首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An increase in atmospheric CO2 concentration ([CO2]) together with other climate change factors could greatly affect agricultural productivity. Understanding the impact of the change in atmospheric [CO2] in conjunction with the ongoing global change is crucial to prepare for mitigation and any adaptation for future agricultural production. The main goal of this project was to study the time-course pattern of cotton plant growth in response to [CO2] and temperature to investigate the hypothesis that whether response to elevated [CO2] would change at different temperatures. An experiment was conducted in the controlled-environment chambers of the Georgia Envirotron with two different day/night temperatures levels, e.g., 25/15 °C and 35/25 °C, and three CO2 concentrations, e.g., 400, 600 and 800 μmol l?1. The experimental design was completely randomized with four replicates (plastic containers) per treatment. Growth analysis was conducted at bi-weekly intervals during the growing season. In addition, leaf area, leaf dry mass, root dry mass, square dry mass, boll dry mass and total above dry mass per plant were also measured at each sampling. Plant traits, including plant height, number of leaves, number of squares and number of bolls were recorded weekly. The number of days to emergence, squaring, flowering and maturity were also observed. The results showed that by increasing [CO2] to 600 μmol l?1 total biomass increased at both temperature levels, but a further increase of [CO2] up to 800 μmol l?1 increased total biomass only at the temperature of 35/25 °C. Throughout the growing season, there was no significant effect of [CO2] levels on LAI. Increasing temperature from 25/15 °C to 35/25 °C had a positive impact on LAI across all CO2 levels (P < 0.05). Increasing CO2 from 400 to 600 μmol l?1 significantly increased the number of squares by 31.4%, but a further increase to 800 μmol l?1 caused a 6.6% decrease (non-significant) in the number of squares. The interactive effects of [CO2] and temperature indicated that at a higher temperature, CO2 would be more beneficial as we proceed towards the end of the growing season. However, further studies are needed to really understand the interaction between higher [CO2] and temperature levels and cultivar characteristics.  相似文献   

2.
Peanut (Arachis hypogaea L. cv. Florunner) was grown from seed sowing to plant maturity under two daytime CO2 concentrations ([CO2]) of 360 μmol mol−1 (ambient) and 720 μmol mol−1 (elevated) and at two temperatures of 1.5 and 6.0 °C above ambient temperature. The objectives were to characterize peanut leaf photosynthesis responses to long-term elevated growth [CO2] and temperature, and to assess whether elevated [CO2] regulated peanut leaf photosynthetic capacity, in terms of activity and protein content of ribulose bisphosphate carboxylase-oxygenase (Rubisco), Rubisco photosynthetic efficiency, and carbohydrate metabolism. At both growth temperatures, leaves of plants grown under elevated [CO2] had higher midday photosynthetic CO2 exchange rate (CER), lower transpiration and stomatal conductance and higher water-use efficiency, compared to those of plants grown at ambient [CO2]. Both activity and protein content of Rubisco, expressed on a leaf area basis, were reduced at elevated growth [CO2]. Declines in Rubisco under elevated growth [CO2] were 27–30% for initial activity, 5–12% for total activity, and 9–20% for protein content. Although Rubisco protein content and activity were down-regulated by elevated [CO2], Rubisco photosynthetic efficiency, the ratio of midday light-saturated CER to Rubisco initial or total activity, of the elevated-[CO2] plants was 1.3- to 1.9-fold greater than that of the ambient-[CO2] plants at both growth temperatures. Leaf soluble sugars and starch of plants grown at elevated [CO2] were 1.3- and 2-fold higher, respectively, than those of plants grown at ambient [CO2]. Under elevated [CO2], leaf soluble sugars and starch, however, were not affected by high growth temperature. In contrast, high temperature reduced leaf soluble sugars and starch of the ambient-[CO2] plants. Activity of sucrose-P synthase, but not adenosine 5′-diphosphoglucose pyrophosphorylase, was up-regulated under elevated growth [CO2]. Thus, in the absence of other environmental stresses, peanut leaf photosynthesis would perform well under rising atmospheric [CO2] and temperature as predicted for this century.  相似文献   

