首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolutionary aspects of elemental hyperaccumulation   总被引:1,自引:0,他引:1  
Hyperaccumulation is the uptake of one or more metal/metalloids to concentrations greater than 50–100× those of the surrounding vegetation or 100–10,000 mg/kg dry weight depending on the element. Hyperaccumulation has been documented in at least 515 taxa of angiosperms. By mapping the occurrence of hyperaccumulators onto the angiosperm phylogeny, we show hyperaccumulation has had multiple origins across the angiosperms. Even within a given order, family or genus, there are typically multiple origins of hyperaccumulation, either for the same or different elements. We address which selective pressures may have led to the evolution of hyperaccumulation and whether there is evidence for co-evolution with ecological partners. Considerable evidence supports the elemental-defense hypothesis, which states that hyperaccumulated elements protect the plants from herbivores and pathogens. There is also evidence that hyperaccumulation can result in drought stress protection, allelopathic effects or physiological benefits. In many instances, ecological partners of hyperaccumulators have evolved resistance to the hyperaccumulated element, indicating co-evolution. Studies on the molecular evolution of hyperaccumulation have pinpointed gene duplication as a common cause of increased metal transporter abundance. Hypertolerance to the hyperaccumulated element often relies upon chelating agents, such as organic acids (e.g., malate, citrate) or peptide/protein chelators that can facilitate transport and sequestration. We conclude the review with a summary and suggested future directions for hyperaccumulator research.  相似文献   

2.
Deep evolutionary histories can play an important role in assembling species into communities, but few studies have explored the effects of deep evolutionary histories on species assembly of angiosperms (flowering plants). Here we explore patterns of family divergence and diversification times (stem and crown ages, respectively) and phylogenetic fuses for angiosperm assemblages in 100 × 100 km grid cells across geographic and ecological gradients in China. We found that both family stem and crown ages of angiosperm assemblages are older in southeastern China with warm and humid climates than in northwestern China with cold and dry climates; these patterns are stronger for family stem ages than for family crown ages; families in colder and drier climates are more closely related across the family-level angiosperm phylogeny; and family phylogenetic fuses are, on average, longer for angiosperm assemblages in warm and humid climates than in cold and dry climate. We conclude that the fact that deep evolutionary histories, which were measured as family stem and crown ages and family phylogenetic fuses in this study, have shown strong geographic and ecological patterns suggests that deep evolutionary histories of angiosperms have profound effects on assembling angiosperm species into ecological communities.  相似文献   

3.
Aluminum phytotoxicity and genetically based aluminum resistance has been studied intensively during recent decades because aluminum toxicity is often the primary factor limiting crop productivity on acid soils. Plants that grow on soils with high aluminum concentrations employ three basic strategies to deal with aluminum stress. While excluders effectively prevent aluminum from entering their aerial parts over a broad range of aluminum concentration in the soil, hyperaccumulators take up aluminum in their aboveground tissues in quantities above 1000 ppm; that is, far exceeding those present in the soil or in the nonaccumulating species growing nearby. In between these two extremes are indicator species, representing intermediate responses. A list of aluminum hyperaccumulators in angiosperms is compiled on the basis of data in the literature. Aluminum hyperaccumulators include mainly woody, perennial taxa from tropical regions. Recent molecular phylogenies are used to evaluate the systematic and phylogenetic implications of the character. As was hypothesized earlier, our preliminary conclusions support the primitive status of aluminum hyperaccumulation. According to the APG classification system, this phytochemical character is found in approximately 45 families, which belong largely to the eudicots. Aluminum hyperaccumulators are particularly common in basal branches of fairly advanced groups such as rosids (Myrtales, Malpighiales, Oxalidales) and asterids (Cornales, Ericales, Gentianales, Aquifoliales), but the character has probably been lost in the most derived taxa. The feature is suggested to characterize approximately 18 families (e.g., Anisophylleaceae, Cunoniaceae, Diapensiaceae, Memecylaceae, Monimiaceae, Rapateaceae, Siparunaceae, Vochysiaceae, and several monogeneric families). In 27 other families, aluminum hyperaccumulation is restricted to subfamilies, tribes, or genera. Further analyses of a broader range of taxa are needed to examine the origin and taxonomic significance of aluminum hyperaccumulation in several clades. Aluminum hyperaccumulation provides an evolutionary model system for the integration of different biological disciplines, such as systematics, ecology, biogeography, physiology, and biochemistry. Therefore, multidisciplinary approaches are needed to make further progress in understanding the biology of aluminum hyperaccumulators.  相似文献   

