首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
KRN5500 is a semisynthetic spicamycin analogue consisting of a seven-carbon amino sugar linked to a C14 unsaturated fatty acid through glycine and to the amino group of adenine. The drug inhibits cell growth potently and has antitumor activity in in vivo models. The mechanism of the antiproliferative effect of KRN5500 remains to be elucidated. We have found that acute exposure of drug-sensitive HT-29 colon adenocarcinoma cells to the drug results initially in swelling of the Golgi apparatus. Continuous exposure to the drug resulted in the emergence of a resistant population of cells characterized by numerous intracellular vacuoles. These KRN5500-resistant tumor cells exhibited increased staining with the Golgi stain NBD C6–ceramide and the ER–Golgi fluorescent dye BODIPY–brefeldin A, which, unlike the parental drug-sensitive cells, was dispersed throughout the cytoplasm. Marker enzymes associated with the ER (glucose 6-phosphatase) and cis-Golgi (GalNAc transferase) were elevated >2-fold and nearly 4-fold, respectively, in drug-resistant cell lines while the trans-Golgi marker enzyme, galactosyltransferase, was not. The additional findings that the KRN5500-resistant cells have a >2-fold elevation in ERGIC-53, a cis-Golgi marker protein of the ER–Golgi intermediate compartment (ERGIC), as well as increased 58K, a 58-kDa microtubule-binding protein with formiminotransferase cyclodeaminase activity, and tubulin indicate that the cellular secretory pathway is a primary determinant of sensitivity to KRN5500, as resistance to this agent corresponds with accumulation of several components relatable to ER and cis-Golgi function. Further support for this conclusion is provided by studies which demonstrate that KRN5500 alters the distribution of newly synthesized carcinoembryonic antigen within the secretory pathway, including arrest of this N-glycosylated protein in the Golgi of LS-174T colon carcinoma cells.  相似文献   

2.
The glycoside digitonin was used to selectively permeabilize the plasma membrane exposing functionally and morphologically intact ER and Golgi compartments. Permeabilized cells efficiently transported vesicular stomatitis virus glycoprotein (VSV-G) through sealed, membrane-bound compartments in an ATP and cytosol dependent fashion. Transport was vectorial. VSV-G protein was first transported to punctate structures which colocalized with p58 (a putative marker for peripheral punctate pre-Golgi intermediates and the cis-Golgi network) before delivery to the medial Golgi compartments containing alpha-1,2-mannosidase II and processing of VSV-G to endoglycosidase H resistant forms. Exit from the ER was inhibited by an antibody recognizing the carboxyl-terminus of VSV-G. In contrast, VSV-G protein colocalized with p58 in the absence of Ca2+ or the presence of an antibody which inhibits the transport component NSF (SEC18). These studies demonstrate that digitonin permeabilized cells can be used to efficiently reconstitute the early secretory pathway in vitro, allowing a direct comparison of the morphological and biochemical events involved in vesicular tafficking, and identifying a key role for the p58 containing compartment in ER to Golgi transport.  相似文献   

3.
Rab3D is a small GTP-binding protein that associates with secretory granules of endocrine and exocrine cells. The physiological role of Rab3D remains unclear. While it has initially been implicated in the control of regulated exocytosis, recent deletion-mutation studies have suggested that Rab3D is involved in the biogenesis of secretory granules. Here, we report the unexpected finding that Rab3D also associates with early Golgi compartments in intestinal goblet cells and in Brunner's gland acinar cells. Expression of Rab3D in the intestine was demonstrated by SDS-PAGE and Western blot analysis of homogenates prepared from the rat duodenum and colon. Confocal laser scanning microscopy revealed Rab3D immunofluorescence in the Golgi area of goblet cells of the duodenum and colon and in Brunner's gland acinar cells. There was no colocalization between Rab3D and a trans-Golgi network marker, TGN-38. In contrast, Rab3D colocalized partially with a cis-Golgi marker, GM-130, and with a marker of cis-Golgi and coat protein complex I vesicles, beta-COP. Strong colocalization was observed between Rab3D and the lectins Griffonia simplicifolia agglutinin II and soybean agglutinin, which have been described as markers of the medial and cis-Golgi, respectively. Rabphilin, a putative effector of Rab3D, displayed an identical pattern of Golgi localization. Incubation of colon tissue with carbamylcholine or deoxycholate to stimulate exocytosis by goblet cells caused a partial redistribution of Rab3D to the cytoplasm and mucous granule field and a concomitant transformation of the Golgi architecture. Taken together, the present data suggest that Rab3D and rabphilin may regulate the secretory pathway at a much earlier stage than what has hitherto been assumed.  相似文献   