3.
Climate change factors interact to modify plant growth and development. The objective of this study was to evaluate the response to temperature of big bluestem (Andropogon gerardii Vitman) development, growth, reproduction and biomass partitioning under low and high carbon dioxide concentrations ([CO2]) grown in controlled environmental conditions. Ten sunlit soil–plant–atmosphere-research (SPAR) chambers were used to study the effects of two [CO2] of low (360 μL L−1) and high (720 μL L−1), and five different day/night temperatures of 20/12, 25/17, 30/22, 35/27 and 40/32 °C. Big bluestem cv. Bonelli seeds were sown in pure, fine sand, in 11 rows at equal spacing and after emergence were thinned to 10 plants per row. At maturity, individual plants were harvested and divided into leaves, stems, panicles and roots. Biomass decreased either above or below the optimum temperature of 30/22 °C. The effect of high [CO2] on biomass accumulation (12–30% increase) was visible at less than optimum temperature (30/22 °C) and absent at two high temperatures. With increase in temperature, irrespective of the [CO2], biomass partitioned to leaves increased (35%) where as that to stems decreased (33%). Panicle weight was 6–7% of biomass at 25/17 °C and fell to 1.6% at 40/32 °C. The biomass partitioned to roots, across the temperatures, was constant for plants grown at low [CO2] but decreased by 7% for those grown at high [CO2]. The decrease in panicle/seed production at two high temperatures (>30/22 °C) might reduce this species population and dominance in tallgrass prairies. The temperature response functions at different [CO2] will be useful to improve the predictive capabilities of dynamic global vegetation models in simulating dynamics of rangelands, where big bluestem is the dominant species.  相似文献   

4.
This study investigated the effects of a gradual versus step increases in carbon dioxide (CO2) on plant photosynthesis and growth at two nitrogen (N) levels. Plantago lanceolata were grown for 80 days and then treated with the ambient CO2 (as the control), gradual CO2 increase and step CO2 increase as well as low and high N additions for 70 days. While [CO2] were kept at constant 350 and 700 μmol mol−1 for the ambient and step CO2 treatments, respectively, [CO2] in the gradual CO2 treatment was raised by 5 μmol mol−1 day−1, beginning at 350 μmol mol−1 and reaching 700 μmol mol−1 by the end of experiment. The step CO2 treatment immediately resulted in an approximate 50% increase in leaf photosynthetic carbon fixation at both the low and high N additions, leading to a 20–24% decrease in leaf N concentration. The CO2-induced nitrogen stress, in return, resulted in partial photosynthetic downregulation since the third week at the low N level and the fourth week at the high N level after treatments. In comparison, the gradual CO2 treatment induced a gradual increase in photosynthetic carbon fixation, leading to less reduction in leaf N concentration. In comparison to the ambient CO2, both the gradual and step CO2 increases resulted in decreases in specific leaf area, leaf N concentration but an increase in plant biomass. Responses of plant shoot:root ratio to CO2 treatments varied with N supply. It decreased with low N supply and increased with high N supply under the gradual and step CO2 treatments relative to that under the ambient CO2. Degrees of those changes in physiological and growth parameters were usually larger under the step than the gradual CO2 treatments, largely due to different photosynthetic C influxes under the two CO2 treatments.  相似文献   

