首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid, sensitive and specific normal-phase (adsorption) high-performance liquid chromatographic (HPLC) assay was developed for the determination of 1-(2-aminoethyl)-3-(2,6-dichlorophenyl)thiourea [I] in plasma and urine. The assay involves the extraction of the compound into methylene chloride from plasma or urine buffered to pH 10, and the HPLC analysis of the residue dissolved in methylene chloride—methanol—heptane (85:10:5). A 10-μm silica gel column was used with methylene chloride—methanol—heptane—ammonium hydroxide (85:10:5:0.1) as the eluting solvent. The effluent was monitored at 254 nm and quantitation was based on the peak height vs. concentration technique. The assay has a recovery of 64.5 ± 4.5% (S.D.) from plasma and 96.0 ± 6.3% (S.D.) from urine in the concentration range of 0.1–2 μg per ml and 2–40 μg per 0.1 ml of plasma and urine, respectively, with a limit of detection of 0.05–0.1 μg [I] per ml of plasma using a 1-ml specimen and 0.1 μg per ml urine using a 0.1-ml specimen, respectively. The assay was applied to the determination of plasma levels and urinary excretion of the compound [I] in dog following the oral administration of 28.8 mg of [I] · maleate per kg body weight.The HPLC assay was also used to determine the stability of [I] and for the measurement of a potential degradation product, clonidine [II] [2-(2,6-dichlorophenylamino)-2-imidazoline] in pooled human plasma stored at ?17°C, and pooled human urine stored at ?17°C and ?90°C, respectively.  相似文献   

2.
A rapid and specific high-performance liquid chromatographic (HPLC) assay was developed for the determination of the antiarrhythmic quinidine analog, 7′-trifluoromethyldihydrocinchonidine-2HCl ([I]-2HCl) in plasma and urine. The overall recovery of [I] from plasma was 86 ± 9% with a sensitivity limit of detection of 0.2 μg/ml.The assay involves extraction of [I] into benzene-methylene chloride (9:1) from plasma or urine made alkaline with 0.1 N sodium hydroxide (pH 13) and saturated sodium chloride, the residue of which is dissolved in methylene chloride, an aliquot of which is analyzed by HPLC using adsorption chromatography on silica gel with UV detection at 254 nm. The mobile phase composed of methylene chloride-methanol-conc. ammonium hydroxide (95.5:4:0.5) yields baseline resolution of quinidine used as the internal (reference) standard, compound [I] and dihydroquinidine, a common contaminant in quinidine.The assay was applied to the analysis of plasma and urine samples taken from a dog administered a single 20 mg/kg dose via intravenous and oral routes. The stability of [I] in human plasma for up to 37 days of storage at ?17°C was also demonstrated.  相似文献   

3.
A column-switching high-performance liquid chromatography method with ultraviolet detection at 210 nm has been developed for the determination of N-(trans-4-isopropylcyclohexylcarbonyl)-d-phenylalanine (AY4166, I) in human plasma. Plasma samples were prepared by solid-phase extraction with Sep-Pak Light tC18, followed by HPLC. The calibration graph for I was linear in the range 0.1–20 μg/ml. The limit of quantitation of I, in plasma, was 0.05 μg/ml. The recovery of spiked I (0.5 μg/ml) to drug-free plasma was over 92% and the relative standard deviation of spiked I (0.5 μg/ml) compared to drug-free plasma was 4.3% (n = 8).  相似文献   

4.
A column-switching high-performance liquid chromatography method with ultraviolet detection at 210 nm has been developed for the determination of N-(trans-4-isopropylcyclohexylcarbonyl)-d-phenylalanine (AY4166, I) in human plasma. Plasma samples were prepared by solid-phase extraction with Sep-Pak Light tC18, followed by HPLC. The calibration graph for I was linear in the range 0.1–20 μg/ml. The limit of quantitation of I, in plasma, was 0.05 μg/ml. The recovery of spiked I (0.5 μg/ml) to drug-free plasma was over 92% and the relative standard deviation of spiked I (0.5 μg/ml) compared to drug-free plasma was 4.3% (n = 8).  相似文献   