4.
Reticulons (RTNs) constitute a family of endoplasmic reticulum (ER)-associated proteins with a reticular distribution. Despite the implication of their neuronal isoforms in axonal regeneration, the function of their widely expressed isoforms is largely unknown. In this study, we examined the role of the ubiquitously expressed RTN3 in membrane trafficking. Ectopically expressed RTN3 exhibited heterogeneous patterns; filamentous, reticular, and granular distributions. The ER morphology changed accordingly. In cells where RTN3 displayed a filamentous/reticular distribution, protein transport between the ER and Golgi was blocked, and Golgi proteins were dispersed. In contrast, ERGIC-53, a marker for the ER-Golgi intermediate compartment, accumulated at the perinuclear region, and remained there even after cells were treated with agents that induce redistribution of Golgi proteins to the ER, indicating an inhibition of Golgi-to-ER transport of ERGIC-53. These results suggest that RTN3 plays a role in membrane trafficking in the early secretory pathway.  相似文献   

5.
The malaria parasite Plasmodium falciparum harbours a relict plastid (termed the apicoplast) that has evolved by secondary endosymbiosis. The apicoplast is surrounded by four membranes, the outermost of which is believed to be part of the endomembrane system. Nuclear-encoded apicoplast proteins have a two-part N-terminal extension that is necessary and sufficient for translocation across these four membranes. The first domain of this N-terminal extension resembles a classical signal peptide and mediates translocation into the secretory pathway, whereas the second domain is homologous to plant chloroplast transit peptides and is required for the remaining steps of apicoplast targeting. We explored the initial, secretory pathway component of this targeting process using green fluorescent reporter protein constructs with modified leaders. We exchanged the apicoplast signal peptide with signal peptides from other secretory proteins and observed correct targeting, demonstrating that apicoplast targeting is initiated at the general secretory pathway of P. falciparum. Furthermore, we demonstrate by immunofluorescent labelling that the apicoplast resides on a small extension of the endoplasmic reticulum (ER) that is separate from the cis-Golgi. To define the position of the apicoplast in the endomembrane pathway in relation to the Golgi we tracked apicoplast protein targeting in the presence of the secretory inhibitor Brefeldin A (BFA), which blocks traffic between the ER and Golgi. We observe apicoplast targeting in the presence of BFA despite clear perturbation of ER to Golgi traffic by the inhibitor, which suggests that the apicoplast resides upstream of the cis-Golgi in the parasite's endomembrane system. The addition of an ER retrieval signal (SDEL) - a sequence recognized by the cis-Golgi protein ERD2 - to the C-terminus of an apicoplast-targeted protein did not markedly affect apicoplast targeting, further demonstrating that the apicoplast is upstream of the Golgi. Apicoplast transit peptides are thus dominant over an ER retention signal. However, when the transit peptide is rendered non-functional (by two point mutations or by complete deletion) SDEL-specific ER retrieval takes over, and the fusion protein is localized to the ER. We speculate either that the apicoplast in P. falciparum resides within the ER directly in the path of the general secretory pathway, or that vesicular trafficking to the apicoplast directly exits the ER.  相似文献   