4.
Background Halophytes are rare, with only 0·25 % of angiosperm species able to complete their life cycle in saline conditions. This could be interpreted as evidence that salt tolerance is difficult to evolve. However, consideration of the phylogenetic distribution of halophytes paints a different picture: salt tolerance has evolved independently in many different lineages, and halophytes are widely distributed across angiosperm families. In this Viewpoint, I will consider what phylogenetic analysis of halophytes can tell us about the macroevolution of salt tolerance.Hypothesis Phylogenetic analyses of salt tolerance have shown contrasting patterns in different families. In some families, such as chenopods, salt tolerance evolved early in the lineage and has been retained in many lineages. But in other families, including grasses, there have been a surprisingly large number of independent origins of salt tolerance, most of which are relatively recent and result in only one or a few salt-tolerant species. This pattern of many recent origins implies either a high transition rate (salt tolerance is gained and lost often) or a high extinction rate (salt-tolerant lineages do not tend to persist over macroevolutionary timescales). While salt tolerance can evolve in a wide range of genetic backgrounds, some lineages are more likely to produce halophytes than others. This may be due to enabling traits that act as stepping stones to developing salt tolerance. The ability to tolerate environmental salt may increase tolerance of other stresses or vice versa.Conclusions Phylogenetic analyses suggest that enabling traits and cross-tolerances may make some lineages more likely to adapt to increasing salinization, a finding that may prove useful in assessing the probable impact of rapid environmental change on vegetation communities, and in selecting taxa to develop for use in landscape rehabilitation and agriculture.  相似文献   

5.
ABSOLUTE DIVERSIFICATION RATES IN ANGIOSPERM CLADES   总被引:18,自引:0,他引:18  
Abstract The extraordinary contemporary species richness and ecological predominance of flowering plants (angiosperms) are even more remarkable when considering the relatively recent onset of their evolutionary diversification. We examine the evolutionary diversification of angiosperms and the observed differential distribution of species in angiosperm clades by estimating the rate of diversification for angiosperms as a whole and for a large set of angiosperm clades. We also identify angiosperm clades with a standing diversity that is either much higher or lower than expected, given the estimated background diversification rate. Recognition of angiosperm clades, the phylogenetic relationships among them, and their taxonomic composition are based on an empirical compilation of primary phylogenetic studies. By making an integrative and critical use of the paleobotanical record, we obtain reasonably secure approximations for the age of a large set of angiosperm clades. Diversification was modeled as a stochastic, time‐homogeneous birth‐and‐death process that depends on the diversification rate (r) and the relative extinction rate (∈). A statistical analysis of the birth and death process was then used to obtain 95% confidence intervals for the expected number of species through time in a clade that diversifies at a rate equal to that of angiosperms as a whole. Confidence intervals were obtained for stem group and for crown group ages in the absence of extinction (∈= 0.0) and under a high relative extinction rate (∈= 0.9). The standing diversity of angiosperm clades was then compared to expected species diversity according to the background rate of diversification, and, depending on their placement with respect to the calculated confidence intervals, exceedingly species‐rich or exceedingly species‐poor clades were identified. The rate of diversification for angiosperms as a whole ranges from 0.077 (∈= 0.9) to 0.089 (∈= 0.0) net speciation events per million years. Ten clades fall above the confidence intervals of expected species diversity, and 13 clades were found to be unexpectedly species poor. The phylogenetic distribution of clades with an exceedingly high number of species suggests that traits that confer high rates of diversification evolved independently in different instances and do not characterize the angiosperms as a whole.  相似文献   