5.
The main goal of this study was to test the effect of [CO2] on C and N management in different plant organs (shoots, roots and nodules) and its implication in the responsiveness of exclusively N2-fixing and NO3-fed plants. For this purpose, exclusively N2-fixing and NO3-fed (10 mM) pea (Pisum sativum L.) plants were exposed to elevated [CO2] (1000 μmol mol−1 versus 360 μmol mol−1 CO2). Gas exchange analyses, together with carbohydrate, nitrogen, total soluble proteins and amino acids were determined in leaves, roots and nodules. The data obtained revealed that although exposure to elevated [CO2] increased total dry mass (DM) in both N treatments, photosynthetic activity was down-regulated in NO3-fed plants, whereas N2-fixing plants were capable of maintaining enhanced photosynthetic rates under elevated [CO2]. In the case of N2-fixing plants, the enhanced C sink strength of nodules enabled the avoidance of harmful leaf carbohydrate build up. On the other hand, in NO3-fed plants, elevated [CO2] caused a large increase in sucrose and starch. The increase in root DM did not contribute to stimulation of C sinks in these plants. Although N2 fixation matched plant N requirements with the consequent increase in photosynthetic rates, in NO3-fed plants, exposure to elevated [CO2] negatively affected N assimilation with the consequent photosynthetic down-regulation.  相似文献   

6.
Exposing plants to long-term CO2 enrichment generally leads to increases in plant biomass, total leaf area and alterations on leaf net photosynthetic rates, stomatal conductance and water use efficiency. However, the magnitude of such effects is dependent on the availability of other potentially limiting resources. The aim of our study was to elucidate the effects of elevated CO2, applied at different temperature and water availability regimes, on nodulated alfalfa plants. Regardless of water supply, elevated CO2 enhanced plant growth, especially when combined with increased temperature although no differences were detected until 30 days of treatment. Absence of differences in leaf relative growth rate, and gas exchange measurements, suggested that plants grown in a low water regime adjusted their growth to the amount of available water. Elevated CO2 enhanced water use efficiency because of reduced water consumption and a greater dry mass production. Increased dry matter production of plants grown under elevated CO2 and temperature was the result of stimulated photosynthetic rates, greater leaf area and water use efficiency. Lack of CO2 effect on photosynthesis of plants grown at ambient temperature might be consequence of down-regulation phenomena. Plants grown at 700 μmol mol−1 CO2 maintained control nitrogen levels, discarding enhanced nitrogen availability as the main factor explaining enhanced dry matter.  相似文献   

7.
We assessed the effect of growth at either 400 μmol mol?1 (ambient) or 1000 μmol mol?1 (elevated) CO2 and 0 g L?1 (deprivation) or 30 g L?1 (supplementation) sugar on morphological traits, photosynthetic attributes and intrinsic elements of the CAM pathway using the CAM orchid Phalaenopsis ‘Amaglade’. The growth of shoot (retarded) and root (induced) was differently affected by CO2 enrichment and mixotrophic regime (+sugar). The Fv/Fm ratio was 14% more in CO2-enriched treatment than at ambient level during in vitro growth. At elevated level of CO2 and sugar treatment, the content of Chl(a + b), Chl a/b and Chl/Car was enhanced while carotenoid content remained unaltered. During in vitro growth, gas-exchange analysis indicated that increased uptake of CO2 accorded with the increased rate of transpiration and unchanged stomatal conductance at elevated level of CO2 under both photo- and mixotrophic growth condition. At elevated level of CO2 and sugar deprivation, activities of Rubisco (26.4%) and PEPC (74.5%) was up-regulated. Among metabolites, the content of sucrose and starch was always higher under CO2 enrichment during both in vitro and ex vitro growth. Our results indicate that plantlets grown under CO2 enrichment developed completely viable photosynthetic apparatus ready to be efficiently transferred to ex vitro condition that has far-reaching implications in micropropagation of Phalaenopsis.  相似文献   