6.
Distinct sets of soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) are distributed to specific intracellular compartments and catalyze membrane fusion events. Although the central role of these proteins in membrane fusion is established in nonplant systems, little is known about their role in the early secretory pathway of plant cells. Analysis of the Arabidopsis (Arabidopsis thaliana) genome reveals 54 genes encoding SNARE proteins, some of which are expected to be key regulators of membrane trafficking between the endoplasmic reticulum (ER) and the Golgi. To gain insights on the role of SNAREs of the early secretory pathway in plant cells, we have cloned the Arabidopsis v-SNAREs Sec22, Memb11, Bet11, and the t-SNARE Sed5, and analyzed their distribution in plant cells in vivo. By means of live cell imaging, we have determined that these SNAREs localize at the Golgi apparatus. In addition, Sec22 was also distributed at the ER. We have then focused on understanding the function of Sec22 and Memb11 in comparison to the other SNAREs. Overexpression of the v-SNAREs Sec22 and Memb11 but not of the other SNAREs induced collapse of Golgi membrane proteins into the ER, and the secretion of a soluble secretory marker was abrogated by all SNAREs. Our studies suggest that Sec22 and Memb11 are involved in anterograde protein trafficking at the ER-Golgi interface.  相似文献   

7.
Infection of Vero cells with poliovirus results in complete disassembly of the Golgi complex. Milestones of the process of disassembly are the release to the cytosol of the beta-COP bound to Golgi membranes, the disruption of the cis-Golgi network into fragments scattered throughout the cytoplasm, and the disassembly of the stacked cisternae by a process mediated by long tubular structures. Transient expression of the viral protein 2B in COS-7 cells also causes the disassembly of the Golgi complex by a process preceded by the accumulation of the protein in the Golgi area. Vero cells infected for 3 h show no recognizable Golgi complexes at the ultrastructural level and display an enormously swollen endoplasmic reticulum (ER) with extensive areas of its surface heavily coated. Ro-090179 (Ro), a flavonoid isolated from the herb Agastache rugosa, provokes the specific swelling and disruption of the Golgi complex and strongly inhibits poliovirus infection. Ro provokes the swelling and the disruption of the stacked cisternae and trans-Golgi elements without affecting the cis-most Golgi cisternae much. Moreover, Ro inhibits the fusion of the Golgi complex with the ER in cells treated with brefeldin A and provokes the accumulation of the intermediate compartment membrane protein p58 into ERD2-positive Golgi elements but has no effect on the anterograde transport involved in protein secretion. Our results indicate that the secretory pathway and specifically the Golgi complex are preferential targets of poliovirus.  相似文献   

8.
A high copy suppressor screen with sec34-2, a temperature-sensitive mutant defective in the late stages of ER to Golgi transport, has resulted in the identification of a novel gene called GRP1 (also called RUD3). GRP1 encodes a hydrophilic yeast protein related to the mammalian Golgi matrix protein golgin-160. A large portion of the protein is predicted to form a coiled-coil structure. Although GRP1 is not essential for growth, the loss of Grp1p results in a growth defect at high temperature. GRP1 genetically interacts with several genes involved in vesicle targeting/fusion stages of ER to Golgi transport. Despite these interactions, pulse chase analysis using Grp1p-depleted cells did not reveal a significant delay in the transit of the vacuolar protease carboxypeptidase Y. Grp1p-depleted cells efficiently secreted invertase which was underglycosylated, suggesting some disturbance of Golgi function. Grp1p-GFP predominantly colocalizes with the cis-Golgi marker Och1p. Despite lacking a signal peptide and a significant stretch of hydrophobic amino acids, Grp1p pellets with membranes. It is extracted with 1M NaCl or 0.1M Na(2)CO(3) (pH 11.0), but is surprisingly insoluble in 1% Triton X-100. Grp1p does not recycle to the ER when forward transport is blocked and a cis-Golgi marker (Och1p-HA), but not a trans-Golgi marker (Chs5p-HA), became dispersed in grp1 Delta cells after 1.5h incubation at 38.5 degrees C. Together, these data suggest that Grp1p is a novel matrix protein that is involved in the structural organization of the cis-Golgi.  相似文献   

