首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In the last decade extensive research has focused on the development of dose–response relationships based on stomatal plant ozone uptake (phytotoxic ozone dose, POD). So far most work has concentrated on crops and forest trees. This study provides a flux-based dose–response function for timothy (Phleum pratense), a widespread grassland species, which can be used in risk assessment for ground-level ozone. In 1996 and 2001 timothy was exposed in open-top chambers to ozone concentrations ranging from around 10 nmol mol−1 in the charcoal filtered treatments up to 60 nmol mol−1 in the fumigated treatments (08:00–20:00) in. In 1996 there was a negative effect of ozone on biomass production in the non-filtered treatment while in 2001 no such ozone effect in the non-filtered treatment could be seen. Measurements of stomatal conductance on four timothy genotypes in 2001 were used to calibrate a Jarvis-type multiplicative stomatal conductance model. The maximum conductance varied between the genotypes, from 477 to 589 mmol O3 m−2 s−1 (projected leaf area). The model includes functions describing the reduction of stomatal conductance of senescing leaves and the direct effects on stomatal conductance by light, temperature and water vapour pressure deficit. A function describing ozone induced senescence of the leaves was included since exposure to ozone is known to cause premature senescence. The function for ozone was applied when it suggested ozone to be more limiting to stomatal conductance than phenology. To avoid overestimation of stomatal conductance in days with high VPD, a function reflecting the effect on leaf water potential on stomatal conductance was included. Comparison between modelled and measured conductance for the four timothy genotypes resulted in an r2 value at 0.57 and a very small average deviation of observed from modelled values. The calibrated stomatal conductance model was used to estimate the accumulated POD, i.e. the accumulated stomatal flux of ozone, of the plants in the 1996 and 2001 experiments. The strongest relationship between ozone relative effects on biomass was obtained when POD was accumulated from 105 degree days after emergence to 1000 degree days after emergence, and integrated using an uptake rate threshold of 7 nmol m−2 s−1 (POD7). The response relationship between biomass and POD7 resulted in an r2 value of 0.71 over all four genotypes. This r2 value was somewhat higher than for the corresponding relationship based on the accumulated ozone exposure over 40 nmol mol−1 (AOT40; r2 = 0.66). With an uptake rate threshold at 7 nmol m−2 s−1, ozone concentrations above ∼20 nmol mol−1, contribute to reduce the biomass production of timothy if meteorological conditions promote maximum stomatal conductance.  相似文献   

2.
Benthic dinoflagellates of the genus Ostreopsis are found all over the world in temperate, subtropical, and tropical coastal regions. Our recent studies revealed that a putative “cryptic” species of Ostreopsis ovata is present widely along Japanese coasts. This organism, Ostreopsis sp. 1, possesses palytoxin analogs and thus its toxic blooms may be responsible for potential toxification of marine organisms. To evaluate the bloom dynamics of Ostreopsis sp. 1, the present study examined the growth responses of Ostreopsis sp. 1 strain s0716 to various light intensities (photon flux densities: μmol photons m−2 s−1) using a newly devised photoirradiation-culture system. This novel system has white light-emitting diodes (LEDs) capable of more closely simulating the wavelength spectrum of light entering the oceanic water column than do fluorescent tubes and halogen lamps. In this system, the light intensity of the white LEDs was reduced through two polarizing filters by varying the rotation angles of the filters. Thereby, the new system was capable of culturing microalgae under well-controlled light intensity conditions. Ostreopsis sp. 1 grew proportionally when light intensity was increased from 49.5 to 199 μmol photons m−2 s−1, but its growth appeared to be inhibited slightly at ≥263 μmol photons m−2 s−1. The relationship between observed growth rates and light intensity was calculated at R > 0.99 (P < 0.01) using a regression analysis with a modified equation of the photosynthesis-light intensity (P-L) model. The equation determined the critical light intensities for growth of Ostreopsis sp. 1 and the organism's growth potential as follows: (1) the threshold light intensity for growth: 29.8 μmol photons m−2 s−1; (2) the optimum light intensity (Lm) giving the maximum growth rate (μmax = 0.659 divisions day−1): 196 μmol photons m−2 s−1; (3) the optimum light intensity range (Lopt) giving ≥95% μmax: 130–330 μmol photons m−2 s−1; (4) the semi-optimum range (Lsopt) giving ≥80% μmax: 90 to over 460 μmol photons m−2 s−1. The Lsopt represents 4.5–23% ambient light intensity present in surface waters off of a temperate region of the Japanese coast, Tosa Bay; putatively, this semi-optimum range of light intensity appears at depth of 12.9–27.8 m. Considering these issues, our data indicate that Ostreopsis sp. 1 in coastal environments may form blooms at ca. ∼28 m depth in regions along Japanese coasts.  相似文献   