5.
A simple and sensitive high-performance liquid chromatograhic (HPLC) method for the determination of (+)-(S)-sotalol and (−)-(R)-sotalol in biological fluids was established. Following extraction with isopropyl alcohol from biological samples on a Sep-Pak C18 cartridge, the eluent was derivatized with 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosol isothiocyanate (GITC). The diastereoisomeric derivatives are resolved by HPLC with UV detection at 225 nm. Calibration was linear from 0.022 to 4.41 μg/ml in human plasma and from 0.22 to 88.2 μg/ml in human urine for both (+)-(S)- and (−)-(R)-sotalol. The lower limit of determination was 0.022 μg/ml for plasma and 0.22 μg/ml for urine. The within-day and day-to-day coefficients of variation were less than 7.5% for each enantiomer at 0.09 and 1.8 μg/ml in plasma and at 0.44 and 4.4 μg/ml in urine. The method is also applicable to other biological specimens such as rat, mouse and rabbit plasma.  相似文献   

6.
Direct injection high-performance liquid chromatographic (HPLC) methods with column switching and UV detection were developed for the rapid and accurate determination of S-1090 in human plasma and urine. An internal-surface reversed-phase pre-column and a C18 analytical column were used for the plasma assay. Two pre-columns packed with cyano and phenyl materials and a C18 analytical column were used for the urine assay. The calibration curves for plasma and urine assays were linear in the ranges 0.09–9 μg/ml and 0.5–100 μg/ml of S-1090, respectively. The relative standard deviations for plasma and urine assays were less than 6% with low relative errors. The established HPLC methods were demonstrated to be useful for clinical pharmacokinetic studies after oral administration of S-1090.  相似文献   

7.
A method is described for the qualiitative and quantitative determination of phenylbutazone and oxyphenbutazone in horse urine and plasma samples viewing antidoping control. A horse was administered intravenously with 3 g of phenylbutazone. For the qualitative determination, a screening by HPLC was performed after acidic extraction of the urine samples and the confirmation process was realized by GC-MS. Using the proposed method it was possible to detect phenylbutazone and oxyphenbutazone in urine for up to 48 and 120 h, respectively. For the quantitation of these drugs the plasma was deproteinized with acetonitrile and 20 gml were injected directly into the HPLC system equipped with a UV detector and LiChrospher RP-18 column. The mobile phase used was 0.01 M acetic acid in methanol (45:55, v/v). The limit of detection was 0.5 μg/ml for phenylbutazone and oxyphenbutazone and the limit of quantitation was 1.0 μg/ml for both drugs. Using the proposed method it was possible to quantify phenylbutazone up to 30 h and oxyphenbutazone up to 39 h after administration.  相似文献   

8.
A sensitive and specific HPLC method has been developed for the assay of vigabatrin in human plasma and urine. The assay involves derivatization with 4-chloro-7-nitrobenzofurazan, solid-phase extraction on a silica column and isocratic reversed-phase chromatography with fluorescence detection. Aspartam was used as an internal standard. The assay was linear over the concentration range of 0.2–20.0 μg/ml for plasma and 1.0–15.0 μg/ml for urine with a lower limit of detection of 0.1 μg/ml using 0.1 ml of starting volume of the sample. Both the within-day and day-to-day reproducibilities and accuracies were less than 5.46% and 1.6%, respectively. After a single oral dose of 500 mg of vigabatrin, the plasma concentration and the cumulative urinary excretion of the drug were determined.  相似文献   

9.
A rapid, sensitive and specific high-performance liquid chromatographic (HPLC) assay was developed for the determination of 8-chloro-6-(2-chlorophenyl)-4H-imidazo-[1,5-a]-[1,4]-benzodiazepine-3-carboxamide [I] and its 4-hydroxy metabolite, 8-chloro-6-(2-chlorophenyl)-4-hydroxy-4H-imidazo-[1,5-a][1,4]-benzodiazepine-3-carboxamide [II] in whole blood, plasma or urine. The assay for both compounds involves extraction into diethyl ether—methylene chloride (70:30) from blood, plasma, or urine buffered to pH 9.0. The overall recoveries of [I] and [II] are 92.0 ± 5.4% (S.D.) and 90.3 ± 4.9% (S.D.), respectively. The sensitivity limit of detection is 50 ng/ml of blood, plasma, or urine using a UV detector at 254 nm. The HPLC assay was used to monitor the blood concentration—time fall-off profiles, and urinary excretion profiles in the dog following single 1 mg/kg intravenous and 5 mg/kg oral doses, and following multiple oral doses of 100 mg/kg/day of compound [I].  相似文献   