9.
The claim that the 6 kDa viral protein (VP) of Tobacco Etch Virus is a marker for ER exit sites (ERES) has been investigated. When transiently expressed as a CFP tagged fusion construct in tobacco mesophyll protoplasts, this integral membrane protein co-localizes with both the COPII coat protein YFP-SEC24 and the Golgi marker Man1-RFP. However, when over-expressed the VP locates to larger spherical structures which co-localize with neither ER nor Golgi markers. Nevertheless, deletion of the COPII interactive N-terminal D(X)E motif causes it to be broadly distributed throughout the ER, supporting the notion that this protein could be an ERES marker. Curiously, whereas brefeldin A (BFA) caused a typical Golgi-stack response (redistribution into the ER) of the VP in leaf epidermal cells, in protoplasts it resulted in the formation of structures identical to those formed by over-expression. However, anomalous results were obtained with protoplasts: when co-expressed with the non-cycling cis-Golgi marker Man1-RFP, a BFA-induced redistribution of the VP-CFP signal into the ER was observed, but, in the presence of the cycling Golgi marker ERD2-YFP, this did not occur. High resolution images of side-on views of Golgi stacks in epidermal cells showed that the 6 kDa VP-CFP signal overlapped considerably more with YFP-SEC24 than with Man1-RFP, indicating that the VP is proportionately more associated with ERES. However, based on a consideration of the structure of its cytoplasmic tail, the scenario that the VP collects at ERES and is transported to the cis-Golgi before being recycled back to the ER, is supported.  相似文献   

10.
Membrane traffic between the endoplasmic reticulum (ER) and Golgi apparatus and through the Golgi apparatus is a highly regulated process controlled by members of the rab GTPase family. The GTP form of rab1 regulates ER to Golgi transport by interaction with the vesicle tethering factor p115 and the cis-Golgi matrix protein GM130, also part of a complex with GRASP65 important for the organization of cis-Golgi cisternae. Here, we find that a novel coiled-coil protein golgin-45 interacts with the medial-Golgi matrix protein GRASP55 and the GTP form of rab2 but not other Golgi rab proteins. Depletion of golgin-45 disrupts the Golgi apparatus and causes a block in secretory protein transport. These results demonstrate that GRASP55 and golgin-45 form a rab2 effector complex on medial-Golgi essential for normal protein transport and Golgi structure.  相似文献   

11.
A procedure has been established in Vero cells for the isolation of an intermediate compartment involved in protein transport from the ER to the Golgi apparatus. The two-step subcellular fractionation procedure consists of Percoll followed by Metrizamide gradient centrifugation. Using the previously characterized p53 as a marker protein, the average enrichment factor of the intermediate compartment was 41. The purified fraction displayed a unique polypeptide pattern. It was largely separated from the rough ER proteins ribophorin I, ribophorin II, BIP, and protein disulfide isomerase, as well as from the putative cis-Golgi marker N-acetylglucosamine-1-phosphodiester-alpha-N-acetylglucosaminidase, the second of the two enzymes generating the lysosomal targeting signal mannose-6-phosphate. The first enzyme, N-acetylglucosaminylphosphotransferase, for which previous biochemical evidence had suggested both a pre- and a cis-Golgi localization in other cell types, cofractionated with the cis-Golgi rather than the intermediate compartment in Vero cells. The results suggest that the intermediate compartment defined by p53 has unique properties and does not exhibit typical features of rough ER and cis-Golgi.  相似文献   