3.
《Aquatic Botany》2005,83(2):129-140
Bisexual populations of the charophyte Chara canescens (Desv. et Loisel. in Loisel., 1810) containing male and female individuals are rarely found. Two experiments were carried out to study whether male and female algae from the same site exhibit different physiological capacities, especially with respect to light acclimation.Algae from two different shore levels and from laboratory cultures acclimated to six irradiance conditions (35–500 μmol photons m−2 s−1) were compared. Field measurements showed that both female and male algae of C. canescens are able to acclimate to daily changes in solar irradiance. The quantum yield of Photosystem II (PSII) decreased with increasing irradiance in the morning and increased with decreasing irradiance in the afternoon. Growth experiments showed increasing growth rates from 35 μmol photons m−2 s−1 (∼7 mg FW) up to 500 μmol photons m−2 s−1 (∼27 mg FW) in female and male C. canescens. The irradiance saturation point for photosynthesis (Ek) was about 140 μmol m−2 s−1 for both sexes within the whole range of acclimation irradiances. The maximum photosynthesis rate at saturating irradiances (Pmax) of male algae was highest at Ek, whereas Pmax of female algae was highest at 500 μmol photons m−2 s−1. The photosynthetic efficiency in the light-limited range (α) increased in female C. canescens and decreased in male C. canescens. The ratio of the non-photochemical quenching parameter (NPQ) to the relative electron transport rates rETR(MT) increased in both sexes with irradiance, but showed a steeper increase in male than in female algae. Pigment analysis showed similar acclimation pattern for male and female C. canescens. Chl a/Chl b ratios of both sexes were constant over the whole range of Eg, whereas Chl a/carotenoid ratios in male and female C. canescens decreased from 70 μmol photons m−2 s−1 upwards. Pigment analysis pointed out that the carotenes α-, β- and γ-carotene were more prominent in male than in female algae.Our results indicate that female C. canescens are more efficient in light acclimation than male algae from the same site. Nevertheless, further investigations of bisexual C. canescens populations resolving CO2-uptake mechanisms and/or genetic differences are needed.  相似文献   

4.
Synechocystis PCC 6803 is a model unicellular cyanobacterium used in e.g. photosynthesis and CO2 assimilation research. In the present study we examined the effects of overexpressing Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), sedoheptulose 1,7-biphosphatase (SBPase), fructose-bisphosphate aldolase (FBA) and transketolase (TK), confirmed carbon flux control enzymes of the Calvin-Bassham-Benson (CBB) cycle in higher plants, in Synechocystis PCC 6803. Overexpressing RuBisCO, SBPase and FBA resulted in increased in vivo oxygen evolution (maximal 115%), growth rate and biomass accumulation (maximal 52%) under 100 μmol photons m−2 s−1 light condition. Cells overexpressing TK showed a chlorotic phenotype but increased biomass by approximately 42% under 100 μmol photons m−2 s−1 light condition. Under 15 μmol photons m−2 s−1 light condition, cells overexpressing TK showed enhanced in vivo oxygen evolution. This study demonstrates increased growth and biomass accumulation when overexpressing selected enzymes of the CBB cycle. RuBisCO, SBPase, FBA and TK are identified as four potential targets to improve growth and subsequently also yield of valuable products from Synechocystis PCC 6803.  相似文献   