10.
A sensitive stereoselective HPLC method was developed for determination of mefloquine (MFQ) enantiomers in plasma, urine and whole blood. The assay involved liquid-liquid extraction of MFQ from biological fluids with a mixture of hexane and isopropanol in the presence of sodium hydroxide and derivatization of the residue by (+)-(S)-naphthylethylisocyanate (NEIC) as chiral derivatizing reagent. Separation of the resulting diastereomers was performed on a silica normal-phase column using chloroform-hexane-methanol (25:74:1) as the mobile phase with a flow-rate of 1 ml/min. Using 200 μl of plasma or whole blood, the limit of determination was 0.2 μg/ml with UV detection for both enantiomers. The limit of determination in 500 μl of urine was 0.08 μg/ml with UV detection.  相似文献   

11.
A high-performance liquid chromatographic method with ultraviolet detection has been developed to quantify NB-506 and its active metabolite in human plasma and urine. This method is based on solid-phase extraction, thereby allowing the simultaneous measurement of the drug and metabolite with the limit of quantification of 0.01 μg/ml in plasma and 0.1 μg/ml in urine. Standard curves for the compounds were linear in the concentration ranges investigated. The range for the drug in plasma was 0.01–2.5 μg/ml, and for the metabolite 0.01–1 μg/ml. In urine, the range for both compounds was 0.1–10 μg/ml. The method was validated and applied to the assay of plasma and urinary samples from phase I studies.  相似文献   

12.
(−)-β-d-2,6-Diaminopurine dioxolane (DAPD) and its metabolite dioxolane guanosine (DXG) have potent activity against hepatitis B virus and HIV, in vitro. A reversed-phase HPLC analytical method using UV and on-line radiochemical detection for the determination of DAPD and DXG in monkey serum and urine is described in this report. Retention times for DXG, DAPD and internal standard (2′,3′-didehydro-2′ deoxythymidine, D4T) were 5.0, 6.0 and 13.0 min, respectively. The extraction recovery was greater than 97% for DAPD and 94% for DXG. The limit of quantitation for UV detection was 100 ng/ml and 125 ng/ml for DXG and DAPD in monkey serum. The standard curves were linear from 0.1 μg/ml to 5 μg/ml for DXG and 0.125 μg/ml to 5 μg/ml for DAPD. For radiochemical detection, calibration curves of standard solutions of DAPD and DXG were linear in the range of 3500 Bq to 32 000 Bq and 7500 Bq to 60 000 Bq. The intra- and inter-day relative standard deviations were less than 7.2% using UV and less than 8.6% using on-line radiochemical detection. The HPLC method was applied to serum and urine samples collected from a male rhesus monkey that was administered 33.3 mg/kg DAPD with 200 μgCi of [3H]DAPD intravenously.  相似文献   

13.
A high-performance liquid chromatographic (HPLC) method with ultraviolet (UV) absorbance was developed for the analysis of piperacillin-tazobactam (tazocillin), in plasma and urine. The detection was performed at 218 nm for tazobactam and 222 nm for piperacillin. The procedure for assay of these two compounds in plasma and of piperacillin in urine involves the addition of an internal standard (ceftazidime for tazobactam and benzylpenicillin for piperacillin) followed by a treatment of the samples with acetonitrile and chloroform. To quantify tazobactam in urine, diluted samples were analysed using a column-switching technique without internal standard. The HPLC column, LiChrosorb RP-select B, was equilibrated with an eluent mixture composed of acetonitrile-ammonium acetate (pH 5). The proposed technique is reproducible, selective, and reliable. The method has been validated, and stability tests under various conditions have been performed. Linear detector responses were observed for the calibration curve standards in the ranges 5–60 μg/ml for tazobactam, and 1–100 μg/ml for piperacillin and spans what is currently though to be the clinically relevant range for tazocillin concentrations in body fluids. The limit of quantification was 3 μg/ml for tazobactam and 0.5 μg/ml for piperacillin in plasma and urine. Extraction recoveries from plasma proved to be more than 85%. Precision, expressed as C.V., was in the range 0.4–18%.  相似文献   

