首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Predator odours and habitat structure are thought to influence the behaviour of small mammalian prey, which use them as cues to reduce risks of predation. We tested this general hypothesis for house mice, Mus domesticus, by manipulating fox odour density via addition of fox scats and habitat via patchy mowing of vegetation, for populations in 15 × 15-m field enclosures. Using giving-up densities (GUDs), the density of food remaining when an animal quits harvesting a patch, we measured foraging behaviours in response to these treatments. Mice consistently avoided open areas, leaving GUDs two to four times greater in these areas than in densely vegetated patches. However, mouse GUDs did not change in response to the addition of fox scats, even immediately after fresh scats were added. There was no interaction between fox odour and habitat use. We then tested whether habituation to fox odours had occurred, by comparing the individual responses to scats of eight mice born into enclosures with fox scats to those of eight mice born into scat-free enclosures and five wild mice. In smaller enclosures, GUDs of trays with scats did not differ from GUDs of trays without scats for any treatment. We conclude that exposure to high levels of fox odours did not alter the foraging behaviour of mice, but that mice did reduce foraging in areas where habitat was removed, perceiving predation risk to be greater in these areas than controls. We suggest further that studies using the ‘scat-at-trap’ technique, which have shown avoidance of predator odours by mice and other small mammals, may overestimate the general avoidance of predator odours by free-living prey, which must forage with a constant background of predator odours.  相似文献   

3.
4.
Do stomata respond to relative humidity?   总被引:12,自引:12,他引:12  
  相似文献   

5.
6.
Are major roads a barrier to small mammals?   总被引:2,自引:0,他引:2  
  相似文献   

7.
Antipredator behaviour is an important fitness component in most animals. A co-evolutionary history between predator and prey is important for prey to respond adaptively to predation threats. When non-native predator species invade new areas, native prey may not recognise them or may lack effective antipredator defences. However, responses to novel predators can be facilitated by chemical cues from the predators’ diet. The red swamp crayfish Procambarus clarkii is a widespread invasive predator in the Southwest of the Iberian Peninsula, where it preys upon native anuran tadpoles. In a laboratory experiment we studied behavioural antipredator defences (alterations in activity level and spatial avoidance of predator) of nine anurans in response to P. clarkii chemical cues, and compared them with the defences towards a native predator, the larval dragonfly Aeshna sp. To investigate how chemical cues from consumed conspecifics shape the responses, we raised tadpoles with either a tadpole-fed or starved crayfish, or dragonfly larva, or in the absence of a predator. Five species significantly altered their behaviour in the presence of crayfish, and this was largely mediated by chemical cues from consumed conspecifics. In the presence of dragonflies, most species exhibited behavioural defences and often these did not require the presence of cues from predation events. Responding to cues from consumed conspecifics seems to be a critical factor in facilitating certain behavioural responses to novel exotic predators. This finding can be useful for predicting antipredator responses to invasive predators and help directing conservation efforts to the species at highest risk.  相似文献   

8.
The response of pea aphids, Acyrthosiphon pisum, to aphid alarm pheromone was not modified by infection with Beauveria bassiana. Approximately 50% of uninfected and infected aphids responded to synthetic alarm pheromone. The simulated attack of aphids infected with B. bassiana did not elicit a response in uninfected aphids. Preliminary air entrainment experiments of both uninfected aphids and aphids at different stages of B. bassiana (generalist pathogen) or P. neoaphidis (obligate pathogen of aphids) demonstrated that B. bassiana infected aphids produced less alarm pheromone than uninfected aphids and, conversely, P. neoaphidis infected aphids produced more alarm pheromone than uninfected aphids. These results are discussed with particular emphasis on the different life history strategies of these two pathogens. We hypothesise that the obligate, specialist pathogen, P. neoaphidis, is under greater selection pressure to increase pathogen transmission and survival resulting in modified host behaviour, than the generalist pathogen, B. bassiana.  相似文献   