5.
《Aquatic Botany》2005,83(3):187-192
We investigated the effect of intraspecific competition on growth parameters and photosynthesis of the salt marsh species Atriplex prostrata Boucher in order to distinguish the effects of density-dependent growth inhibition from salt stress. High plant density caused a reduction of 30% in height, 82% in stem dry mass, 80% in leaf dry mass, and 95% in root dry mass. High density also induced a pronounced 72% reduction in leaf area, 29% decrease in length of mature internodes and 50% decline in net photosynthetic rate. The alteration of net photosynthesis paralleled growth inhibition, decreasing from 7.6 ± 0.9 μmol CO2 m−2 s−1 at low density to 3.5 ± 0.4 μmol CO2 m−2 s−1 at high density, indicating growth inhibition caused by intraspecific competition is mainly due to a decline in net photosynthesis rate. Plants grown at high density also exhibited a reduction in stomatal conductance from 0.7 ± 0.1 mol H2O m−2 s−1 at low density to 0.3 ± 0.1 mol H2O m−2 s−1 at high density and a reduction in transpiration rate from 6.0 ± 0.3 mmol H2O m−2 s−1 at low density to 4.3 ± 0.3 mmol H2O m−2 s−1 at high density. Biomass production was inhibited by an increase in plant density, which reduced the rate of photosynthesis, stomatal conductance and leaf area of plants.  相似文献   

6.
《Aquatic Botany》2007,86(2):107-116
The partitioning of latent heat flux (QE) to vascular plant and moss surface components was assessed for a Sphagnum-dominated bog with a hummock–hollow surface having a sparse canopy of low shrubs. Results from porometry and eddy covariance measurements of QE showed evaporation from the moss surface ranged from greater than 50% of total QE early in the growing season to less than 20% after a dry period toward the end of the growing season. Both soil moisture and vapour pressure deficit (Da) affected this partitioning with drier moss and peat, lower water table, and smaller Da all reducing moss QE. Daily maximum moss QE ranged from greater than 200 W m−2 early in the growing season to less than 100 W m−2 during a dry period. In contrast, vascular contribution to total QE increased over the season from a daily maximum of about 150 W m−2 to 250 W m−2 due to increase in leaf area by leaf replacement and emergence and to drying of the moss surface. Porometry results showed average daily maximum conductance from bog shrubs was near 8 mm s−1. These conductance values were smaller than those reported for vascular plants from more nutrient-rich wetlands. The effect of increases in Da on vascular QE were moderated by decreases in stomatal conductance. At constant available energy, vascular leaf conductance was reduced by as much as 2 mm s−1 and moss surface conductance was enhanced by up to 3 mm s−1 by large Da. Considering vascular and non-vascular water transport characteristics and frequency of water table position and given the observed variations of QE partitioning with water table location and moss and peat water content, it is suggested that modelling efforts focus on how dry hummocks and wet hollows each contribute to QE, especially as related to Da and soil moisture dynamics.  相似文献   

7.
《Aquatic Botany》2005,81(2):157-173
The main photosynthesis and respiration parameters (dark respiration rate, light saturated production rate, saturation irradiance, photosynthetic efficiency) were measured on a total of 23 macrophytes of the Thau lagoon (2 Phanerogams, 5 Chlorophyceae, 10 Rhodophyceae and 6 Phaeophyceae). Those measurements were performed in vitro under controlled conditions, close to the natural ones, and at several seasons. Concomitantly, measurements of pigment concentrations, carbon, phosphorous and nitrogen contents in tissues were performed. Seasonal intra-specific variability of photosynthetic parameters was found very high, enlightening an important acclimatation capacity. The highest photosynthetic capacities were found for Chlorophyceae (e.g. Monostroma obscurum thalli at 17 °C, 982 μmol O2 g−1 dw h−1 and 9.1 μmol O2 g−1 dw h−1/μmol photons m−2 s−1, respectively for light saturated net production rate and photosynthetic efficiency) and Phanerogams (e.g. Nanozostera noltii leaves at 25 °C, 583 μmol O2 g−1 dw h−1 and 2.6 μmol O2 g−1 dw h−1/μmol photons m−2 s−1 respectively for light saturated net production rate and photosynthetic efficiency). As expected, species with a high surface/volume ratio were found to be more productive than coarsely branched thalli and thick blades shaped species. Contrary to Rd (ranging 6.7–794 μmol O2 g−1 dw h−1, respectively for Rytiphlaea tinctoria at 7 °C and for Dasya sessilis at 25 °C) for which a positive relationship with water temperature was found whatever the species studied, the evolution of P/I curves with temperature exhibited different responses amongst the species. The results allowed to show summer nitrogen limitation for some species (Gracilaria bursa-pastoris and Ulva spp.) and to propose temperature preferences based on the photosynthetic parameters for some others (N. noltii, Zostera marina, Chaetomorpha linum).  相似文献   

