  相似文献   

20.
A potentially novel aerobic, thermophilic, and cellulolytic bacterium designated as Brevibacillus sp. strain JXL was isolated from swine waste. Strain JXL can utilize a broad range of carbohydrates including: cellulose, carboxymethylcellulose (CMC), xylan, cellobiose, glucose, and xylose. In two different media supplemented with crystalline cellulose and CMC at 57°C under aeration, strain JXL produced a basal level of cellulases as FPU of 0.02 IU/ml in the crude culture supernatant. When glucose or cellobiose was used besides cellulose, cellulase activities were enhanced ten times during the first 24 h, but with no significant difference between these two simple sugars. After that time, however, culture with glucose demonstrated higher cellulase activities compared with that from cellobiose. Similar trend and effect on cellulase activities were also obtained when glucose or cellobiose served as a single substrate. The optimal doses of cellobiose and glucose for cellulase induction were 0.5 and 1%. These inducing effects were further confirmed by scanning electron microscopy (SEM) images, which indicated the presence of extracellular protuberant structures. These cellulosome-resembling structures were most abundant in culture with glucose, followed by cellobiose and without sugar addition. With respect to cellulase activity assay, crude cellulases had an optimal temperature of 50°C and a broad optimal pH range of 6–8. These cellulases also had high thermotolerance as evidenced by retaining more than 50% activity at 100°C after 1 h. In summary, this is the first study to show that the genus Brevibacillus may have strains that can degrade cellulose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号