6.
Thlaspi caerulescens is distributed in Europe on metalliferous and not metalliferous soils. Individuals from populations growing on heavy metal contaminated soils are well known as hyperaccumulators of zinc and cadmium. The taxonomical treatment of subspecies of Thlaspi caerulescens is unsettled. We investigated the degree of genetic variation among 28 populations of Thlaspi caerulescens from Europe with isozyme analysis to compare inter- and intrapopulational diversity. British material from heavy metal contaminated environments recognized as Thlaspi sylvestre and T. occitanicum are quite similar to each other on the level of isozyme polymophisms, but they are more closely related to populations from non-contaminated stands from Scandinavia and Middle Europe than to metallophytes distributed in Continental Europe. Our findings indicate that a taxonomical subdivision of T. caerulescens is not possible and, furthermore, heavy metal tolerance might have evolved twice in populations of Thlaspi caerulescens from different areas. The trait of zinc tolerance and hyperaccumulation is frequently found in numerous relatives of Thlaspi caerulescens, and it is suggested that this trait has been established and manifested in populations from metalliferous sites during postglacial colonization. From Scandinavia only non-metallophytes are known. These populations are very similar to each other on the isozyme level. This fits to the hypothesis that Thlaspi caerulescens was introduced to Scandinavia in recent times by human activity. Despite full self-compatibility we estimated varying outcrossing rates up to 0.88 in the metallophytes and 0.658 in the non-metallophytes depending on population size and structure.  相似文献   

7.
Although flowers, leaves, and stems of the angiosperms have understandably received more attention than roots, the growing root tips, or root apical meristems (RAMs), are organs that could provide insight into angiosperm evolution. We studied RAM organization across a broad spectrum of angiosperms (45 orders and 132 families of basal angiosperms, monocots, and eudicots) to characterize angiosperm RAMs and cortex development related to RAMs. Types of RAM organization in root tips of flowering plants include open RAMs without boundaries between some tissues in the growing tip and closed RAMs with distinct boundaries between apical regions. Epidermis origin is associated with the cortex in some basal angiosperms and monocots and with the lateral rootcap in eudicots and other basal angiosperms. In most angiosperm RAMs, initials for the central region of the rootcap, or columella, are distinct from the lateral rootcap and its initials. Slightly more angiosperm families have exclusively closed RAMs than exclusively open RAMs, but many families have representatives with both open and closed RAMs. Root tips with open RAMs are generally found in angiosperm families considered sister to other families; certain open RAMs may be ancestral in angiosperms.  相似文献   

8.
Several members of the most ancient living lineages of flowering plants (angiosperms) inhabit humid, woody, mostly tropical habitats. Here we assess whether one of these forest types, the cloud forests of Mexico (CFM), contain a relatively higher proportion of phylogenetically early-diverging angiosperm lineages. The CFM houses an extraordinary plant species diversity, including members of earliest-diverging angiosperm lineages. The phylogenetic composition of CFM angiosperm diversity was evaluated through the relative representation of orders and families with respect to the global flora, and the predominance of phylogenetically early- or late-diverging lineages. Goodness-of-fit tests indicated significant differences in the proportional local and global representation of angiosperm clades. The net difference between the percentage represented by each order and family in the CFM and the global flora allowed identification of clades that are overrepresented and underrepresented in the CFM. Early-diverging angiosperm orders and families were found to be neither over- nor underrepresented in the CFM. A slight predominance of late-diverging phylogenetic levels among overrepresented clades, however, was encountered in the CFM. The resulting pattern suggests that cloud forests provide habitats where the most ancient angiosperm lineages have survived in the face of accumulating species diversity belonging to phylogenetically late-diverging lineages.  相似文献   

9.
The adaptive significance of nuclear DNA variation in angiosperms is still widely debated. The discussion mainly revolves round the causative factors influencing genome size and the adaptive consequences to an organism according to its growth form and environmental conditions. Nuclear DNA values are now known for 3874 angiosperm species (including 773 woody species) from over 219 families (out of a total of 500) and 181 species of woody gymnosperms, representing all the families. Therefore, comparisons have been made on not only angiosperms, taken as a whole, but also on the subsets of data based on taxonomic groups, growth forms, and environment. Nuclear DNA amounts in woody angiosperms are restricted to less than 23.54 % of the total range of herbaceous angiosperms; this range is further reduced to 6.8 % when woody and herbaceous species of temperate angiosperms are compared. Similarly, the tropical woody dicots are restricted to less than 50.5 % of the total range of tropical herbaceous dicots, while temperate woody dicots are restricted to less than 10.96 % of the total range of temperate herbaceous dicots. In the family Fabaceae woody species account for less than 14.1 % of herbaceous species. Therefore, in the total angiosperm sample and in subsets of data, woody growth form is characterized by a smaller genome size compared with the herbaceous growth form. Comparisons between angiosperm species growing in tropical and temperate regions show highly significant differences in DNA amount and genome size in the total angiosperm sample. However, when only herbaceous angiosperms were considered, significant differences were obtained in DNA amount, while genome size showed a non-significant difference. An atypical result was obtained in the case of woody angiosperms where mean DNA amount of tropical species was almost 25.04 % higher than that of temperate species, which is because of the inclusion of 85 species of woody monocots in the tropical sample. The difference becomes insignificant when genome size is compared. Comparison of tropical and temperate species among dicots and monocots and herbaceous monocots taken separately showed significant differences both in DNA amount and genome size. In herbaceous dicots, while DNA amount showed significant differences the genome size varies insignificantly. There was a non-significant difference among tropical and temperate woody dicots. In three families, i.e., Poaceae, Asteraceae, and Fabaceae the temperate species have significantly higher DNA amount and genome size than the tropical ones. Woody gymnosperms had significantly more DNA amount and genome size than woody angiosperms, woody eudicots, and woody monocots. Woody monocots also had significantly more DNA amount and genome size than woody eudicots. Lastly, there was no significant difference between deciduous and evergreen hardwoods. The significance of these results in relation to present knowledge on the evolution of genome size is discussed.  相似文献   

