首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) and are members of the neurotrophin family, a family of neurotrophic factors that also includes neurotrophin (NT) 3 and NT4/5. Neurotrophins have essential roles in the survival, development and differentiation of neurons in the central and peripheral nervous systems. Neurotrophins exert their effects by binding to corresponding receptors which are formed by the tyrosine protein kinases TrkA, TrkB and TrkC, and the low affinity neurotrophic receptor (p75NTR). In the present study, using immunohistochemistry and quantitative analysis, we have investigated immunoreactivity to BDNF, NGF, TrkB, p75NTR and TrkA in the pelvic ganglia of normal and castrated rats. Neurons of the pelvic ganglia expressed both these neurotrophins and their receptors. After castration the immunoreactivity persisted. However, the number of BDNF- and p75NTR-IR cells statistically significant decreased after castration. These results suggest that castration modulates the expression of neurotrophins and their receptors in pelvic autonomic neurons.  相似文献   

2.
The TrkA receptor is activated primarily by nerve growth factor (NGF), but it can also be activated by high concentrations of neurotrophin 3 (NT-3). The pan-neurotrophin receptor p75(NTR) strongly inhibits activation of TrkA by NT-3 but not by NGF. To examine the role of p75(NTR) in regulating the specificity of TrkA signaling, we expressed both receptors in Xenopus oocytes. Application of NGF or NT-3 to oocytes expressing TrkA alone resulted in efflux of (45)Ca(2+) by a phospholipase C-gamma-dependent pathway. Coexpression of p75(NTR) with TrkA inhibited (45)Ca(2+) efflux in response to NT-3 but not NGF. The inhibitory effect on NT-3 activation of TrkA increased with increasing expression of p75(NTR). Coexpression of a truncated p75(NTR) receptor lacking all but the first 9 amino acids of the cytoplasmic domain inhibited NT-3 stimulation of (45)Ca(2+) efflux, whereas coexpression of an epidermal growth factor receptor/p75(NTR) chimera (extracellular domain of epidermal growth factor receptor with transmembrane and cytoplasmic domains of p75(NTR)) did not inhibit NT-3 signaling through TrkA. These studies demonstrated that the extracellular domain of p75(NTR) was necessary to inhibit NT-3 signaling through TrkA. Remarkably, p75(NTR) binding to NT-3 was not required to prevent signaling through TrkA, since occupying p75(NTR) with brain-derived neurotrophic factor or anti-p75 antibody (REX) did not rescue the ability of NT-3 to activate (45)Ca(2+) efflux. These data suggested a physical association between TrkA and p75(NTR). Documenting this physical interaction, we showed that p75(NTR) and TrkA could be coimmunoprecipitated from Xenopus oocytes. Our results suggest that the interaction of these two receptors on the cell surface mediated the inhibition of NT-3-activated signaling through TrkA.  相似文献   

3.
Nerve growth factor (NGF) promotes cell survival via binding to the tyrosine kinase receptor A (TrkA). Its precursor, proNGF, binds to p75(NTR) and sortilin receptors to initiate apoptosis. Current disagreement exists over whether proNGF acts neurotrophically following binding to TrkA. As in Alzheimer's disease the levels of proNGF increase and TrkA decrease, it is important to clarify the properties of proNGF. Here, wild-type and cleavage-resistant mutated forms (M) of proNGF were engineered and their binding characteristics determined. M-proNGF and NGF bound to p75(NTR) with similar affinities, whilst M-proNGF had a lower affinity than NGF for TrkA. M-proNGF behaved neurotrophically, albeit less effectively than NGF. M-proNGF addition resulted in phosphorylation of TrkA and ERK1/2, and in PC12 cells elicited neurite outgrowth and supported cell survival. Conversely, M-proNGF addition to cultured cortical neurons initiated caspase 3 cleavage. Importantly, these biological effects were shown to be mediated by unprocessed M-proNGF. Surprisingly, binding of the pro region alone to TrkA, at a site other than that of NGF, caused TrkA and ERK1/2 phosphorylation. Our data show that M-proNGF stimulates TrkA to a lesser degree than NGF, suggesting that in Alzheimer brain the increased proNGF : NGF and p75(NTR) : TrkA ratios may permit apoptotic effects to predominate over neurotrophic effects.  相似文献   