8.
The kinetics of a stomatal response to sudden increases or decreases of CO2 concentrations ([CO2]) was studied in 13 plant species growing in the field. Plants were well supplied with water. In each plant, gas exchange measurements were made on a fully developed leaf that was first left to achieve steady-state stomatal conductance (gs) at 400 μmol (CO2) mol−1) and then exposed to a step change of [CO2] (to 700 μmol mol−1 in one experiment; and to 700 and back to 400 μmol mol−1 in a second experiment). Porometric data were captured in intervals of 3 s until a new steady state was reached.A comparison of t1/2, the half-time needed to achieve new gs, indicates similar responses of stomata in grasses when compared to herbs. The stomata of C4 plants responded in approximately 5 min, the highest closure rate was detected in Echinochloa crus-galli and Digitaria sanguinalis. Opening rates were similar to closing rates and the response as a whole was rather symmetric. In C3 plants, the full response of stomata was much slower. Analysis revealed differences in absolute rates of gs change between C3 and C4 plants. These differences can be related to the specificities of the type of photosynthetic metabolism. C4 photosynthesis enables plants to reduce gs, which can hasten further changes of diffusivity in response to the environmental signals. A possible coupling of C4 metabolism to the regulation of guard cells also has to be taken into account when explaining the observed results.  相似文献   

9.
Domoic acid (DA) poisoning in the southern part of the California Current System has been associated typically with blooms of Pseudo-nitzschia australis. The environmental variables that promote growth and DA production in the Mexican part of this system have not been identified. The present study investigated the effect of temperature and two nutrient ratios on the growth characteristics and DA content of two (BTS-1, BTS-2) P. australis strains isolated from the Pacific coast of northern Baja California peninsula, México. Of the different temperatures assayed (10, 12, 14, 15, 18 and 20 °C), the maximum cell abundance was detected at 12 °C for BTS-2 and 14 °C for BTS-1. The highest maximum specific growth rate (1.69 day−1) was measured at 15 °C for BTS-2. With the exception of cells maintained at 15 °C, growth characteristics were similar in P. australis cultured in a high Si:NO3 (2.5) or low Si:NO3 (0.5) ratio at each temperature. Dissolved (dDA) and cellular (cDA) DA content measured at the stationary phase of growth was similar in cells cultivated at the different temperatures. No difference in cDA (between 0.11 and 1.87 pg DA cell−1) was observed in cells cultivated at the two nutrient ratios. To evaluate if P. australis accumulates DA (cDA + dDA) at different stages of the culture and not only during the stationary phase of growth, the BTS-1 strain was cultivated at 14 °C and the content of this toxin was measured during culture development. The cultures were maintained at high (HL; 200 μmol quanta m−2 s−1) and low light (LL; 30 μmol quanta m−2 s−1) and in the two nutrient ratios to evaluate the effect of these variables on DA content. The photosynthetic performance and pigment concentration were measured as indicators of the physiological condition of the cells. cDA was detected in all culture conditions and during the different stages of growth. The highest DA content was measured during the lag phase of growth and it was present mainly in the medium (dDA = 70.83 pg DA cell−1). Cells cultivated at HL produced more DA than LL cultured cells. P. australis cultured in HL presented lower photosynthetic rates than LL cells and had similar concentrations of photoprotective pigments and the highest maximum photosynthetic rates were detected during the lag phase of growth in all culture conditions. The results demonstrate that P. australis from northern Baja California peninsula presents a narrow temperature range for optimal growth under batch culture conditions. P. australis produce DA at different stages of growth, and DA content was related to the light intensity at which the cells were cultivated.  相似文献   