8.
We report the results of a baseline study on the effects of Russian wheat aphid infestation on barley lines grown under ambient and elevated (450 and 550 μmol mol 1) CO2 concentrations [CO2]. Elevated CO2 impacted on plant biomass, C:N ratios and leaf nitrogen concentrations. Visible manifestation of aphid feeding related damage was assessed by examining resultant chlorosis and leaf roll under ambient and two elevated [CO2] levels using a control and three resistant barley host combinations. Elevated [CO2] had a significant positive effect on the growth of the four barley lines that were not infested by the aphids. However under the same conditions aphid feeding under elevated CO2 conditions caused very high biomass loss, which was more noticeable in experiments involving non-resistant PUMA than in the resistant barley lines. The results of this study demonstrate that CO2 enrichment substantially increases aphid populations of RWASA1 and RWASA2 on the four barley lines investigated. Furthermore, aphid populations were higher on non-resistant PUMA than the three resistant lines and the RWASA2 biotype out-performed RWASA1 in each case. Under elevated [CO2], aphid feeding, resulted in a significant increase in the leaf C:N ratios (as a percentage change) in most treatments, compared to levels recorded on uninfested plants. The resistant lines also showed a significant reduction in leaf nitrogen (~ 40% for PUMA and not less than 30% for the resistant STARS lines tested). C:N ratio changes and N loss correlated to [CO2] and aphid biotype. By 28 days of infestation, most of the non-resistant PUMA line in particular showed significant irrecoverable levels of leaf chlorosis. At level 9 rating on the chlorosis scale (i.e. plant death when recovery was not possible), experiments were terminated. As aphid success is unlikely to be the sole product of [CO2], but also of other limiting nutrients such as N, it may be worth further investigating the effect of plant quality and ultimately plant nutrition on the population growth of aphids.  相似文献   

9.
Growth at elevated CO2 often decreases photosynthetic capacity (acclimation) and leaf N concentrations. Lower-shaded canopy leaves may undergo both CO2 and shade acclimation. The relationship of acclimatory responses of flag and lower-shaded canopy leaves of wheat (Triticum aestivum L.) to the N content, and possible factors affecting N gain and distribution within the plant were investigated in a wheat crop growing in field chambers set at ambient (360 μmol mol−1) and elevated (700 μmol mol−1) CO2, and with two amounts of N fertilizer (none and 70 kg ha−1 applied on 30 April). Photosynthesis, stomatal conductance and transpiration at a common measurement CO2, chlorophyll and Rubisco levels of upper-sunlit (flag) and lower-shaded canopy leaves were significantly lower in elevated relative to ambient CO2-grown plants. Both whole shoot N and leaf N per unit area decreased at elevated CO2, and leaf N declined with canopy position. Acclimatory responses to elevated CO2 were enhanced in N-deficient plants. With N supply, the acclimatory responses were less pronounced in lower canopy leaves relative to the flag leaf. Additional N did not increase the fraction of shoot N allocated to the flag and penultimate leaves. The decrease in photosynthetic capacity in both upper-sunlit and lower-shaded leaves in elevated CO2 was associated with a decrease in N contents in above-ground organs and with lower N partitioning to leaves. A single relationship of N per unit leaf area to the transpiration rate accounted for a significant fraction of the variation among sun-lit and shaded leaves, growth CO2 level and N supply. We conclude that reduced stomatal conductance and transpiration can decrease plant N, leading to acclimation to CO2 enrichment.  相似文献   

10.
In a three-year free-air CO2 enrichment study (Mini-FACE), spring wheat associated with typical arable weeds were grown under present and elevated atmospheric carbon dioxide concentrations [CO2] (ambient air+150 μmol mol?1). Analyses of plant stable carbon isotope ratios and in vivo measurements of leaf gas exchange were used to describe the CO2 effects on water relations. For most species examined elevated [CO2] significantly increased the intrinsic water-use efficiency (A/gs) as derived from carbon isotope analyses. In some of the species, seasonal averages of the ratio between leaf internal to atmospheric CO2 (ci/ca) were found to be significantly reduced by elevated [CO2]. Periodic leaf gas exchange measurements confirmed the increased water-use efficiency, but significant CO2 effects became evident only over the entire season by carbon isotope analysis. In both types of analysis conducted, spring wheat was found to react significantly different from all other species examined. The relation between A/gs and biomass production was significantly influenced by elevated [CO2] in all three years of the study. At the end of the drier growing seasons 2003 and 2004, the soil water content tended to be increased in the CO2 enriched plots indicating a water saving effect. These observations demonstrate the impact of elevated [CO2] on plant water relations with a likely positive feedback leading to higher soil water availability. Due to the differences in the CO2 responses of spring wheat compared to the weeds we suggest that rising [CO2] may cause shifts in the species composition of crop-weed communities.  相似文献   