4.
Nerve Growth Factor (NGF) is a neurotrophic factor that prevents apoptosis in neuronal progenitor cells. In rat pheochromocytoma (PC12) cells, tyrosine kinase A receptor (TrkA) mediates neurotrophic or protective effects, while p75 neurotrophin receptor (p75NTR) functions as a death receptor. We have determined whether TrkA mediates any cytotoxic effect. Following serum deprivation, TrkA expression increased 2.2-fold and apoptosis began with expression of Bax proapoptotic protein. Application of NGF halved cell viability but this was reversed by K252a, the TrkA inhibitor. These results confirmed the paradoxical cytotoxic effect of neurotrophic NGF via TrkA in PC12 cells following serum deprivation.  相似文献   

5.
We have recently shown that nerve growth factor (NGF) induces the phosphorylation of the microtubule-associated protein 1B (MAP1B) by activating the serine/threonine kinase glycogen synthase kinase 3beta (GSK3beta) in a spatio-temporal pattern in PC12 cells that correlates tightly with neurite growth. PC12 cells express two types of membrane receptor for NGF: TrkA receptors and p75NTR receptors, and it was not clear from our studies which receptor was responsible. We show here that brain-derived neurotrophic factor, which activates p75NTR but not TrkA receptors, does not stimulate GSK3beta phosphorylation of MAP1B in PC12 cells. Similarly, NGF fails to activate GSK3beta phosphorylation of MAP1B in PC12 cells that lack TrkA receptors but express p75NTR receptors (PC12 nnr). Chick ciliary ganglion neurons in culture lack TrkA receptors but express p75NTR and also fail to show NGF-dependent GSK3beta phosphorylation of MAP1B, whereas in rat superior cervical ganglion neurons in culture, NGF activation of TrkA receptors elicits GSK3beta phosphorylation of MAP1B. Finally, inhibition of TrkA receptor tyrosine kinase activity in PC12 cells and superior cervical ganglion neurons with K252a potently and dose-dependently inhibits neurite elongation while concomitantly blocking GSK3beta phosphorylation of MAP1B. These results suggest that the activation of GSK3beta by NGF is mediated through the TrkA tyrosine kinase receptor and not through p75NTR receptors.  相似文献   

6.
7.
Abstract. To determine whether the p75 neurotrophin receptor (p75NTR) plays a role in naturally occurring neuronal death, we examined neonatal sympathetic neurons that express both the TrkA tyrosine kinase receptor and p75NTR. When sympathetic neuron survival is maintained with low quantities of NGF or KCl, the neurotrophin brain-derived neurotrophic factor (BDNF), which does not activate Trk receptors on sympathetic neurons, causes neuronal apoptosis and increased phosphorylation of c-jun. Function-blocking antibody studies indicate that this apoptosis is due to BDNF-mediated activation of p75NTR. To determine the physiological relevance of these culture findings, we examined sympathetic neurons in BDNF−/− and p75NTR−/− mice. In BDNF−/− mice, sympathetic neuron number is increased relative to BDNF+/+ littermates, and in p75NTR−/− mice, the normal period of sympathetic neuron death does not occur, with neuronal attrition occurring later in life. This deficit in apoptosis is intrinsic to sympathetic neurons, since cultured p75NTR−/− neurons die more slowly than do their wild-type counterparts. Together, these data indicate that p75NTR can signal to mediate apoptosis, and that this mechanism is essential for naturally occurring sympathetic neuron death.  相似文献   

8.
Recent evidence suggests that apoptosis of endothelial cells contributes to lumen formation during angiogenesis, but the biological mechanism remains obscure. In this study, we investigated the effect of nerve growth factor (NGF), a member of the neurotrophin family and a potential angiogenic factor, on human umbilical vein endothelial cells (HUVEC) apoptosis and the formation of lumen-like structures (LLS) by cultured HUVEC on Matrigel. We demonstrate that NGF induces cell apoptosis. NGF treatment has no significant effect on the expression level of its two receptors, TrkA and p75NTR. Blockade of both TrkA and p75NTR, but not that of either receptor alone significantly decreases NGF-induced cell apoptosis. NGF significantly increases formation of LLS which consist substantially of apoptotic cells. Application of NGF-neutralizing antibody or simultaneous blockade of TrkA and p75NTR significantly blocks spontaneous and NGF-induced LLS formation. These data support a role for NGF-induced cell apoptosis in LLS formation in vitro.  相似文献   