10.
《Aquatic Botany》2005,81(4):315-325
Effects of irradiance and water flow on formation and growth of filamentous and spongy thalli of Codium fragile (Suringar) Hariot growing on vinylon threads were investigated at the laboratory culture. They showed clear differences in their irradiance and water flow requirements for their formation and growth. Spongy thalli were formed from the cultured filamentous thalli only at the high water flow velocity (10 cm s−1). Number of the spongy thalli remarkably increased with increasing irradiance because those at 10, 50 and 100 μmol m−2 s−1 reached 0, 2 and 76 thalli m−1, respectively, by 10 weeks of culture. In contrast, filamentous thalli were formed from the cultured spongy thalli at 0 and 3 cm s−1, and difference in irradiance had no effect on their formation. Growth of the spongy thalli greatly accelerated under the combination of the high irradiance and high water velocity (200 μmol m−2 s−1 and 10 cm s−1) because their relative growth rate in wet weight under the condition was two–four times higher than those at the other examined irradiances and water velocities. On the other hand, difference in water velocity had no effect on growth of the filamentous thalli under flowing water, and their growth decelerated at the high irradiance (200 μmol m−2 s−1). This demonstrates that water flow is a major factor controlling the formation of the spongy and filamentous thalli. The formation and growth of the spongy thalli surely occur under the combination of the high irradiance and fast flowing water. In contrast, the formation of the filamentous thalli occurs in the calm water, and their growth is inhibited under the high irradiance.  相似文献   

11.
《Aquatic Botany》2007,87(4):292-298
The effect of salinity on leaf area and the relative accumulation of Na+ and K+ in leaves of the mangrove associate Hibiscus tiliaceus were investigated. Photosynthetic gas exchange characteristics were also examined under arid and non-arid leaf conditions at 0, 10, 20 and 30‰ substrate salinity. At salinities  40‰, plants showed complete defoliation followed by 100% mortality within 1 week. Salinities  30‰ were negatively correlated with the total leaf area per plant (r2 = 0.94). The reduction in the total plant leaf area is attributed to the reduction in the area of individual leaves (r2 = 0.94). Selective uptake of K+ over Na+ declined sharply with increasing salinity, where K+/Na+ ratio was reduced from 6.37 to 0.69 in plants treated with 0 and 30‰, respectively. Under non-arid leaf condition, increasing salinity from 0 to 30‰ has significantly reduced the values of the intrinsic components of photosynthesis Vc,max (from 50.4 to 18.4 μmol m−2 s-1), Jmax (from 118.0 to 33.8 μmol photons m−2 s−1), and VTPU (from 6.90 to 2.30 μmol m−2 s−1), while stomatal limitation to gas phase conductance (SL) increased from 14.6 to 38.4%. Water use efficiency (WUE) has subsequently doubled from 3.20 for the control plants to 8.93 for 30‰ treatment. Under arid leaf conditions, the stomatal factor (SL) was more limiting to photosynthesis than its biochemical components (73.4 to 26.6%, respectively, at 30‰). It is concluded that salinity causes a drastic decline in photosynthetic gas exchange in H. tiliaceus leaves through its intrinsic and stomatal components, and that the apparent phenotypic plasticity represented by the leaf area modulation is unlikely to be the mechanism by which H. tiliaceus avoids salt stress.  相似文献   

12.
《Aquatic Botany》2008,88(4):292-298
The effect of salinity on leaf area and the relative accumulation of Na+ and K+ in leaves of the mangrove associate Hibiscus tiliaceus were investigated. Photosynthetic gas exchange characteristics were also examined under arid and non-arid leaf conditions at 0, 10, 20 and 30‰ substrate salinity. At salinities  40‰, plants showed complete defoliation followed by 100% mortality within 1 week. Salinities  30‰ were negatively correlated with the total leaf area per plant (r2 = 0.94). The reduction in the total plant leaf area is attributed to the reduction in the area of individual leaves (r2 = 0.94). Selective uptake of K+ over Na+ declined sharply with increasing salinity, where K+/Na+ ratio was reduced from 6.37 to 0.69 in plants treated with 0 and 30‰, respectively. Under non-arid leaf condition, increasing salinity from 0 to 30‰ has significantly reduced the values of the intrinsic components of photosynthesis Vc,max (from 50.4 to 18.4 μmol m−2 s-1), Jmax (from 118.0 to 33.8 μmol photons m−2 s−1), and VTPU (from 6.90 to 2.30 μmol m−2 s−1), while stomatal limitation to gas phase conductance (SL) increased from 14.6 to 38.4%. Water use efficiency (WUE) has subsequently doubled from 3.20 for the control plants to 8.93 for 30‰ treatment. Under arid leaf conditions, the stomatal factor (SL) was more limiting to photosynthesis than its biochemical components (73.4 to 26.6%, respectively, at 30‰). It is concluded that salinity causes a drastic decline in photosynthetic gas exchange in H. tiliaceus leaves through its intrinsic and stomatal components, and that the apparent phenotypic plasticity represented by the leaf area modulation is unlikely to be the mechanism by which H. tiliaceus avoids salt stress.  相似文献   