11.
N2-fixing alfalfa plants were grown in controlled conditions at different CO2 levels (350 μmol mol?1 versus 700 μmol mol?1) and water-availability conditions (WW, watered at maximum pot water capacity versus WD, watered at 50% of control treatments) in order to determine the CO2 effect (and applied at two water regimes) on plant growth and nodule activity in alfalfa plants. The CO2 stimulatory effect (26% enhancement) on plant growth was limited to WW plants, whereas no CO2 effect was observed in WD plants. Exposure to elevated CO2 decreased Rubisco carboxylation capacity of plants, caused by a specific reduction in Rubisco (EC 4.1.1.39) concentration (11% in WW and 43% in WD) probably explained by an increase in the leaf carbohydrate levels. Plants grown at 700 μmol mol?1 CO2 maintained control photosynthetic rates (at growth conditions) by diminishing Rubisco content and by increasing nitrogen use efficiency. Interestingly, our data also suggest that reduction in shoot N demand (reflected by the TSP and especially Rubisco depletion) affected negatively nodule activity (malate dehydrogenase, EC 1.1.1.37, and glutamate-oxaloacetate transaminase, EC 2.6.1.1, activities) particularly in water-limited conditions. Furthermore, nodule DM and TSS data revealed that those nodules were not capable to overcome C sink strength limitations.  相似文献   

12.
The kinetics of a stomatal response to sudden increases or decreases of CO2 concentrations ([CO2]) was studied in 13 plant species growing in the field. Plants were well supplied with water. In each plant, gas exchange measurements were made on a fully developed leaf that was first left to achieve steady-state stomatal conductance (gs) at 400 μmol (CO2) mol−1) and then exposed to a step change of [CO2] (to 700 μmol mol−1 in one experiment; and to 700 and back to 400 μmol mol−1 in a second experiment). Porometric data were captured in intervals of 3 s until a new steady state was reached.A comparison of t1/2, the half-time needed to achieve new gs, indicates similar responses of stomata in grasses when compared to herbs. The stomata of C4 plants responded in approximately 5 min, the highest closure rate was detected in Echinochloa crus-galli and Digitaria sanguinalis. Opening rates were similar to closing rates and the response as a whole was rather symmetric. In C3 plants, the full response of stomata was much slower. Analysis revealed differences in absolute rates of gs change between C3 and C4 plants. These differences can be related to the specificities of the type of photosynthetic metabolism. C4 photosynthesis enables plants to reduce gs, which can hasten further changes of diffusivity in response to the environmental signals. A possible coupling of C4 metabolism to the regulation of guard cells also has to be taken into account when explaining the observed results.  相似文献   

13.
Anthropogenic impact on CO2 levels was studied in the Bear Chamber of the Výpustek Cave, a show cave in the Moravian Karst (Czech Republic), during a period of active ventilation and enhanced attendance. The study showed that the natural CO2 levels were controlled by (i) the natural CO2 influxes from soils/epikarst (up to ∼5.64 × 10−2 mol s−1); and, (ii) the advective CO2 fluxes out of cave atmosphere (up to 4.66 × 10−2 mol s−1). During visitor presence, the anthropogenic CO2 flux into the chamber reached up to ∼0.13 mol s−1 and exceeded all other CO2 fluxes. The reachable anthropogenic steady states at sufficient duration of stay (up to 2.65 × 10−1 mol m−3) could exceed the natural CO2 levels by factor of more than nine based on the number of visitors. Recession analysis of anthropogenic pulses showed that intervals between individual visitor groups would have to be up to ∼6 h long if the cave environment has to return to natural conditions. As such pauses between individual tours are hardly realizable, a risk analysis was conducted to find the consequences of breaking natural conditions. It showed that the condition under which dripwater becomes aggressive to calcite (i.e., the point when PCO2 in cave atmosphere exceeds the hypothetical CO2 concentrations in epikarst that has participated on the water formation, PCO2(H) = 10−1.56) is potentially reachable under extreme conditions only (enormous visitor stay period and visitor number). In case of condensed water, however, any increase in CO2 concentration will cause an increase of water aggressiveness to calcite. Therefore, in the periods and sites of enhanced condensation, it is important to strive for preservation of natural conditions.  相似文献   

