首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Two new α‐pyrones (=2H‐pyran‐2‐ones), ficipyrones A and B ( 1 and 2 , resp.), and two new α‐furanones (=2H‐furan‐2‐ones), ficifuranones A and B ( 3 and 4 , resp.), together with three known metabolites, antibiotic F 0368 ( 5 ), hydroxyseiridin ( 6 ), and hydroxyisoseiridin ( 7 ), were isolated from solid cultures of the plant endophytic fungus Pestalotiopsis fici. Their structures were elucidated primarily by NMR spectroscopy, and the absolute configuration of 1 was deduced from the circular‐dichroism (CD) data. Compound 1 showed antifungal activity against the plant pathogen Gibberella zeae (CGMCC 3.2873) with an IC50 value of 15.9 μM .  相似文献   

2.
Bicyclic dioxetanes 2a–c bearing a 2′‐alkoxy‐2‐hydroxy‐1,1′‐binaphthyl‐7‐yl moiety were effectively synthesized and their base‐induced chemiluminescent decomposition was investigated by the use of alkaline metal (Na+ and K+) or Mg2+ alkoxide in MeOH. When 2a–c were treated with tetrabutylammonium fluoride (TBAF) in dimethyl sulfoxide (DMSO) as a reference system, they showed chemiluminescence as a flash of orange light (maximum wavelength λmaxCL = 573–577 nm) with efficiency ΦCL = 6–8 × 10–2. On the other hand, for an alkaline metal (Na+ or K+) alkoxide/MeOH system, 2a–c decomposed slowly to emit a glow of chemiluminescence, the spectra of which were shifted slightly toward red from the TBAF/DMSO system, and ΦCL (= 1.4–2.3 × 10–3) was considerably decreased. In addition, Mg(OMe)2 was found to play a characteristic role as a base for the chemiluminescent decomposition of 2a–c through coordination to the intermediary oxidoaryl‐substituted dioxetanes 13. Thus, Mg2+ increased ΦCL to more than twice those with Na+ or K+, while it shifted λmaxCL considerably toward blue (λmaxCL = 550–566 nm). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Enantiopure 3((R)‐ and 3((S)‐1‐phenylethyl)‐4‐oxazoline‐2‐ones were evaluated as chiral building blocks for the divergent construction of heterocycles with stereogenic quaternary centers. The N‐(R)‐ or N‐(S)‐1‐phenylethyl group of these compounds proved to be an efficient chiral auxiliary for the asymmetric induction of the 4‐ and 5‐positions of the 4‐oxazolin‐2‐one ring through thermal and MW‐promoted nucleophilic conjugated addition to Michael acceptors and alkyl halides. The resulting adducts were transformed via a cascade process into fused six‐membered carbo‐ and heterocycles. The structure of the reaction products depended on the electrophiles and reaction conditions used. Alternative isomeric 4‐methylene‐2‐oxazolidinones served as chiral precursors for a versatile and divergent approach to highly substituted cyclic carbamates. DFT quantum calculations showed that the formation of bicyclic pyranyl compounds was generated by a diastereoselective concerted hetero‐Diels‐Alder cycloaddition.  相似文献   