12.
A monoclonal antibody CC92 (IgM), raised against a fraction of rat liver enriched in Golgi membranes, recognizes a novel Endo H-resistant 74-kD membrane glycoprotein (gp74). The bulk of gp74 is confined to the cis-Golgi network (CGN). Outside the Golgi gp74 is found in tubulovesicular structures and ER foci. In cells incubated at 37 degrees C the majority of gp74 is segregated from the intermediate compartment (IC) marker p58. However, in cells treated with organelle perturbants such as low temperature, BFA, and [AIF4]- the patterns of the two proteins become indistinguishable. Both proteins are retained in the Golgi complex at 20 degrees C and in the IC at 15 degrees C. Incubation of cells with BFA results in relocation of gp74 to p58 positive IC elements. [AIF4]- induces the redistribution of gp74 from the Golgi to p58-positive vesicles and does not retard the translocation of gp74 to IC elements in cells treated with BFA. Disruption of microtubules by nocodazol results in the rapid disappearance of the Golgi elements stained by gp74 and redistribution of the protein into vesicle-like structures. The responses of gp74 to cell perturbants are in sharp contrast with those of cis/middle and trans-Golgi resident proteins whose location is not affected by low temperatures or [AIF4]-, are translocated to the ER upon addition of BFA, and stay in slow disintegrating Golgi elements in cells treated with nocodazol. The results suggest that gp74 is an itinerant protein that resides most of the time in the CGN and cycles through the ER/IC following the pathway used by p58.  相似文献   

13.
Prior to binding to a high affinity peptide and transporting it to the cell surface, major histocompatibility complex class I molecules are retained inside the cell by retention in the endoplasmic reticulum (ER), recycling through the ER-Golgi intermediate compartment and possibly the cis-Golgi, or both. Using fluorescence microscopy and a novel in vitro COPII (ER-to-ER-Golgi intermediate compartment) vesicle formation assay, we find that in both lymphocytes and fibroblasts that lack the functional transporter associated with antigen presentation, class I molecules exit the ER and reach the cis-Golgi. Intriguingly, in wild-type T1 lymphoma cells, peptide-occupied and peptide-receptive class I molecules are simultaneously exported from ER membranes with similar efficiencies. Our results suggest that binding of high affinity peptide and exit from the ER are not coupled, that the major histocompatibility complex class I quality control compartment extends into the Golgi apparatus under standard conditions, and that peptide loading onto class I molecules may occur in post-ER compartments.  相似文献   

14.
Brefeldin A (BFA) causes a block in the secretory system of eukaryotic cells by inhibiting vesicle formation at the Golgi apparatus. Although this toxin has been used in many studies, its effects on plant cells are still shrouded in controversy. We have reinvestigated the early responses of plant cells to BFA with novel tools, namely, tobacco Bright Yellow 2 (BY-2) suspension-cultured cells expressing an in vivo green fluorescent protein-Golgi marker, electron microscopy of high-pressure frozen/freeze-substituted cells, and antisera against Atgamma-COP, a component of COPI coats, and AtArf1, the GTPase necessary for COPI coat assembly. The first effect of 10 microg/mL BFA on BY-2 cells was to induce in <5 min the complete loss of vesicle-forming Atgamma-COP from Golgi cisternae. During the subsequent 15 to 20 min, this block in Golgi-based vesicle formation led to a series of sequential changes in Golgi architecture, the loss of distinct Golgi stacks, and the formation of an endoplasmic reticulum (ER)-Golgi hybrid compartment with stacked domains. These secondary effects appear to depend in part on stabilizing intercisternal filaments and include the continued maturation of cis- and medial cisternae into trans-Golgi cisternae, as predicted by the cisternal progression model, the shedding of trans-Golgi network cisternae, the fusion of individual Golgi cisternae with the ER, and the formation of large ER-Golgi hybrid stacks. Prolonged exposure of the BY-2 cells to BFA led to the transformation of the ER-Golgi hybrid compartment into a sponge-like structure that does not resemble normal ER. Thus, although the initial effects of BFA on plant cells are the same as those described for mammalian cells, the secondary and tertiary effects have drastically different morphological manifestations. These results indicate that, despite a number of similarities in the trafficking machinery with other eukaryotes, there are fundamental differences in the functional architecture and properties of the plant Golgi apparatus that are the cause for the unique responses of the plant secretory pathway to BFA.  相似文献   