14.
Marine bivalves such as the hard shell clams Mercenaria mercenaria and eastern oysters Crassostrea virginica are affected by multiple stressors, including fluctuations in temperature and CO2 levels in estuaries, and these stresses are expected to be exacerbated by ongoing global climate change. Hypercapnia (elevated CO2 levels) and temperature stress can affect survival, growth and development of marine bivalves, but the cellular mechanisms of these effects are not yet fully understood. In this study, we investigated whether oxidative stress is implicated in cellular responses to elevated temperature and CO2 levels in marine bivalves. We measured the whole-organism standard metabolic rate (SMR), total antioxidant capacity (TAOC), and levels of oxidative stress biomarkers in the muscle tissues of clams and oysters exposed to different temperatures (22 and 27 °C) and CO2 levels (the present day conditions of ~ 400 ppm CO2 and 800 ppm CO2 predicted by a consensus business-as-usual IPCC emission scenario for the year 2100). SMR was significantly higher and the antioxidant capacity was lower in oysters than in clams. Aerobic metabolism was largely temperature-independent in these two species in the studied temperature range (22–27 °C). However, the combined exposure to elevated temperature and hypercapnia led to elevated SMR in clams indicating elevated costs of basal maintenance. No persistent oxidative stress signal (measured by the levels of protein carbonyls, and protein conjugates with malondialdehyde and 4-hydroxynonenal) was observed during the long-term exposure to moderate warming (+ 5 °C) and hypercapnia (~ 800 ppm CO2). This indicates that long-term exposure to moderately elevated CO2 and temperature minimally affects the cellular redox status in these bivalve species and that the earlier observed negative physiological effects of elevated CO2 and temperature must be explained by other cellular mechanisms.  相似文献   

15.
In the global change scenario, increased CO2 may favour water use efficiency (WUE) by plants. By contrast, in arid and semiarid areas, salinity may reduce water uptake from soils. However, an elevated WUE does not ensure a reduced water uptake and upon salinity this fact may constitute an advantage for plant tolerance. In this work, we aimed to determine the combined effects of enhanced [CO2] and salinity on the plant water status, in relation to the regulation of PIP aquaporins, in the root and leaf tissues of broccoli plants (Brassica oleracea L. var Italica), under these two environmental factors. Thus, different salinity concentrations (0, 60 and 90 mM NaCl) were applied under ambient (380 ppm) and elevated (800 ppm) [CO2]. Under non-salinised conditions, stomatal conductance (Gs) and transpiration rate (E) decreased with rising [CO2] whereas water potential (Ψω) was maintained stable, which caused a reduction in the root hydraulic conductance (L0). In addition, PIP1 and PIP2 abundance in the roots was decreased compared to ambient [CO2]. Under salinity, the greater stomatal closure observed at elevated [CO2] – compared to that at ambient [CO2] – caused a greater reduction in Gs and E and allowed plants to maintain their water balance. In addition, a lower decrease in L0 under salt stress was observed at elevated [CO2], when comparing with the decrease at ambient [CO2]. Modifications in PIP1 and PIP2 abundance or their functionality in the roots is discussed. In fact, an improved water status of the broccoli plants treated with 90 mM NaCl and elevated [CO2], evidenced by a higher Ψω, was observed together with higher photosynthetic rate and water use efficiency. These factors conferred on the salinised broccoli plants greater leaf area and biomass at elevated [CO2], in comparison with ambient [CO2]. We can conclude that, under elevated [CO2] and salt stress, the water flow is influenced by the tight control of the aquaporins in the roots and leaves of broccoli plants and that increased PIP1 and PIP2 abundance in these organs provides a mechanism of tolerance that maintains the plant water status.  相似文献   