4.
Preparative enantioseparation of four β‐substituted‐2‐phenylpropionic acids was performed by countercurrent chromatography with substituted β‐cyclodextrin as chiral selectors. The two‐phase solvent system was composed of n‐hexane‐ethyl acetate‐0.10 mol L‐1 of phosphate buffer solution at pH 2.67 containing 0.10 mol L‐1 of hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) or sulfobutylether‐β‐cyclodextrin (SBE‐β‐CD). The influence factors, including the type of substituted β‐cyclodextrin, composition of organic phase, concentration of chiral selector, pH value of the aqueous phase, and equilibrium temperature were optimized by enantioselective liquid–liquid extraction. Under the optimum separation conditions, 100 mg of 2‐phenylbutyric acid, 100 mg of tropic acid, and 50 mg of 2,3‐diphenylpropionic acid were successfully enantioseparated by high‐speed countercurrent chromatography, and the recovery of the (±)‐enantiomers was in the range of 90–91% for (±)‐2‐phenylbutyric acid, 91–92% for (±)‐tropic acid, 85–87% for (±)‐2,3‐diphenylpropionic acid with purity of over 97%, 96%, and 98%, respectively. The formation of 1:1 stoichiometric inclusion complex of β‐substituted‐2‐phenylpropionic acids with HP‐β‐CD was determined by UV spectrophotometry and the inclusion constants were calculated by a modified Benesi‐Hildebrand equation. The results showed that different enantioselectivities among different racemates were mainly caused by different enantiorecognition between each enantiomer and HP‐β‐CD, while it might be partially caused by different inclusion capacity between racemic solutes and HP‐β‐CD. Chirality 27:795–801, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
6.
A series of novel phenylurea containing 2‐benzoylindan‐1‐one derivatives 3a  –  3j were synthesized from the reaction of phenylurea‐substituted acetophenones 1a  –  1j with phthalaldehyde 2 under mild reaction conditions in good yields. All synthesized compounds were characterized by spectroscopic methods. The obtained compounds ( 3a  –  3j ) were evaluated for anticancer activity against HeLa and C6 cell lines. Antiproliferative activity was determined by the BrdU proliferation ELISA assay, 3f and 3g were found to be most active compounds. The compounds were also screened for antimicrobial activity and all compounds showed remarkable activity against used microorganisms.  相似文献   

7.
A novel ligand, 1‐(naphthalen‐2‐yl)‐2‐(phenylsulthio)ethanone was synthesized using a new method and its two europium (Eu) (III) complexes were synthesized. The compounds were characterized by elemental analysis, coordination titration analysis, molar conductivity, infrared, thermo gravimetric analyzer‐differential scanning calorimetry (TGA‐DSC), 1H NMR and UV spectra. The composition was suggested as EuL5 · (ClO4)3 · 2H2O and EuL4 · phen(ClO4)3 · 2H2O (L = C10H7COCH2SOC6H5). The fluorescence spectra showed that the Eu(III) displayed strong characteristic metal‐centered fluorescence in the solid state. The ternary rare earth complex showed stronger fluorescence intensity than the binary rare earth complex in such material. The strongest characteristic fluorescence emission intensity of the ternary system was 1.49 times as strong as that of the binary system. The phosphorescence spectra were also discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The increasing interest in peptidomimetics of biological relevance prompted us to synthesize a series of cyclic peptides comprising trans‐2‐aminocyclohexane carboxylic acid (Achc) or trans‐2‐aminocyclopentane carboxylic acid (Acpc). NMR experiments in combination with MD calculations were performed to investigate the three‐dimensional structure of the cyclic peptides. These data were compared to the conformational information obtained by electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) spectroscopy. Experimental VCD spectra were compared to theoretical VCD spectra computed quantum chemically at B3LYP/6‐31G(d) density functional theory (DFT) level. The good agreement between the structural features derived from the VCD spectra and the NMR‐based structures underlines the applicability of VCD in studying the conformation of small cyclic peptides. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Stem‐cell antigen 1–positive (Sca‐1+) cardiac stem cells (CSCs), a vital kind of CSCs in humans, promote cardiac repair in vivo and can differentiate to cardiomyocytes with 5′‐azacytizine treatment in vitro. However, the underlying molecular mechanisms are unknown. β‐arrestin2 is an important scaffold protein and highly expressed in the heart. To explore the function of β‐arrestin2 in Sca‐1+ CSC differentiation, we used β‐arrestin2–knockout mice and overexpression strategies. Real‐time PCR revealed that β‐arrestin2 promoted 5′‐azacytizine‐induced Sca‐1+ CSC differentiation in vitro. Because the microRNA 155 (miR‐155) may regulate β‐arrestin2 expression, we detected its role and relationship with β‐arrestin2 and glycogen synthase kinase 3 (GSK3β), another probable target of miR‐155. Real‐time PCR revealed that miR‐155, inhibited by β‐arrestin2, impaired 5′‐azacytizine‐induced Sca‐1+ CSC differentiation. On luciferase report assay, miR‐155 could inhibit the activity of β‐arrestin2 and GSK3β, which suggests a loop pathway between miR‐155 and β‐arrestin2. Furthermore, β‐arrestin2‐knockout inhibited the activity of GSK3β. Akt, the upstream inhibitor of GSK3β, was inhibited in β‐arrestin2‐Knockout mice, so the activity of GSK3β was regulated by β‐arrestin2 not Akt. We transplanted Sca‐1+ CSCs from β‐arrestin2‐knockout mice to mice with myocardial infarction and found similar protective functions as in wild‐type mice but impaired arterial elastance. Furthermore, low level of β‐arrestin2 agreed with decreased phosphorylation of AKT and increased phophorylation of GSK3β, similar to in vitro findings. The β‐arrestin2/miR‐155/GSK3β pathway may be a new mechanism with implications for treatment of heart disease.  相似文献   