14.
An HPLC method for determining quercetin in human plasma and urine is presented for application to the pharmacokinetic study of rutin. Isocratic reversed-phase HPLC was employed for the quantitative analysis by using kaempferol as an internal standard. Solid-phase extraction was performed on an Oasis HLB cartridge (>95% recovery). The HPLC assay was carried out using a Luna ODS-2 column (150 x 2.1 mm I.D., 5 microm particle size). The mobile phase was acetonitrile-10 mM ammonium acetate solution containing 0.3 mM EDTA-glacial acetic acid, 29:70:1 (v/v, pH 3.9) and 26:73:1 (v/v, pH 3.9) for the determination of plasma and urinary quercetin, respectively. The flow-rate was 0.3 ml/min and the detection wavelength was set at 370 nm. Calibration of the overall analytical procedure gave a linear signal (r>0.999) over a concentration range of 4-700 ng/ml of quercetin in plasma and 20-1000 ng/ml of quercetin in urine. The lower limit of quantification was approximately 7 ng/ml of quercetin in plasma and approximately 35 ng/ml in urine. The detection limit (defined at a signal-to-noise ratio of about 3) was approximately 0.35 ng/ml in plasma and urine. A preliminary experiment to investigate the plasma concentration and urinary excretion of quercetin after oral administration of 200 mg of rutin to a healthy volunteer demonstrated that the present method was suitable for determining quercetin in human plasma and urine.  相似文献   

15.
A high-performance liquid chromatographic method was developed for the simultaneous determination of phenylbutazone and its metabolites, oxyphenbutazone and γ-hydroxyphenylbutazone, in plasma and urine. Samples were acidified with hydrochloric acid and extracted with benzene—cyclohexane (1:1, v/v). The extract was redissolved in methanol and chromatographed on a μBondapak C15 column using a mobile phase of methanol—0.01 M sodium acetate buffer (pH 4.0) in a linear gradient (50 to 100% methanol at 5%/min; flow-rate 2.0 ml/min) in a high-performance liquid chromatograph equipped with an ultra-violet absorbance detector (254 nm). The detection limit for phenylbutazone, oxyphenbutazone and for γ-hydroxyphenylbutazone was 0.05 μg/ml.A precise and sensitive assay for the determination of phenylbutazone and its metabolites was established.  相似文献   

16.
A rapid, specific, sensitive and economical method has been developed and validated for the determination of grepafloxacin in human plasma and urine. The assay consisted of reversed-phase HPLC with UV detection. Plasma proteins were removed by a fast and efficient procedure that has eliminated the need for costly extraction and evaporation. For the urine samples, the only required sample preparation was dilution. Separation was achieved on a reversed-phase TSK gel column with an isocratic mobile system. The method had a quantification limit of 0.05 μg/ml in plasma and 0.5 μg/ml in urine. The coefficients of variation (C.V.) were less than 4% for within- and between-day analyses. The method was successfully applied to a pharmacokinetic study, and was proved to be simple, fast and reproducible.  相似文献   

17.
A high-performance liquid chromatographic (HPLC) method with electrochemical detection and solid-phase extraction (SPE) using cartridges of weak cation-exchange capacity as the primary retention mechanism is described for the separation and determination of methylnaltrexone (MNTX) in small clinical samples of plasma or urine. The procedure was performed using a Phenomenex Prodigy ODS-2, 5 microm, 150x3.2 mm analytical column and 50 mM potassium acetate buffer, with 11% methanol as organic modifier at pH* 4.5 at a flow-rate of 0.5 ml/min. The detection potential was 700 mV. The six-point standard calibration curves were linear over three consecutive days in the range from 2 to 100 ng/ml. The average goodness of fit (r) was 0.9993. The lower limit of detection (LOD) and limit of quantification (LOQ) were found to be 2.0 and 5.0 ng/ml, respectively. At the LOQ, the coefficient of variation for the entire method was 8.0% and the accuracy was 10.0% (n = 10). Recovery of the drug from plasma was in the region of 94%. The method was applied to a pharmacokinetics study of methylnaltrexone after subcutaneous administration and in numerous assays of analytes in blood plasma and urine. The pharmacokinetics parameters for a single dose of 0.1 or 0.3 mg/kg in plasma were C(max) = 110 (+/-55) and 287 (+/-101) ng/ml and t(max) = 16.7 (+/-10.8) and 20.0 (+/-9.5) min, respectively. The method is simple, yet sensitive for the detection and determination of methylnaltrexone in biological samples at the level of the physiological response.  相似文献   