16.
The purpose of this study was to evaluate the temperature response of photosynthesis in two common bean genotypes differing in crop yield when grown under warm conditions. The cultivar Nobre is sensitive to high temperatures, whereas Diplomata shows better crop yield under high temperatures. Plants were grown in a greenhouse prior to transferring to a controlled environment cabinet for the temperature treatments. In a first experiment, 30 days-old plants were subjected to a short exposure (1 day) at temperatures that varied from 9 °C to 39 °C. Diplomata had lower net CO2 assimilation rate (A) at 15 °C and 21 °C, but higher from 27 °C to 39 °C. Photosynthetic parameters calculated from modeling the response of A to the intercellular CO2 concentration suggested that the different temperature responses of the two genotypes are caused by different rates of diffusion of CO2 to the assimilation site, not by differences in biochemical limitations of photosynthesis. While stomatal conductance (gs) did not differ between the genotypes, mesophyll conductance (gm) was slightly greater for Nobre at 15 °C, but much higher in Diplomata from 21 °C to 39 °C. In a second experiment, no difference was observed in biomass accumulation between the two genotypes after growth for 24 days under a 35/20 °C (day/night) regime. Hence, the differences in photosynthesis did not cause variation in plant growth at the vegetative stage. The differential genotypic response of gm to temperature suggests that gm might be an important limitation to photosynthesis in Nobre, the common bean genotype sensitive to elevated temperature. However, more studies are needed employing other methods for gm evaluation to validate these results.  相似文献   

17.
In recent decades, the frequency and intensity of harmful algal blooms (HABs), as well as a profusion of toxic phytoplankton species, have significantly increased in coastal regions of China. Researchers attribute this to environmental changes such as rising atmospheric CO2 levels. Such addition of carbon into the ocean ecosystem can lead to increased growth, enhanced metabolism, and altered toxicity of toxic phytoplankton communities resulting in serious human health concerns. In this study, the effects of elevated partial pressure of CO2 (pCO2) on the growth and toxicity of a strain of Alexandrium tamarense (ATDH) widespread in the East and South China Seas were investigated. Results of these studies showed a higher specific growth rate (0.31 ± 0.05 day−1) when exposed to 1000 μatm CO2, (experimental), with a corresponding density of (2.02 ± 0.19) × 107 cells L−1, that was significantly larger than cells under 395 μatm CO2(control). These data also revealed that elevated pCO2 primarily affected the photosynthetic properties of cells in the exponential growth phase. Interestingly, measurement of the total toxin content per cell was reduced by half under elevated CO2 conditions. The following individual toxins were measured in this study: C1, C2, GTX1, GTX2, GTX3, GTX4, GTX5, STX, dcGTX2, dcGTX3, and dcSTX. Cells grown in 1000 μatm CO2 showed an overall decrease in the cellular concentrations of C1, C2, GTX2, GTX3, GTX5, STX, dcGTX2, dcGTX3, and dcSTX, but an increase in GTX1 and GTX4. Total cellular toxicity per cell was measured revealing an increase of nearly 60% toxicity in the presence of elevated CO2 compared to controls. This unusual result was attributed to a significant increase in the cellular concentrations of the more toxic derivatives, GTX1 and GTX4.Taken together; these findings indicate that the A. tamarense strain ATDH isolated from the East China Sea significantly increased in growth and cellular toxicity under elevated pCO2 levels. These data may provide vital information regarding future HABs and the corresponding harmful effects as a result of increasing atmospheric CO2.  相似文献   