15.
The cytosolic phosphoprotein p115 is required for ER to Golgi traffic and for Golgi reassembly after mitosis. In cells, p115 is localized to ER exit sites, ER-Golgi Intermediate Compartment (ERGIC) and the Golgi, and cycles between these compartments. P115 is phosphorylated on serine 942, and this modification appears to control p115 association with membranes. P115 is likely to function by reversibly interacting with effector proteins, and in the Golgi, two proteins, GM130 and giantin, have been shown to bind p115. The GM130-p115 and the giantin-p115 interactions are enhanced by p115 phosphorylation. Phosphorylation appears to be essential for p115 function, since substitutions of serine 942 abolish p115 ability to sustain cisternal reformation in an in vitro assay reconstituting Golgi reassembly after mitosis. Here, we explored how phosphorylation of p115 affects its intracellular targeting to distinct cellular compartments, and its function in secretory traffic. We generated phosphorylation mutants of p115 and tested their ability to target to ER exit sites, ERGIC and the Golgi. In addition, we explored whether expression of the mutants causes disruption of Golgi structure and perturbs ER-Golgi traffic of a VSV-G cargo protein.  相似文献   

16.
《The Journal of cell biology》1993,120(6):1321-1335
In the present study we have dissected the transport pathways between the ER and the Golgi complex using a recently introduced (Kuismanen, E., J. Jantti, V. Makiranta, and M. Sariola. 1992. J. Cell Sci. 102:505- 513) inhibition of transport by caffeine at 20 degrees C. Recovery of the Golgi complex from brefeldin A (BFA) treatment was inhibited by caffeine at reduced temperature (20 degrees C) suggesting that caffeine inhibits the membrane traffic between the ER and the Golgi complex. Caffeine at 20 degrees C did not inhibit the BFA-induced retrograde movement of the Golgi membranes. Further, incubation of the cells in 10 mM caffeine at 20 degrees C had profound effects on the distribution and the organization of the pre-Golgi and the Golgi stack membranes. Caffeine treatment at 20 degrees C resulted in a selective and reversible translocation of the pre- and cis-Golgi marker protein (p58) to the periphery of the cell. This caffeine-induced effect on the Golgi complex was different from that induced by BFA, since mannosidase II, a Golgi stack marker, remained perinuclearly located and the Golgi stack coat protein, beta-COP, was not detached from Golgi membranes in the presence of 10 mM caffeine at 20 degrees C. Electron microscopic analysis showed that, in the presence of caffeine at 20 degrees C, the morphology of the Golgi stack was altered and accumulation of numerous small vesicles in the Golgi region was observed. The results in the present study suggest that caffeine at reduced temperature (20 degrees C) reveals a functional interface between the pre-Golgi and the Golgi stack.  相似文献   

17.
We report an essential role for the ras-related small GTP-binding protein rab1b in vesicular transport in mammalian cells. mAbs detect rab1b in both the ER and Golgi compartments. Using an assay which reconstitutes transport between the ER and the cis-Golgi compartment, we find that rab1b is required during an initial step in export of protein from the ER. In addition, it is also required for transport of protein between successive cis- and medial-Golgi compartments. We suggest that rab1b may provide a common link between upstream and downstream components of the vesicular fission and fusion machinery functioning in early compartments of the secretory pathway.  相似文献   