9.
Nerve growth factor (NGF) is the ligand for two unrelated cellular receptors, TrkA and p75(NTR), and acts as a mediator in the development and maintenance of the mammalian nervous system. Signaling through TrkA kinase domains promotes neuronal survival, whereas activation of the p75(NTR) "death domains" induces apoptosis under correct physiological conditions. However, co-expression of these receptors leads to enhanced neuronal survival upon NGF stimulation, possibly through a ternary p75(NTR) x NGF x TrkA complex. We have expressed human p75(NTR) ligand binding domain as a secreted glycosylated protein in Trichoplusia ni cells. Following assembly and purification of soluble p75(NTR) x NGF complexes, mass spectrometry, analytical ultracentrifugation, and solution x-ray scattering measurements are indicative of 2:2 stoichiometry, which implies a symmetric complex. Molecular models of the 2:2 p75(NTR) x NGF complex based on these data are not consistent with the further assembly of either symmetric (2:2:2) or asymmetric (2:2:1) ternary p75(NTR) x NGF x TrkA complexes.  相似文献   

10.
Neurotrophins are target-derived soluble polypeptides required for neuronal survival. Binding of neurotrophins to Trk receptor tyrosine kinases initiate signaling cascades that promote cell survival and differentiation. All family members bind to another receptor (p75NTR), which belongs to the tumor necrosis factor superfamily. Hence, nerve growth factor (NGF) and related trophic factors are unique in that two separate receptor types are utilized. Although the biological function of p75NTR has been elusive, it has been suggested to mediate apoptosis of developing neurons in the absence of Trk receptors. This presents a tantalizing paradigm, in which life-death decisions of cells are dependent upon the expression and action of two different receptors with distinctive signaling mechanisms. In the presence of TrkA receptors, p75 can participate in the formation of high affinity binding sites and enhanced NGF responsiveness leading to a survival signal. In the absence of TrkA receptors, p75 can generate, in only specific cell populations, a death signal. Here we discuss the unique features and implications of this unusual signal transduction system.  相似文献   

11.
Nerve growth factor (NGF) binding to its receptors TrkA and p75(NTR) enhances the survival, differentiation, and maintenance of neurons. Recent studies have suggested that NGF receptor activation may occur in caveolae or caveolae-like membranes (CLM). This is an intriguing possibility because caveolae have been shown to contain many of the signaling intermediates in the TrkA signaling cascade. To examine the membrane localization of TrkA and p75(NTR), we isolated caveolae from 3T3-TrkA-p75 cells and CLM from PC12 cells. Immunoblot analysis showed that TrkA and p75(NTR) were enriched about 13- and 25-fold, respectively, in caveolae and CLM. Binding and cross-linking studies demonstrated that the NGF binding to both TrkA and p75(NTR) was considerably enriched in CLM and that about 90% of high affinity binding to TrkA was present in CLM. When PC12 cells were treated with NGF, virtually all activated (i.e. tyrosine phosphorylated) TrkA was found in the CLM. Remarkably, in NGF-treated cells, it was only in CLM that activated TrkA was coimmunoprecipitated with phosphorylated Shc and PLCgamma. These results document a signaling role for TrkA in CLM and suggest that both TrkA and p75(NTR) signaling are initiated from these membranes.  相似文献   

12.
Nerve growth factor (NGF) is a peptide displaying multiple cholinotropic activities. The aim of this work was to explain mechanisms of the positive and negative effects of NGF on phenotypic properties and viability of cholinergic cells. To discriminate these effects we used two p75NTR receptor-positive lines of cholinergic neuroblastoma cells, SN56 and T17 that are devoid of or express high affinity NGF (TrkA) receptors, respectively. cAMP and retinoic acid caused differentiation of both cell lines. In addition to the morphologic maturation, the increase of choline acetyltransferase activity, acetylcholine, Ca and cytoplasmic acetyl-CoA levels and decrease of mitochondrial acetyl-CoA and cell viability were observed. NGF caused similar effects in non-differentiated T17 cells but had no influence on non-differentiated SN56 cells. On the contrary, in both cAMP/all-trans-retinoic acid (RA) differentiated cell lines, NGF resulted in a similar suppression of cholinergic phenotype along with an increase of mitochondrial acetyl-CoA and cell susceptibility to nitric oxide and amyloid-beta25-35. These effects of NGF were prevented by an antibody against the p75NTR receptor. Data indicate that: (i) positive cholinotrophic effects of NGF required activation of both TrkA and p75NTR receptors; (ii) cAMP/RA-evoked differentiation inhibited NGF effects mediated by TrkA receptors and activated its p75NTR-dependent suppressing influences and (iii) a differentiation-evoked decrease of mitochondrial acetyl-CoA and an elevation of mitochondrial Ca could augment impairment of cholinergic neurons by neurotoxic signals.  相似文献   