13.
《Aquatic Botany》2005,81(3):265-275
Palatability to snail herbivory (Radix swinhoei H. Adams) and C/N ratios were assessed for Vallisneria natans (Lour.) Hara, in three different experimental light regimes (midday fluxes respectively 280 μmol m−2 s−1, 15 μmol m−2 s−1, and a variable intensity between these two). Higher light intensity as well as prolonged photoperiods increased palatability and growth, and improved C/N ratio by decreasing N content. Snail growth was slightly increased but juvenile survivorship decreased under higher light. The results suggest that the availability of light may affects intraspecific variation in palatability of V. natans.  相似文献   

14.
Anthropogenic impact on CO2 levels was studied in the Bear Chamber of the Výpustek Cave, a show cave in the Moravian Karst (Czech Republic), during a period of active ventilation and enhanced attendance. The study showed that the natural CO2 levels were controlled by (i) the natural CO2 influxes from soils/epikarst (up to ∼5.64 × 10−2 mol s−1); and, (ii) the advective CO2 fluxes out of cave atmosphere (up to 4.66 × 10−2 mol s−1). During visitor presence, the anthropogenic CO2 flux into the chamber reached up to ∼0.13 mol s−1 and exceeded all other CO2 fluxes. The reachable anthropogenic steady states at sufficient duration of stay (up to 2.65 × 10−1 mol m−3) could exceed the natural CO2 levels by factor of more than nine based on the number of visitors. Recession analysis of anthropogenic pulses showed that intervals between individual visitor groups would have to be up to ∼6 h long if the cave environment has to return to natural conditions. As such pauses between individual tours are hardly realizable, a risk analysis was conducted to find the consequences of breaking natural conditions. It showed that the condition under which dripwater becomes aggressive to calcite (i.e., the point when PCO2 in cave atmosphere exceeds the hypothetical CO2 concentrations in epikarst that has participated on the water formation, PCO2(H) = 10−1.56) is potentially reachable under extreme conditions only (enormous visitor stay period and visitor number). In case of condensed water, however, any increase in CO2 concentration will cause an increase of water aggressiveness to calcite. Therefore, in the periods and sites of enhanced condensation, it is important to strive for preservation of natural conditions.  相似文献   