10.
The parallel kinetic resolution of racemic 2‐aryl‐2‐deuterio‐propionic and butanoic acids using an equimolar combination of quasi‐enantiomeric oxazolidin‐2‐ones is discussed. The levels of diastereoselectivity were high leading to enantiomerically pure D ‐labeled products in good yield. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Canonical BMP and Wnt signaling pathways play critical roles in regulation of osteoblast function and bone formation. Recent studies demonstrate that BMP‐2 acts synergistically with β‐catenin to promote osteoblast differentiation. To determine the molecular mechanisms of the signaling cross‐talk between canonical BMP and Wnt signaling pathways, we have used primary osteoblasts and osteoblast precursor cell lines 2T3 and MC3T3‐E1 cells to investigate the effect of BMP‐2 on β‐catenin signaling. We found that BMP‐2 stimulates Lrp5 expression and inhibits the expression of β‐TrCP, the F‐box E3 ligase responsible for β‐catenin degradation and subsequently increases β‐catenin protein levels in osteoblasts. In vitro deletion of the β‐catenin gene inhibits osteoblast proliferation and alters osteoblast differentiation and reduces the responsiveness of osteoblasts to the BMP‐2 treatment. These findings suggest that BMP‐2 may regulate osteoblast function in part through modulation of the β‐catenin signaling. J. Cell. Biochem. 108: 896–905, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Metallo‐β‐lactamases (MBLs) are some of the best known β‐lactamases produced by common Gram‐positive and Gram‐negative pathogens and are crucial factors in the rise of bacterial resistance against β‐lactam antibiotics. Although many types of β‐lactamase inhibitors have been successfully developed and used in clinical settings, no MBL inhibitors have been identified to date. Nitrocefin, checkerboard and time‐kill assays were used to examine the enzyme behaviour in vitro. Molecular docking calculation, molecular dynamics simulation, calculation of the binding free energy and ligand‐residue interaction decomposition were used for mechanistic research. The behaviour of the enzymes in vivo was investigated by a mouse infection experiment. We showed that theaflavin‐3,3´‐digallate (TFDG), a natural compound lacking antibacterial activities, can inhibit the hydrolysis of MBLs. In the checkerboard and time‐kill assays, we observed a synergistic effect of TFDG with β‐lactam antibiotics against methicillin‐resistant Staphylococcus aureus BAA1717. Molecular dynamics simulations were used to identify the mechanism of the inhibition of MBLs by TFDG, and we observed that the hydrolysis activity of the MBLs was restricted by the binding of TFDG to Gln242 and Ser369. Furthermore, the combination of TFDG with β‐lactam antibiotics showed effective protection in a mouse Staphylococcus aureus pneumonia model. These findings suggest that TFDG can effectively inhibit the hydrolysis activity of MBLs and enhance the antibacterial activity of β‐lactam antibiotics against pathogens in vitro and in vivo.  相似文献   

13.
5‐Fluorouridine ( 1 ) – a nucleoside antimetabolite with strong cancerostatic properties – was protected i) at the 2′‐ and 3′‐OH groups with a heptan‐4‐ylidene residue and ii) at the 5′‐OH group with a (4‐methoxyphenyl)(diphenyl)methyl residue. This fully protected compound, 3 , was submitted to a Mitsunobu reaction with the N‐hydroxysuccinimide (NHS) ester, 5 , of (2E)‐10‐hydroxydec‐2‐enoic acid ( 4 ) which gave nucleolipid 6 . The latter was detritylated with Cl2CHCOOH to yield the co‐drug 7 as NHS ester.  相似文献   