9.
Aim Charles Darwin posited that introduced species with close relatives were less likely to succeed because of fiercer competition resulting from their similarity to residents. There is much debate about the generality of this rule, and recent studies on plant and fish introductions have been inconclusive. Information on phylogenetic relatedness is potentially valuable for explaining invasion outcomes and could form part of screening protocols for minimizing future invasions. We provide the first test of this hypothesis for terrestrial vertebrates using two new molecular phylogenies for native and introduced reptiles for two regions with the best data on introduction histories. Location California and Florida, USA. Methods We performed an ordination of ecological traits to confirm that ecologically similar species are indeed closely related phylogenetically. We then inferred molecular phylogenies for introduced and native reptiles using sequence data for two nuclear and three mitochondrial genes. Using these phylogenies, we computed two distance metrics: the mean phylogenetic distance (MPD) between each introduced species and all native species in each region (which indicates the potential interactions between introduced species and all native species in the community) and the distance of each introduced species to its nearest native relative – NN (indicating the degree of similarity and associated likelihood of competition between each introduced species and its closest evolutionary analogue). These metrics were compared for introduced species that established and those that failed. Results We demonstrate that phylogenetically related species do share similar ecological functions. Furthermore, successfully introduced species are more distantly related to natives (for NN and MPD) than failed species, although variation is high. Main conclusions The evolutionary history of a region has value for explaining and predicting the outcome of human‐driven introductions of reptiles. Phylogenetic metrics are thus useful inputs to multi‐factor risk assessments, which are increasingly required for screening introduced species.  相似文献   

10.
Zygopteran larvae normally encounter other aquatic macroinvertebrates that are predators, competitors, and prey and should therefore demonstrate varied responses when faced with different categories of opponent. In a laboratory experiment individual final-instarIschnura posita (Hagen) larvae were observed in interactions with six categories of invertebrate opponents. The opponent categories were a nonconspecific damselfly and a small crayfish, which represented threatening opponents because they were larger than theI. posita subject larva, and a mayfly and a stonefly, which constituted nonthreatening opponents because they were smaller than the subject larva. The levels of threat posed by conspecific larvae of final and penultimate instar were inferred by comparison to the other opponent categories. Multivariate analysis showedI. posita's response differed between the two larger opponents, but responses were statistically indistinguishable between the two smaller opponents. Larvae retreated, moved around the stalk, and struck their opponents with their lamellae more often in the presence of a crayfish than the nonconspecific zygopteran. In contrast, they assumed an S-bend posture frequently with the zygopteran. Responses toward final-instar conspecifics differed from responses toward the larger opponents. Effectively, larvae wagged their abdomens only in the presence of final-instar conspecifics and retreated and moved around the stalk less frequently in these trials. Responses toward the smaller conspecifics differed from the responses to the small opponents. Larvae struck penultimate-instar conspecifics with their lamellae more frequently than the other small opponents. Our results suggest that larval zygopteran behaviors (such as S-bend and SCS) that have previously been described as intraspecific displays are of a more general nature and used toward a variety of opponents, whereas wag is unique to intraspecific interactions inI. posita.  相似文献   

11.
12.
Spatial scale is fundamental in understanding species–landscape relationships because species’ responses to landscape characteristics typically vary across scales. Nonetheless, such scales are often unidentified or unreliably predicted by theory. Many landscapes worldwide are urbanizing, yet the spatial scaling of species’ responses to urbanization is poorly understood. We investigated the spatial scaling of urbanization effects on a community of 15 mammal species using ~60 000 wildlife detections collected from a constellation of 207 camera traps across an extensive urban park system. We embedded a bivariate Gaussian kernel in hierarchical multi-species models to determine two scales of effect (a scale of maximal effect and a broader scale of cumulative landscape effect) for two biological responses (occupancy and site visit frequency) across two seasons (winter and summer) for each species. We then assessed whether scales of effect varied according to theoretical predictions associated with biological responses and species traits (body size and mobility). Scales of effect ranged from < 50 m to > 9000 m and varied among species, but not as predicted by theory. Species’ occupancy generally showed a weak response to urbanization and the scale of this effect was both highly uncertain and consistent across species. We did not detect any relationship between scales of effect and species’ body size or mobility, nor was there any evident pattern of scaling across biological response or seasons. These results imply that 1) urbanization effects on mammals manifest across a very broad spectrum of spatial scales, and 2) current theories that a priori predict the scale at which urbanization affects mammals may be of limited use within a given system. Overall, this study suggests that developing general theory regarding the scaling of species–landscape relationships requires additional empirical work conducted across multiple species, systems and timescales.  相似文献   