18.
Haberlea rhodopensis is a homoiochlorophyllous resurrection plant that shows a low rate of leaf net CO2 uptake (4–6 μmol m?2 s?1) under saturating photosynthetic photon flux densities in air (21% O2 and about 390 ppm CO2). However, leaf net CO2 uptake reaches values of 17–18 μmol m?2 s?1 under saturating CO2 and light. H. rhodopensis leaves have a very low mesophyll CO2 conductance that can partly explain the low rate of leaf net CO2 uptake in normal air. Experimental evidences suggest that mesophyll conductance is not sensitive to temperature in the 20–35 °C range. In addition, it is shown that the (1) transpiration rate of H. rhodopensis is nearly linearly related to the vapour pressure difference between the leaf and the ambient air within the interval from 0.5 kPa to 2.5 kPa at a leaf temperature of 25 °C and (2) leaf net CO2 uptake in normal air under saturating light does not change much with leaf temperature (between 20 °C and 30 °C). At a leaf relative water content of between 90% and 30%, the decrease of leaf net CO2 assimilation during drought can be explained by a decrease of leaf CO2 diffusional conductance. Accordingly the non-photochemical chlorophyll fluorescence quenching decreases only at relative water contents lower than 20%, indicating that photosynthetic activity maintains a trans-thylakoidal proton gradient over a wide range of leaf water contents. Moreover, PSII photochemistry (as estimated by the Fv/Fm ratio and the thermoluminescence B band intensity) is only affected at leaf relative water contents lower than about 20%, thus confirming that primary photosynthetic reactions are resistant to drought. Interestingly, the effect of leaf desiccation on photosynthetic capacity, measured at very high ambient CO2 molar ratios under saturating PPFD, is identical to that observed for three non-resurrection C3 mesophytes. This demonstrates that the photosynthetic apparatus of H. rhodopensis is not more resistant to desiccation when compared to other C3 plants. Since the leaf area decreases by more than 50% when the leaf relative water content is reduced to about 40% during drought it is supposed, following Farrant et al. [Farrant, J.M., Vander, W.C., Lofell, D.A., Bartsch, S., Whittaker, A., 2003. An investigation into the role of light during desiccation of three angiosperms resurrection plants. Plant Cell Environ. 26, 1275–1286], that H. rhodopensis leaf cells avoid mechanical stress.  相似文献   

19.
This study examined the effects of amendment application methods on the establishment and growth of prairie grass in a landfill remediation. Amendment treatments included three application rates [control, low (765 g m?2), and high (1530 g m?2)] of a wood chip amendment at two different application depths [surface-applied and incorporated]. Grass populations were monitored for 2 years after seeding to assess differences to seasonal precipitation patterns. Initially, total basal area (cm2 m?2) and tiller density (tillers m?2) were greater in the surface treatments, but seed burial may have reduced establishment in the incorporated treatments. The application rate required to improve the initial grass response differed by depth: the low rate was superior in the surface treatments, but when incorporated only the higher application rate improved establishment. Over the 2004 season, tiller density increased in the surface treatments, but not in the incorporated, following the seasonal drought. In contrast, the incorporated treatments experienced a smaller reduction in tillers during the more severe drought conditions of 2005. These results suggest that a moderate application rate of surface-applied amendment is sufficient for aiding the development of the grass portion of the restored community and the extra effort associated with incorporation is not justified.  相似文献   

20.
We measured the biomass production and ecosystem carbon CO2 exchange in a high yield grassland dominated by Miscanthus sinensis. The experimental grassland is managed by mowing once a year in winter every year and the harvested biomass on the ground is left to become the humus. The maximum aboveground and belowground biomasses were 1117 and 2803 g d.w. m?2 in our grassland. Although the high potential of our grassland for biomass production led to higher carbon uptake than with other types of grassland, the large biomass contributed to a higher respired carbon loss. Biomass increase led to a linear increase in ecosystem respiration. Over the 3 years, RE10 increased with increasing aboveground biomass. The potential gross primary production at a photosynthetic photon flux density of 2000 μmol m2 s?1 logarithmic increased with LAI. These responses of CO2 exchange to biomass production suggest this grassland behaved as weak CO2 sink or near carbon neutral (?78 and 17 g C m?2 year?1) in current management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号