14.
A sensitive and selective spectrofluorimetric method has been developed for the rapid determination of aluminium. This method is based on the complex formation between aluminium and 2‐hydroxy‐1‐naphthylidene‐(8‐aminoquinoline) (HNAQ). The optimum conditions for the complex formation were a metal‐to‐ligand (M : L) stoichiometric ratio of 1:1, a pH of 5.5 and a 0.20 m acetate buffer. The fluorescence of the complex was monitored at an emission wavelength of 502 nm with excitation at 438 nm. Under these conditions, linear calibration curves were obtained in the ranges 0.05–1 and 1–5 ppm. The detection limit was 3.4 ppb for the former and 13.5 ppb for the latter. The maximum relative standard deviation of the method for an aluminium standard of 200 ppb was 1.5% (n = 5). This method was successfully applied for the determination of aluminium in drinking water, pharmaceutical antacid tablets and suspension samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Acetyl‐11‐keto‐β‐boswellic acid (AKBA), an active triterpenoid compound from the extract of Boswellia serrate, has been reported previously in our group to alleviate fibrosis in vascular remodelling. This study aimed to elucidate the in vivo and in vitro efficacy and mechanism of AKBA in renal interstitial fibrosis. The experimental renal fibrosis was produced in C57BL/6 mice via unilateral ureteral obstruction (UUO). Hypoxia‐induced HK‐2 cells were used to imitate the pathological process of renal fibrosis in vitro. Results showed that the treatment of AKBA significantly alleviated UUO‐induced impairment of renal function and improved the renal fibrosis by decreasing the expression of TGF‐β1, α‐SMA, collagen I and collagen IV in UUO kidneys. In hypoxia‐induced HK‐2 cells, AKBA displayed remarkable cell protective effects and anti‐fibrotic properties by increasing the cell viability, decreasing the lactate dehydrogenase (LDH) release and inhibiting fibrotic factor expression. Moreover, in obstructed kidneys and HK‐2 cells, AKBA markedly down‐regulated the expression of TGFβ‐RI, TGFβ‐RII, phosphorylated‐Smad2/3 (p‐Smad2/3) and Smad4 in a dose‐dependent fashion while up‐regulated the expression of Klotho and Smad7 in the same manner. In addition, the effects of AKBA on the Klotho/TGF‐β/Smad signalling were reversed by transfecting with siRNA‐Klotho in HK‐2 cells. In conclusion, our findings provide evidence that AKBA can effectively protect kidney against interstitial fibrosis, and this renoprotective effect involves the Klotho/TGF‐β/Smad signalling pathway. Therefore, AKBA could be considered as a promising candidate drug for renal interstitial fibrosis.  相似文献   

16.
An improved synthesis of (2S, 4S)‐ and (2S, 4R)‐2‐amino‐4‐methyldecanoic acids was accomplished using a glutamate derivative as starting material and Evans' asymmetric alkylation as the decisive step. The NMR data of the two diastereomers were measured and compared with those of the natural product. As a result, the stereochemistry of this novel amino acid unit in culicinins was assigned as (2S, 4R). Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
The heart‐specific isoform of 6‐phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase (PFKFB2) is an important regulator of glycolytic flux in cardiac cells. Here, we present the crystal structures of two PFKFB2 orthologues, human and bovine, at resolutions of 2.0 and 1.8 Å, respectively. Citrate, a TCA cycle intermediate and well‐known inhibitor of PFKFB2, co‐crystallized in the 2‐kinase domains of both orthologues, occupying the fructose‐6‐phosphate binding‐site and extending into the γ‐phosphate binding pocket of ATP. This steric and electrostatic occlusion of the γ‐phosphate site by citrate proved highly consequential to the binding of co‐complexed ATP analogues. The bovine structure, which co‐crystallized with ADP, closely resembled the overall structure of other PFKFB isoforms, with ADP mimicking the catalytic binding mode of ATP. The human structure, on the other hand, co‐complexed with AMPPNP, which, unlike ADP, contains a γ‐phosphate. The presence of this γ‐phosphate made adoption of the catalytic ATP binding mode impossible for AMPPNP, forcing the analogue to bind atypically with concomitant conformational changes to the ATP binding‐pocket. Inhibition kinetics were used to validate the structural observations, confirming citrate's inhibition mechanism as competitive for F6P and noncompetitive for ATP. Together, these structural and kinetic data establish a molecular basis for citrate's negative feed‐back loop of the glycolytic pathway via PFKFB2. Proteins 2016; 85:117–124. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
Small intestinal epithelium is a self‐renewing system in which the entire sequence of cell proliferation, differentiation, and removal is coupled to cell migration along the crypt‐villus axis. We examined whether dual labeling with different thymidine analogues, 5‐bromo‐2'‐deoxyuridine (BrdU) and 5‐ethynyl‐2'‐deoxyuridine (EdU), can be used to estimate cell migration rates on the villi of small intestines in rats. Rats received a single intraperitoneal injection of BrdU and EdU within a time interval, and signals in tissue sections were examined by immunohistochemistry and the “click” reaction, respectively. We successfully observed BrdU‐ and EdU‐positive cells on the epithelium with no cross‐reaction. In addition, we observed an almost complete overlapping of BrdU‐ and EdU‐positive cells in rats administered simultaneously with BrdU and EdU. By calculating the cell migration rate by dividing the distance between the median cell positions of the distribution of BrdU‐ and EdU‐positive cells by the time between the injection of BrdU and EdU, we estimated approximately 9 and 5 μm/h for the cell migration rates on the villi in the jejunum and ileum, respectively. We propose that dual labeling with BrdU and EdU within a time interval, followed by detecting with immunohistochemistry and the click reaction, respectively, is useful to estimate accurately the cell migration rate in the intestinal epithelium in a single animal.  相似文献   