13.
Mainly based on a simulation model, Lloyd & Farquhar (1996 ; Functional Ecology, 10, 4–32) predict that inherently slow-growing species and nutrient-stressed plants show a relatively strong growth response to an increased atmospheric CO2 concentration. Compiling published experiments, I conclude that these predictions are not supported by the available data. On average, inherently fast-growing species are stimulated proportionately more in biomass than slow-growing species and plants grown at a high nutrient supply respond more strongly than nutrient-stressed plants.  相似文献   

14.
Invasion by non-native conifers may pose a threat to local biodiversity, but knowledge about introduced conifer effects on Northern Hemisphere ecosystems is scarce. The coastal heathlands of north-west Europe are threatened by invasion of native and introduced tree species. We assess how spread of the introduced conifer Sitka spruce (Picea sitchensis (Bong.) Carr.) into European coastal heathlands affect two major functional groups; vascular plants and bryophytes, and how these effects relate to the environmental changes imposed by the developing tree canopies. We compared the impact of introduced Sitka spruce and native Scots pine (Pinus sylvestris L.) by analysing effects on species richness and turnover of vascular plants and bryophytes along fine-scale transects from individual tree stems into open heathland vegetation. Environmental impacts were assessed by measured environmental variables, and the responses of the two species groups were assessed by calculating changes in their respective mean Ellenberg indicator values. Species richness decreased beneath both conifers, related to decreased light and increased nitrogen and pH. Whereas vascular plants responded negatively to poor light conditions beneath dense and low Sitka spruce canopies, bryophytes were more negatively affected by the warmer and drier microclimates beneath Scots pine. Introduced Sitka spruce impacts the sub-canopy environment differently from the native Scots pine, and the two functional plant groups responded differently to these impacts. This suggests that future forests are likely to differ in species richness and composition, depending on whether succession is based on native or introduced coniferous trees.  相似文献   

15.
In a recent communication by Stat and Gates (Biol Invasions 10: 579–583, 2008), discovery of a symbiotic combination involving the coral Acropora cytherea and the dinoflagellate endosymbiont, Symbiodinium A1 (Symbiodinium microadriaticum, Freudenthal sensu stricto) in the Northwest Hawaiian Islands was interpreted to be the result of a ‘recent’ introduction. While introductions of symbiotic dinoflagellates have occurred and are occurring, the authors’ conclusion was made without sufficient information about the geographic range and host specificity exhibited by A1. The only direct genetic analysis of symbionts from the putative host vector, a jellyfish in the genus Cassiopeia sp., from Kaneohe Bay on the Island of Oahu, found that it contained a different symbiont species, A3. Furthermore, Stat and Gates (Biol Invasions 10: 579–583, 2008) did not consider the importance of host-symbiont specificity in preventing the establishment of a foreign symbiont species. In comparison to A. cytherea, A. longicyathus on the southern most Great Barrier Reef also hosts Symbiodinium A1 and a closely related endemic, A1a. Instead of assuming that A. cytherea has an unnatural association, a practical explanation is that long-term ecological and evolutionary processes influenced by local environments underlie the unusual, but not unprecedented finding of a Pacific acroporid associating with Clade A Symbiodinium spp.  相似文献   

16.
17.
Three-to-five-year population oscillations of northern small rodents are usually synchronous over hundreds of square kilometers. This regional synchrony could be due to similarity in climatic factors, or due to nomadic predators reducing the patches of high prey density close to the average density of a larger area. We estimated avian predator and small rodent densities in 4–5 predator reduction and 4–5 control areas (c. 3 km2 each) during 1989–1992 in western Finland. We studied whether nomadic avian predators concentrate at high prey density areas, and whether this decreases spatial variation in prey density. The yearly mean number of avian predator breeding territories was 0.2–1.0 in reduction areas and 3.0–8.2 in control areas. Hunting birds of prey concentrated in high prey density areas after their breeding season (August), but not necessarily during the breeding season (April to June), when they were constrained to hunt in vicinity of the nest. The experimental reduction of breeding avian predators increased variation in prey density among areas but not within areas. The difference in variation between raptor reduction and control areas was largest in the late breeding season of birds of prey, and decreased rapidly after the breeding season. These results appeared to support the hypothesis that the geographic synchrony of population cycles in small mammals may be driven by nomadic predators concentrating in high prey density areas. Predation and climatic factors apparently are complementary, rather than exclusive, factors in contributing to the synchrony.  相似文献   