10.
Seedling mortality of Alyssum serpyllifolium ssp. lusitanicum and A. murale , both nickel hyperaccumulators, was reduced by increasing concentrations of metal within plant tissues when inoculated with the fungi Pythium mamillatum or P. ultimum , both of which cause damping-off disease of seedlings. Pythium mamillatum , isolated from nickel-rich serpentine soil, was more tolerant of nickel than P. ultimum , isolated from low-metal control soil, and was more pathogenic than P. ultimum towards seedlings containing high concentrations of metal. These results support the hypothesis that metal hyperaccumulation by plants is closely linked to increased protection against disease.  相似文献   

11.
Contamination with heavy metals is one of the most pressing threats to water and soil resources, as well as human health. Phytoremediation might potentially be used to remediate metal-contaminated sites. A major advance in the development of phytoremediation for heavy metal affected soils was the discovery of heavy metal hyperaccumulation in plants. This study applied several established criteria to identify hyperaccumulator plants. A case study was conducted at a mining area in the Hamedan province in the west central region of Iran. The results indicated that plant metal accumulation differed among species and plant parts. Plant species grown in substrata with elevated metal levels contained significantly higher metal levels. Using the most common criteria, Euphorbia macroclada and Centaurea virgata can be classified as hyperaccumulators of specific heavy metals measured in this study and they might potentially be used for the phytoremediation of contaminated soils.  相似文献   

12.
Summary Complete or partial nucleotide sequences of five different rRNA species, coded by nuclear (18S, 5.8S, and 5S) or chloroplast genomes (5S, 4.5S) from a number of seed plants were determined. Based on the sequence data, the phylogenetic dendrograms were built by two methods, maximum parsimony and compatibility. The topologies of the trees for different rRNA species are not fully congruent, but they share some common features. It may be concluded that both gymnosperms and angiosperms are monophyletic groups. The data obtained suggest that the divergence of all the main groups of extant gymnosperms occurred after the branching off of the angiosperm lineage. As the time of divergence of at least some of these gymnosperm taxa is traceable back to the early Carboniferous, it may be concluded that the genealogical splitting of gymnosperm and angiosperm lineages occurred before this event, at least 360 million years ago, i.e., much earlier than the first angiosperm fossils were dated. Ancestral forms of angiosperms ought to be searched for among Progymnospermopsida. Genealogical relationships among gymnosperm taxa cannot be deduced unambiguously on the basis of rRNA data. The only inference may be that the taxon Gnetopsida is an artificial one, andGnetum andEphedra belong to quite different lineages of gymnosperms. As to the phylogenetic position of the two Angiospermae classes, extant monocotyledons seem to be a paraphyletic group located near the root of the angiosperm branch; it emerged at the earliest stages of angiosperm evolution. We may conclude that either monocotyledonous characters arose independently more than once in different groups of ancient Magnoliales or that monocotyledonous forms rather than dicotyledonous Magnoliales were the earliest angiosperms. Judging by the rRNA trees, Magnoliales are the most ancient group among dicotyledons. The most ancient lineage among monocotyledons leads to modern Liliaceae.  相似文献   

13.