18.
A method for the simultaneous direct determination of salicylate (SA), its labile, reactive metabolite, salicyl acyl glucuronide (SAG), and two other major metabolites, salicyluric acid and gentisic acid in plasma and urine is described. Isocratic reversed-phase high performance liquid chromatography (HPLC) employed a 15-cm C18 column using methanol-acetonitrile-25 mM acetic acid as the mobile phase, resulting in HPLC analysis time of less than 20 min. Ultraviolet detection at 310 nm permitted analysis of SAG in plasma, but did not provide sensitivity for measurement of salicyl phenol glucuronide. Plasma or urine samples are stabilized immediately upon collection by adjustment of pH to 3–4 to prevent degradation of the labile acyl glucuronide metabolite. Plasma is then deproteinated with acetonitrile, dried and reconstituted for injection, whereas urine samples are simply diluted prior to injection on HPLC. m-Hydroxybenzoic acid served as the internal standard. Recoveries from plasma were greater than 85% for all four compounds over a range of 0.2–20 μg/ml and linearity was observed from 0.1–200 μg/ml and 5–2000 μg/ml for SA in plasma and urine, respectively. The method was validated to 0.2 μg/ml, thus allowing accurate measurement of SA, and three major metabolites in plasma and urine of subjects and small animals administered salicylates. The method is unique by allowing quantitation of reactive SAG in plasma at levels well below 1% that of the parent compound, SA, as is observed in patients administered salicylates.  相似文献   

19.
The development and validation of a high-performance liquid chromatographic (HPLC) assay for determination of busulfan concentrations in human plasma for pharmacokinetic studies is described. Plasma samples containing busulfan and 1,6-bis(methanesulfonyloxy)hexane, and internal standard, were prepared by derivatization with sodium diethyldithio-carbamate (DDTC) followed by addition of methanol and extraction with ethyl acetate. The extract was dried under nitrogen and the samples reconstituted with 100 μl of methanol prior to HPLC determination. Chromatography was accomplished using a Waters NovaPak octadecylsilyl (ODS) (150×3.9 mm I.D.) analytical column, NovaPak ODS guard column, and mobile phase of methanol-water (80:20, v/v) at a flow-rate of 0.8 ml/min with UV detection at 251 nm. The limit of detection was 0.0200 μg/ml (signal-to-noise ratio of 6) with a limit of quantitation (LOQ) of 0.0600 μg/ml for busulfan in plasma. Calibration curves were linear from 0.0600 to 3.00 μg/ml in plasma (500 μl) using a weighting scheme. Precision of the assay, as represented by C.V. of the observed peak area ration values, ranged from 4.41 to 13.5% (13.5% at LOQ). No day-to-day variability was observed in predicted concentration values and the bias was low for all concentrations evaluated (bias: 0 to 4.76%; LOQ: 2.91%). The mean derivatization and extraction yield observed for busulfan in plasma at 0.200, 1.20 and 2.00 μg/ml was 98.5% (range 93.4 to 107%). Plasma samples containing potential busulfan metabolites and co-administered drugs, which may be present in clinical samples, provided no response indicating this assay procedure is selective for busulfan. This method was used to analyze plasma concentrations following administration of a 1 mg/kg oral busulfan dose.  相似文献   

20.
A simple, sensitive, reliable and economical HPLC method for quantifying paraquat concentration in human plasma has been developed, using diethyl paraquat as an internal standard. The drugs were extracted from the sample and separated on Xtimate C18 column with a mobile phase of 15% acetonitrile in 0.1M orthophosphoric acid containing SDS (150 mg/l). The pH of the mobile phase was adjusted to 3 with triethylamine and the detection wavelength was 256 nm for both paraquat and the internal standard. The average extraction recoveries were 91.9%. Good linearity (R(2)=0.9984) was observed throughout the range of 0.02-10 μg/ml in 0.5 ml plasma. The overall accuracy of this method was 97.6-107.3% and the lower limit of detection was 0.01 μg/ml. The intra- and inter-day variations were lower than 3.65% and 2.64%, respectively. We used this method to examine the paraquat concentrations of 53 patients with acute paraquat intoxication of whom 26 (49.1%) survived. In conclusion, this method was suitable for quantification of paraquat plasma concentration in toxicological samples. It was helpful in both assessing the severity of intoxication and predicting the outcome of paraquat poisoning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号