18.
The black rat, Rattus rattus, is an alien rodent in Australian ecosystems where niche overlap with native small mammals may lead to competition for resources and displacement of native species. In coastal habitats surrounding Jervis Bay in south‐eastern Australia, R. rattus co‐occurs with the native bush rat, Rattus fuscipes, and brown antechinus, Antechinus stuartii. Relative distributions and abundances, and fine‐scale space use suggest invasive and native rodents compete for use of space and habitat. Such competitive interactions were not evident between R. rattus and native A. stuartii, which was negatively influenced more by disturbance to habitat. Differences in rodent communities between spatially separate forests forming the northern and southern peninsulas of Jervis Bay potentially reflect symmetrical competition and differences in competitive outcomes. In southern forests, R. rattus was largely restricted to patches of disturbed forest associated with campgrounds. Competitive interference by native rodent populations inhabiting surrounding intact forests may have so far limited R. rattus colonization of these areas. In northern forests, R. rattus was the predominant rodent irrespective of disturbance, while populations of R. fuscipes were unusually low seemingly due to poor juvenile recruitment. Native individuals avoided areas frequented by adult R. rattus and given that species did not partition use of microhabitats, R. rattus most likely precluded R. fuscipes from suitable habitat and in doing so limited native populations. We discuss how natural disturbance of habitat and human activity have potentially facilitated successful invasion by R. rattus of the northern forests. Studies that manipulate rodent populations are required to support these interpretations of observed patterns.  相似文献   

19.
Although a number of recent studies have demonstrated biotic homogenization, these have mainly focused on larger spatial scales. Homogenizing effects are equally important at finer resolutions, e.g. through increasing similarity between habitats, which may result in a simplification of ecosystem structure and function. One major cause of homogenization is the expanding ranges of alien species, although it is not clear whether they are inherently homogenizing at smaller scales. We therefore assessed whether the alien flora is less complex across habitats than the resident native flora of Mediterranean Islands. From a regional data base, we examined floristic lists for between‐habitat taxonomic and functional similarity, and within‐habitat functional diversity, using resampled data sets to control for sample size biases. Aliens and natives showed equivalent complexity in most respects. At the taxonomic level, between‐island and between‐habitat similarities were almost identical, and when ecosystem function was measured by a functional group classification system, this was also true of between‐habitat similarities and within‐habitat diversities. When ecosystem function was measured using Grime's CSR classification, aliens were found to be more functionally homogenous between‐habitats and less functionally diverse within habitats. However, since the CSR profiles of aliens and natives differed, simplification is not inevitable due to ecological segregation of the two floras (aliens tend to be recruited to disturbed habitats rather than displacing natives). One deficiency is a lack of large scale species abundance data. A simple simulation exercise indicated that this is likely to lead to substantial overestimation of true levels of similarity, although would only influence the comparison between aliens and natives if they have different abundance distribution curves. The results indicate that alien floras are not intrinsically more simple than natives, but a higher proportion of competitive strategists among aliens may still cause small‐scale homogenization as these include many strong competitors that are likely to dominate communities.  相似文献   

20.
Native fishes worldwide have declined as a consequence of habitat loss and degradation and introduction of non-native species. In response to these declines, river restoration projects have been initiated to enhance habitat and remove introduced fishes; however, non-native fish removal is not always logistically feasible or socially acceptable. Consequently, managers often seek to enhance degraded habitat in such a way that native fishes can coexist with introduced species. We quantified dynamics of fish communities to three newly constructed side channels in the Provo River, Utah, USA, to determine if and how they promoted coexistence between native fishes (nine species) and non-native brown trout (Salmo trutta L.). Native and introduced fishes responded differently in each side channel as a function of the unique characteristics and histories of side channels. Beaver activity in two of the three side channels caused habitat differentiation or channel isolation that facilitated the establishment of native species. The third side channel had greater connectivity to and similar habitat as the main channel of the Provo River, resulting in a similar fish community to main channel habitats (i.e. dominated by brown trout with only a few native fish species). These results demonstrate the importance of understanding habitat preferences for each species in a community to guide habitat enhancement projects and the need to create refuge habitats for native fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号