Background  

The magnoliids with four orders, 19 families, and 8,500 species represent one of the largest clades of early diverging angiosperms. Although several recent angiosperm phylogenetic analyses supported the monophyly of magnoliids and suggested relationships among the orders, the limited number of genes examined resulted in only weak support, and these issues remain controversial. Furthermore, considerable incongruence resulted in phylogenetic reconstructions supporting three different sets of relationships among magnoliids and the two large angiosperm clades, monocots and eudicots. We sequenced the plastid genomes of three magnoliids, Drimys (Canellales), Liriodendron (Magnoliales), and Piper (Piperales), and used these data in combination with 32 other angiosperm plastid genomes to assess phylogenetic relationships among magnoliids and to examine patterns of variation of GC content.  相似文献   

14.
In this study, the differences in zinc (Zn) and nickel (Ni) hyperaccumulation were investigated between three populations of Thlaspi pindicum together with genetic variation within populations of T. pindicum and Thlaspi alpinum var. sylvium, both serpentine endemics. Three experiments were conducted under standard conditions in hydroponic assay. Each experiment contained three treatments of metal: 100 microm Zn, 100 microm Ni, and combined 100/100 microm Zn/Ni. Genetic variation within populations was determined using maternal families. No genetic variation within populations was found for either Zn or Ni hyperaccumulation for both T. pindicum and T. alpinum var. sylvium, but differences were observed for both Zn and Ni hyperaccumulation between populations of T. pindicum. In combined Zn/Ni treatments, Zn inhibited Ni translocation in both species, which is unexpected considering that these species are serpentine endemics and well known Ni hyperaccumulators. The lack of genetic variation for metal hyperaccumulation is possibly due to inbreeding. Since Zn hyperaccumulation is not manifested in the field, inadvertent uptake of Zn is a plausible hypothesis for its preferential uptake.  相似文献   

15.
Flowering plants (angiosperms) are by far the largest, most diverse, and most important group of land plants, with over 250,000 species and a dominating presence in most terrestrial ecosystems. Understanding the origin and early diversification of angiosperms has posed a long-standing botanical challenge [1]. Numerous morphological and molecular systematic studies have attempted to reconstruct the early history of this group, including identifying the root of the angiosperm tree. There is considerable disagreement among these studies, with various groups of putatively basal angiosperms from the subclass Magnoliidae having been placed at the root of the angiosperm tree (reviewed in [2-4]). We investigated the early evolution of angiosperms by conducting combined phylogenetic analyses of five genes that represent all three plant genomes from a broad sampling of angiosperms. Amborella, a monotypic, vessel-less dioecious shrub from New Caledonia, was clearly identified as the first branch of angiosperm evolution, followed by the Nymphaeales (water lillies), and then a clade of woody vines comprising Schisandraceae and Austrobaileyaceae. These findings are remarkably congruent with those from several concurrent molecular studies [5-7] and have important implications for whether or not the first angiosperms were woody and contained vessels, for interpreting the evolution of other key characteristics of basal angiosperms, and for understanding the timing and pattern of angiosperm origin and diversification.  相似文献   

16.

Aim

The ability of predicting which naturalized non-native species are likely to become invasive can help manage and prevent species invasions. The goal of this study is to test whether invasive angiosperm (flowering plant) species are a phylogenetically clustered subset of naturalized species at global, continental and regional scales, and to assess the relationships of phylogenetic relatedness of invasive species with climate condition (temperature and precipitation).

Location

Global.

Time period

Current.

Taxon

Angiosperms (flowering plants).

Methods

The globe is divided into 290 regions, which are grouped into seven biogeographic (continental) regions. Two phylogenetic metrics (net relatedness index and nearest taxon index), which represent different evolutionary depths, are used to quantify phylogenetic relatedness of invasive angiosperms, with respect to different tailor-made species pools. Phylogenetic relatedness of invasive angiosperms is related to climatic variables.

Results

The global assemblage of invasive angiosperm species is a strongly phylogenetically clustered subset of the species of the entire global angiosperm flora. Most invasive angiosperm assemblages are a phylogenetically clustered subset of their respective naturalized species pools, and phylogenetic clustering reflecting shallow evolutionary history is greater than that reflecting deep evolutionary history. In general, the phylogenetic relatedness of invasive species is greater in regions with lower temperature and precipitation across the world.