15.
Marine toxic dinoflagellates of the genus Gambierdiscus are the causative agents of ciguatera fish poisoning (CFP), a form of seafood poisoning that is widespread in tropical, subtropical and temperate regions worldwide. The distributions of Gambierdiscus australes, Gambierdiscus scabrosus and two phylotypes of Gambierdiscus spp. type 2 and type 3 have been reported for the waters surrounding the main island of Japan. To explore the bloom dynamics and the vertical distribution of these Japanese species and phylotypes of Gambierdiscus, the effects of light intensity on their growth were tested, using a photoirradiation-culture system. The relationship between the observed growth rates and light intensity conditions for the four species/phylotypes were formulated at R > 0.92 (p < 0.01) using regression analysis and photosynthesis-light intensity (P-L) model. Based on this equation, the optimum light intensity (Lmax) and the semi-optimum light intensity range (Ls-opt) that resulted in the maximum growth rate (μmax) and ≥80% μ max values of the four species/phylotypes, respectively, were as follows: (1) the Lmax and Ls-opt of G. australes were 208 μmol photons m−2 s−1 and 91–422 μmol photons m−2 s−1, respectively; (2) those of G. scabrosus were 252 and 120–421 μmol photons m−2 s−1, respectively; (3) those of Gambierdiscus sp. type 2 were 192 and 75–430 μmol photons m−2 s−1, respectively; and (4) those of Gambierdiscus sp. type 3 were ≥427 and 73–427 μmol photons m−2 s−1, respectively. All four Gambierdiscus species/phylotypes required approximately 10 μmol photons m−2 s−1 to maintain growth. The light intensities in coastal waters at a site in Tosa Bay were measured vertically at 1 m intervals once per season. The relationships between the observed light intensity and depth were formulated using Beer’s Law. Based on these equations, the range of the attenuation coefficients at Tosa Bay site was determined to be 0.058–0.119 m−1. The values 1700 μmol photons m−2 s−1, 500 μmol photons m−2 s−1, and 200 μmol photons m−2 s−1 were substituted into the equations to estimate the vertical profiles of light intensity at sunny midday, cloudy midday and rainy midday, respectively. Based on the regression equations coupled with the empirically determined attenuation coefficients for each of the four seasons, the ranges of the projected depths of Lmax and Ls-opt for the four Gambierdiscus species/phylotypes under sunny midday conditions, cloudy midday conditions, and rainy midday conditions were 12–38 m and 12–54 m, 1–16 m and 1–33 m, and 0 m and 0–16 m, respectively. These results suggest that light intensity plays an important role in the bloom dynamics and vertical distribution of Gambierdiscus species/phylotypes in Japanese coastal waters.  相似文献   

16.
β-Glucosidase catalyzes the sequential breakdown of cyanogenic glycosides in cyanogenic plants. The β-glucosidase from Prunus armeniaca L. was purified to 8-fold, and 20% yield was obtained, with a specific activity of 281 U/mg protein. The enzyme showed maximum activity in 0.15 M sodium citrate buffer, pH 6, at 35 °C with p-nitrophenylglucopyranoside as substrate. The β-glucosidase from wild apricot was used successfully for the saccharification of cellobiose into D-glucose. This enzyme has a Vmax of 131.6 μmol min−1 mg−1 protein, Km of 0.158 mM, Kcat of 144.8 s−1, Kcat/Km of 917.4 mM−1 s−1, and Km/Vmax of 0.0012 mM min mg μmole−1, using cellobiose as substrate. The half-life, deactivation rate coefficient, and activation energy of this β-glucosidase were 12.76 h, 1.509 × 10−5 s−1, and 37.55 kJ/mol, respectively. These results showed that P. armeniaca is a potential source of β-glucosidase, with high affinity and catalytic capability for the saccharification of cellulosic material.  相似文献   

17.
Cumulative ozone uptake (COU, mmol m−2) and O3 flux (FO3, nmol m−2 s−1) were related to physiological, morphological and biochemical characteristics of field-grown mature evergreen Norway spruce [Picea abies (L.) Karst.], Cembran pine [Pinus cembra L.], and deciduous European larch [Larix decidua Mill.] trees at treeline. The threshold COU causing a statistically significant decline in photosynthetic capacity (Amax) ranged between 19.6 mmol m−2 in current-year needles of evergreen conifers and 22.0 6 mmol m−2 in short-shoot needles of deciduous L. decidua subjected to exposure periods of ≥84 and ≥43 days, respectively. The higher O3 sensitivity of deciduous L. decidua than of evergreen P abies and P. cembra was associated with differences in FO3 and specific leaf area (SLA), both being significantly higher in L. decidua. FO3 was 5.9 nmol m−2 s−1 in L. decidua and 2.7 nmol m−2 s−1 in evergreen conifers. Species-dependent differences were also related to detoxification capacity expressed through total surface area based concentrations of reduced ascorbate and α-tocopherol that both increased with SLA. Findings suggest that differences in O3 sensitivity between evergreen and deciduous conifers can be attributed to foliage type specific differences in SLA, the latter determining physiological and biochemical characteristics of the treeline conifers.  相似文献   