18.
The vesicular integral membrane protein VIP36 belongs to the family of animal lectins and may act as a cargo receptor trafficking certain glycoproteins in the secretory pathway. Immunoelectron microscopy of GH3 cells provided evidence that endogenous VIP36 is localized mainly in 70-100-nm-diameter uncoated transport vesicles between the exit site on the ER and the neighboring cis-Golgi cisterna. The thyrotrophin-releasing hormone (TRH) stimulation and treatment with actin filament-perturbing agents, cytochalasin D or B or latrunculin-B, caused marked aggregation of the VIP36-positive vesicles and the appearance of a VIP36-positive clustering structure located near the cis-Golgi cisterna. The size of this structure, which comprised conspicuous clusters of VIP36, depended on the TRH concentration. Confocal laser scanning microscopy confirmed the electron microscopically demonstrated distribution and redistribution of VIP36 in these cells. Furthermore, VIP36 colocalized with filamentous actin in the paranuclear Golgi area and its vicinity. This is the first study to show the ultrastructural distribution of VIP36 in the early secretory pathway in GH3 cells. It suggests that actin filaments are involved in glycoprotein transport between the ER and cis-Golgi cisterna by using the lectin VIP36.  相似文献   

19.
Mouse hepatitis coronavirus (MHV) buds into pleomorphic membrane structures with features expected of the intermediate compartment between the ER and the Golgi complex. Here, we characterize the MHV budding compartment in more detail in mouse L cells using streptolysin O (SLO) permeabilization which allowed us to better visualize the membrane structures at the ER-Golgi boundary. The MHV budding compartment shares membrane continuities with the rough ER as well as with cisternal elements on one side of the Golgi stack. It also labeled with p58 and rab2, two markers of the intermediate compartment, and with PDI, usually considered to be a marker of the rough ER. The membranes of the budding compartment, as well as the budding virions themselves, but not the rough ER, labeled with the N-acetyl- galactosamine (GalNAc)-specific lectin Helix pomatia. When the SLO- permeabilized cells were treated with guanosine 5'-(3-O- thio)triphosphate (GTP gamma S), the budding compartment accumulated a large number of beta-cop-containing buds and vesicular profiles. Complementary biochemical experiments were carried out to determine whether vesicular transport was required for the newly synthesized M protein, that contains only O-linked oligosaccharides, to acquire first, GalNAc and second, the Golgi modifications galactose and sialic acid. The results from both in vivo studies and from the use of SLO- permeabilized cells showed that, while GalNAc addition occurred under conditions which block vesicular transport, both cytosol and ATP were prerequisites for the M protein oligosaccharides to acquire Golgi modifications. Collectively, our data argue that transport from the rough ER to the Golgi complex requires only one vesicular transport step and that the intermediate compartment is a specialized domain of the endoplasmatic reticulum that extends to the first cisterna on the cis side of the Golgi stack.  相似文献   

20.
Characterization of a cis-Golgi matrix protein, GM130   总被引:18,自引:3,他引:15       下载免费PDF全文
《The Journal of cell biology》1995,131(6):1715-1726
Antisera raised to a detergent- and salt-resistant matrix fraction from rat liver Golgi stacks were used to screen an expression library from rat liver cDNA. A full-length clone was obtained encoding a protein of 130 kD (termed GM130), the COOH-terminal domain of which was highly homologous to a Golgi human auto-antigen, golgin-95 (Fritzler et al., 1993). Biochemical data showed that GM130 is a peripheral cytoplasmic protein that is tightly bound to Golgi membranes and part of a larger oligomeric complex. Predictions from the protein sequence suggest that GM130 is an extended rod-like protein with coiled-coil domains. Immunofluorescence microscopy showed partial overlap with medial- and trans-Golgi markers but almost complete overlap with the cis-Golgi network (CGN) marker, syntaxin5. Immunoelectron microscopy confirmed this location showing that most of the GM130 was located in the CGN and in one or two cisternae on the cis-side of the Golgi stack. GM130 was not re-distributed to the ER in the presence of brefeldin A but maintained its overlap with syntaxin5 and a partial overlap with the ER- Golgi intermediate compartment marker, p53. Together these results suggest that GM130 is part of a cis-Golgi matrix and has a role in maintaining cis-Golgi structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号