13.
Neurotrophins induce neural cell survival and differentiation during retinal development and regeneration through the high-affinity tyrosine kinase (Trk) receptors. On the other hand, nerve growth factor (NGF) binding to the low-affinity neurotrophin receptor p75 (p75(NTR)) might induce programmed cell death (PCD) in the early phase of retinal development. In the present study, we examined the retinal cell types that experience p75(NTR)-induced PCD and identify them to be postmitotic retinal ganglion cells (RGCs). However, retinal morphology, RGC number, and BrdU-positive cell number in p75(NTR) knockout (KO) mouse were normal after embryonic day 15 (E15). In chick retina, migratory RGCs express p75(NTR), whereas layered RGCs express the high-affinity NGF receptor TrkA, which may switch the pro-apoptotic signaling of p75(NTR) into a neurotrophic one. In contrast to the chick model, migratory RGCs express TrkA, while stratified RGCs express p75(NTR) in mouse retina. However, RGC number in TrkA KO mouse was also normal at birth. We next examined the expression of transforming growth factor beta (TGFbeta) receptor, which modulates chick RGC number in combination with p75(NTR), but was absent in mouse RGCs. p75(NTR) and TrkA seem to be involved in the regulation of mouse RGC number in the early phase of retinal development, but the number may be later adjusted by other molecules. These results suggest the different mechanism of RGC number control between mouse and chick retina.  相似文献   

14.
The nerve growth factor (NGF) precursor, proNGF, is implicated in various neuropathological states. ProNGF signals apoptosis by forming a complex with the receptors p75 and sortilin, however, it can also induce neurite growth, proposed to be mediated by the receptor of mature NGF, tyrosine kinase receptor A (TrkA). The way in which these dual effects occur in adult neurons is unclear. We investigated the neurotrophic effects of proNGF on peptidergic sensory neurons isolated from adult mouse dorsal root ganglia and found that proNGF stimulated neurite extension and branching, requiring p75, sortilin and TrkA. Neurite growth rarely occurred in sortilin-expressing neurons but was commonly observed in TrkA-positive, sortilin-negative neurons that associated closely with sortilin-positive glia. ProNGF was unable to induce local trophic effects at growth cones where sortilin-positive glia was absent. We propose that in adult sensory neurons the neurotrophic response to proNGF is mediated by NGF and TrkA, and that peri-somatic glia may participate in sortilin- and p-75 dependent cleavage of proNGF. The potential ability of local glial cells to provide a targeted supply of NGF may provide an important way to promote trophic (rather than apoptotic) outcomes under conditions where regeneration or sprouting is required.  相似文献   

15.
Neurotrophins can influence multiple cellular functions depending on the cellular context and the specific receptors they interact with. These neurotrophic factors have been extensively studied for their ability to support neuronal survival via Trk receptors and to induce apoptosis via the p75(NTR). However, the p75(NTR) is also detected on cell populations that do not undergo apoptosis in response to neurotrophins. In particular, the authors have detected p75(NTR) expression on astrocytes during development and after seizure-induced injury. In this study, the authors investigated the role of Nerve growth factor (NGF) in regulating astrocyte proliferation and in influencing specific aspects of the cell cycle. The authors have demonstrated that NGF prevents the induction of cyclins and their association with specific cyclin-dependent kinases, and thereby prevents progression through the G1 phase of the cell cycle. Since the authors have previously shown that p75(NTR) but not TrkA, is expressed in astrocytes, these data suggest that activation of p75(NTR) promotes withdrawal of astrocytes from the cell cycle, which may have important consequences during development and after injury.  相似文献   