18.
《Aquatic Botany》2005,83(1):71-81
The aquatic plant Elodea nuttallii (Planch.) St. John has been shown to express plasticity in the source of inorganic carbon it uses for photosynthesis. An investigation was undertaken to determine what effect the switch from CO2 to HCO3 use had on the growth of E. nuttallii. Plants were grown under reduced CO2 availability that favoured the switch, together with control plants (CO2 at equilibrium with air) that continued to use CO2 only. The extent to which both sets of plants could utilise HCO3 was determined (as the ratio of oxygen evolution at pH 9 and 6.5), and several measures of growth were made. Although reduced CO2 availability produced an increase in HCO3 utilisation, no differences were found in the measured growth of the plants. Therefore, it was possible to estimate, from the difference between the estimated rate of photosynthesis of the plants utilising HCO3 and those using CO2 only, the approximate cost of constructing, maintaining and running the bicarbonate utilisation mechanism in this species as 69 μmol photons m−2 s−1. This value can be used to estimate an irradiance of circa 80 μmol m−2 s−1 below which HCO3 use would not be expected in this species, an irradiance commonly experienced by submerged macrophytes in the field.  相似文献   

19.
Tetrastigma hemsleyanum Diels et Gilg was grown under full sunlight and moderate and high levels of shade for one month to evaluate its photosynthetic and chlorophyll fluorescence response to different light conditions. The results showed that T. hemsleyanum attained greatest leaf size and Pn when cultivated with 67% shade. Leaves of seedlings grown with 90% shade were the smallest. Leaf color of plants grown under full sunlight and 50% shade was yellowish-green. The Pn value increased rapidly as PPFD increased to 200 μmol m?2 s?1 and then increased slowly to a maximum, followed by a slow decrease as PPFD was increased to 1000 μmol m?2 s?1. Pn was highest for the 67% shade treatment and the LSP for this shade treatment was 600 μmol m?2 s?1. Full sunlight and 50% shade treatments resulted in significant reduction of ETR and qP and increased NPQ. Chl a, Chl b and total chlorophyll content increased and Chl a/b values decreased with increased shading. Results showed that light intensity greater than that of 50% shade depressed photosynthetic activity and T. hemsleyanum growth. Irradiance less than that of 75% shade limited carbon assimilation and led to decreased plant growth. Approximately 67% shade is suggested to be the optimum light irradiance condition for T. hemsleyanum cultivation.  相似文献   

20.
《Aquatic Botany》2005,81(2):141-155
The transport of methane from the rhizosphere to the atmosphere takes place in the intercellular spaces and stomata of wetland plants, and foliar gas exchange is one of the critical steps of the transport process. The objectives of our research were to investigate: (i) variation in foliar gas exchange among four common wetland plant species (i.e., Peltandra virginica L., Orontium aquaticum L., Juncus effusus L., and Taxodium distichum L.), (ii) the role of key environmental factors (i.e., light, temperature, and carbon dioxide concentration) in controlling foliar methane emission, and (iii) physiological mechanisms underlying the variation in methane emission due to species and the environment. Experiments were conducted in an instantaneous, flow-through gas-exchange system that operated on a mass balance approach and concurrently measured foliar fluxes of methane, water vapor, and carbon dioxide. The chamber system allowed for the control of light, temperature, humidity, and carbon dioxide concentration. Diel patterns of methane emission varied among species, with daylight emissions from P. virginica and O. aquaticum 2–4 times those of J. effusus and T. distichum in saturating light. Foliar methane emission from P. virginica (1.80 μmol m−2 s−1) under ambient daylight conditions was an order of magnitude higher than that of the other three species (∼0.20 μmol m−2 s−1). As leaf temperature was increased by 10 °C, methane emission increased by a factor of 1.5–2.2, and the temperature effect was independent of stomatal conductance. When data were pooled among the four species, varying the light and carbon dioxide concentrations in a stepwise manner produced changes in foliar methane emission that were associated with stomatal conductance (r2 = 0.52). To scale our observations to other wetland plant species, a stepwise multiple regression model is offered that incorporates stomatal conductance and net carbon dioxide assimilation to estimate instantaneous methane emission from foliar surfaces. The model indicates that changes in stomatal conductance affect methane emission three times more than equivalent changes in net carbon dioxide assimilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号