Main conclusions

The finding that invasive angiosperm assemblages across the globe are, in general, phylogenetically clustered subsets of their respective naturalized species pools has significant implications in biological conservation, particularly in predicting and controlling invasive species based on phylogenetic relatedness among naturalized species.  相似文献   

17.
Herbarium and field specimens (over 300) of all of the Flacourtiaceae of New Caledonia were analysed for nickel in order to identify hyperaccumulators (greater than 1000 microgram/g dry mass) and to assess nickel accumulation in relation to the evolutionary status of 'nickel plants' of New Caledonia. One hyperaccumulator was identified in the genus Lasiochlamys, ten among Xylosoma, one among Casearia and seven among Homalium. Although these Homalium nickel plants had previously been recorded, fresh data for these and other Homalium are presented. The remarkable tolerance of Flacourticeae to ultrabasic rocks is shown by the fact that 75% of the species are found on such substrates. The number of hyperaccumulators was greatest in the genera Xylosoma and Homalium. The Flacourtiaceae are among the most primitive of all angiosperms and in common with other primitive hyperaccumulators, contain nickel as a complex with citric acid. The only advanced New Caledonian nickel plant (Psychotria douarrei) has most of its nickel bound with ligands other than citric acid, a feature of other advanced hyperaccumulators. It is postulated that nickel complexing with citric acid may be a primitive character. Most of the New Caledonian nickel plants belong to the order Violales of subclass Dilleniidae. It is suggested that hyperaccumulation of nickel is an evolutionary character which occurs in long-indisturbed floras such as that of New Caledonia.  相似文献   

18.
木兰藤科系统位置评述   总被引:3,自引:0,他引:3  
木兰藤科(Austrobaileyaceae)含1属2种,是系统学上最孤立的科之一。其花粉类似于最古老的被子植物化石之一:晚白垩世的棒纹粉。最新的分子系统发育研究结果表明,木兰藤科是现存被子植物的基部类群之一,其对于被子植物的起源与早期进化的研究具有重要价值。被子植物(有花植物)的起源和辐射一直是植物学家关注的热点。有关木兰藤科的系统位置一直存在争议。本文对该科系统位置的研究历史与现状进行评述。  相似文献   

19.
The evolution of seed size among angiosperms reflects their ecological diversification in a complex fitness landscape of life‐history strategies. The lineages that have evolved seeds beyond the upper and lower boundaries that defined nonflowering seed plants since the Paleozoic are more dispersed across the angiosperm phylogeny than would be expected under a neutral model of phenotypic evolution. Morphological rates of seed size evolution estimated for 40 clades based on 17,375 species ranged from 0.001 (Garryales) to 0.207 (Malvales). Comparative phylogenetic analysis indicated that morphological rates are not associated with the clade's seed size but are negatively correlated with the clade's position in the overall distribution of angiosperm seed sizes; clades with seed sizes closer to the angiosperm mean had significantly higher morphological rates than clades with extremely small or extremely large seeds. Likewise, per‐clade taxonomic diversification rates are not associated with the seed size of the clade but with where the clade falls within the angiosperm seed size distribution. These results suggest that evolutionary rates (morphological and taxonomic) are elevated in densely occupied regions of the seed morphospace relative to lineages whose ecophenotypic innovations have moved them toward the edges.  相似文献   

20.

Premise

Recent studies of floral disparity in the asterid order Ericales have shown that flowers vary strongly among families and that disparity is unequally distributed between the three flower modules (perianth, androecium, gynoecium). However, it remains unknown whether these patterns are driven by heterogeneous rates of morphological evolution or other factors.

Methods

Here, we compiled a data set of 33 floral characters scored for 414 species of Ericales sampled from 346 genera and all 22 families. We conducted ancestral state reconstructions using an equal-rates Markov model for each character. We estimated rates of morphological evolution for Ericales and for a separate angiosperm-wide data set of 19 characters and 792 species, creating “rate profiles” for Ericales, angiosperms, and major angiosperm subclades. We compared morphological rates among flower modules within each data set separately and between data sets, and we compared rates among angiosperm subclades using the angiosperm data set.

Results

The androecium exhibits the highest evolutionary rates across most characters, whereas most perianth and gynoecium characters evolve more slowly in both Ericales and angiosperms. Both high and low rates of morphological evolution can result in high floral disparity in Ericales. Analyses of an angiosperm-wide floral data set reveal that this pattern appears to be conserved across most major angiosperm clades.

Conclusions

Elevated rates of morphological evolution in the androecium of Ericales may explain the higher disparity reported for this floral module. Comparing rates of morphological evolution through rate profiles proves to be a powerful tool in understanding floral evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号