16.
17.
Nerve growth factor (NGF) is an important neuronal survival factor, especially during development. Optimal sensitivity of the survival response to NGF requires the presence of TrkA and the p75 neurotrophin receptor, p75(NTR). Signalling pathways used by TrkA are well established, but the mechanisms by which p75(NTR) enhances NGF signalling remain far from clear. A prevalent view is that p75(NTR) and TrkA combine to form a high-affinity receptor, but definitive evidence for this is still lacking. We therefore investigated the possibility that p75(NTR) and TrkA interact via their signal transduction pathways. Using antisense techniques to down-regulate p75(NTR) and TrkA, we found that p75(NTR) specifically enhanced phosphorylation of the 46- and 52-kDa isoforms of Shc during nerve growth factor-induced TrkA activation. p75(NTR) did not enhance tyrosine phosphorylation of other TrkA substrates. Serine phosphorylation of Akt, downstream of Shc activation, was also p75(NTR)-dependent. We consistently detected co-immunoprecipitation of p75(NTR) and Shc. These data indicate that p75(NTR) interacts with Shc physically, via a binding interaction, and functionally, by assisting its phosphorylation. Whilst providing evidence that p75(NTR) augments TrkA signal transduction, these results do not preclude the presence of a p75(NTR)-TrkA high-affinity NGF receptor.  相似文献   

18.
Developmental sympathetic neuron death is determined by functional interactions between the TrkA/NGF receptor and the p75 neurotrophin receptor (p75NTR). A key question is whether p75NTR promotes apoptosis by directly inhibiting or modulating TrkA activity, or by stimulating cell death independently of TrkA. Here we provide evidence for the latter model. Specifically, experiments presented here demonstrate that the presence or absence of p75NTR does not alter Trk activity or NGF- and NT-3-mediated downstream survival signaling in primary neurons. Crosses of p75NTR-/- and TrkA-/- mice indicate that the coincident absence of p75NTR substantially rescues TrkA-/- sympathetic neurons from developmental death in vivo. Thus, p75NTR induces death regardless of the presence or absence of TrkA expression. These data therefore support a model where developing sympathetic neurons are "destined to die" by an ongoing p75NTR-mediated apoptotic signal, and one of the major ways that TrkA promotes neuronal survival is by silencing this ongoing death signal.  相似文献   

19.
In dorsal root ganglia (DRG) cell cultures, levels of calcitonin gene-related peptide (CGRP) are increased in the presence of ovarian hormones and nerve growth factor (NGF). In addition, injection of ovariectomized rats with ovarian hormones led to an increase in levels of two NGF receptors, TrkA and p75(NTR), in DRG. Thus, we hypothesized that increased levels of ovarian hormones during pregnancy may elevate the synthesis of CGRP and NGF receptors in the DRG. DRG harvested from rats on specific days of pregnancy, on Day 2 postpartum, and after ovariectomy were subjected to radioimmunoassay, Western blot analysis, and NGF immunoassay to determine levels of CGRP, TrkA and p75(NTR), and NGF, respectively. CGRP levels in rat DRG were significantly higher during pregnancy than at Day 2 postpartum or in ovariectomized rats. Levels of both TrkA and p75(NTR) in DRG increased during pregnancy and remained elevated at Day 2 postpartum, but CGRP levels declined. Levels of NGF reached a statistically significant peak at Day 18 of gestation, and were not significantly reduced at Day 2 postpartum. Increased levels of ovarian steroid hormones during pregnancy may be involved in the synthesis of CGRP, however, the postpartum decreases in CGRP synthesis appear to be unrelated to NGF and its receptors.  相似文献   

20.
Glaucoma is a major cause of vision impairment, which arises from the sustained and progressive apoptosis of retinal ganglion cells (RGC), with ocular hypertension being a major risk or co-morbidity factor. Because RGC death often continues after normalization of ocular hypertension, growth factor-mediated protection of compromised neurons may be useful. However, the therapeutic use of nerve growth factor (NGF) has not proven effective at delaying RGC death in glaucoma. We postulated that one cause for the failure of NGF may be related to its binding to two receptors, TrkA and p75. These receptors have distinct cellular distribution in the retina and in neurons they induce complex and sometimes opposing activities. Here, we show in an in vivo therapeutic model of glaucoma that a selective agonist of the pro-survival TrkA receptor was effective at preventing RGC death. RGC loss was fully prevented by combining the selective agonist of TrkA with intraocular pressure-lowering drugs. In contrast, neither NGF nor an antagonist of the pro-apoptotic p75 receptor protected RGCs. These results further a neurotrophic rationale for glaucoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号