19.
L ‐Homophenylalanine (L ‐HPA) and N6‐protected‐2‐oxo‐6‐amino‐hexanoic acid (N6‐protected‐OAHA) can be used as building blocks for the manufacture of angiotensin‐converting enzyme inhibitors. To synthesize L ‐HPA and N6‐protected‐OAHA simultaneously from 2‐oxo‐4‐phenylbutanoic acid (OPBA) and N6‐protected‐L ‐lysine, several variants of Escherichia coli aspartate aminotransferase (AAT) were developed by site‐directed mutagenesis and their catalytic activities were investigated. Three kinds of N6‐protected‐L ‐lysine were tested as potential amino donors for the bioconversion process. AAT variants of R292E/L18H and R292E/L18T exhibited specific activities of 0.70±0.01 U/mg protein and 0.67±0.02 U/mg protein to 2‐amino‐6‐tert‐butoxycarbonylamino‐hexanoic acid (BOC‐lysine) and 2‐amino‐6‐(2,2,2‐trifluoro‐acetylamino)‐hexanoic acid, respectively. E. coli cells expressing R292E/L18H variant were able to convert OPBA and BOC‐lysine to L ‐HPA and 2‐oxo‐6‐tert‐butoxycarbonylamino‐hexanoic acid (BOC‐OAHA) with 96.2% yield in 8 h. This is the first report demonstrating a process for the simultaneous production of two useful building blocks, L ‐HPA and BOC‐OAHA. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

20.
The benefits of antioxidants on human health are usually ascribed to their potential ability to remove reactive oxygen species providing protection against oxidative stress. In this paper the free radicals scavenging activities of nine 6‐methyl 3‐chromonyl derivatives (CMs) were evaluated for the first time by the chemiluminescence, electron paramagnetic resonance, spin trapping and 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH?) methods. The total antioxidant capacity was also measured using a ferric‐ferrozine reagent. Compounds having a hydrogen atom at the N3‐position of the β‐ring were effective in quenching CL resulted from the KO2/18‐crown‐6‐ether system (a source of superoxide anion radical, ) in a dose‐dependent manner over the range of 0.05–1 mmol/L [IC50 ranged from 0.353 (0.04) to 0.668 (0.05) mmol/L]. The examined compounds exhibited a significant scavenging effect towards hydroxyl radicals (HO? HO?), produced by the Fenton reaction, and this ranged from 24.0% to 61.0%, at the concentration of 2.5 mmol/L. Furthermore, the compounds examined were also found to inhibit DPPH? and this ranged from 51.9% to 97.4% at the same concentration. In addition, the use of the total antioxidant capacity assay confirmed that CM compounds are able to act as reductants. According to the present study, CM compounds showed effective in vitro free radical scavenging activity and may be considered as potential therapeutics to control diseases of oxidative stress‐related etiology. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号