首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Propagation of long terminal repeat (LTR)-bearing retrotransposons and retroviruses requires integrase (IN, EC 2.7.7.-), encoded by the retroelements themselves, which mediates the insertion of cDNA copies back into the genome. An active retrotransposon family, BARE-1, comprises approximately 7% of the barley (Hordeum vulgare subsp. vulgare) genome. We have generated models for the secondary and tertiary structure of BARE-1 IN and demonstrate their similarity to structures for human immunodeficiency virus 1 and avian sarcoma virus INs. The IN core domains were compared for 80 clones from 28 Hordeum accessions representative of the diversity of the genus. Based on the structural model, variations in the predicted, aligned translations from these clones would have minimal structural and functional effects on the encoded enzymes. This indicates that Hordeum retrotransposon IN has been under purifying selection to maintain a structure typical of retroviral INs. These represent the first such analyses for plant INs.   相似文献   

7.
8.
IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques   总被引:47,自引:2,他引:45  
 The BARE-1 retrotransposon is an active, dispersed, and highly abundant component of the genome of barley (Hordeum vulgare) and other species in its genus. Like all retrotransposons of its kind, BARE-1 is bounded by long terminal repeats (LTRs). We have developed two amplification-based marker methods based on the position of given LTRs within the genome. The IRAP (Inter-Retrotransposon Amplified Polymorphism) markers are generated by the proximity of two LTRs using outward-facing primers annealing to LTR target sequences. In REMAP (REtrotransposon-Microsatellite Amplified Polymorphism), amplification between LTRs proximal to simple sequence repeats such as constitute microsatellites produces markers. The methods can distinguish between barley varieties and produce fingerprint patterns for species across the genus. The patterns indicate that although the BARE-1 family of retrotransposons is disperse, these elements are locally clustered or nested and often found near tandem arrays of a simple sequence repeat. Received: 30 June 1998 / Accepted: 21 August 1998  相似文献   

9.
10.
11.
12.
Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean (Glycine max). Analysis of approximately 3.7 megabases (Mb) of genomic sequence, including 0.87 Mb of pericentromeric sequence, uncovered 45 intact long terminal repeat (LTR)-retrotransposons. The ratio of intact elements to solo LTRs was 8:1, one of the highest reported to date in plants, suggesting that removal of retrotransposons by homologous recombination between LTRs is occurring more slowly in soybean than in previously characterized plant species. Analysis of paired LTR sequences uncovered a low frequency of deletions relative to base substitutions, indicating that removal of retrotransposon sequences by illegitimate recombination is also operating more slowly. Significantly, we identified three subfamilies of nonautonomous elements that have replicated in the recent past, suggesting that retrotransposition can be catalyzed in trans by autonomous elements elsewhere in the genome. Analysis of 1.6 Mb of sequence from Glycine tomentella, a wild perennial relative of soybean, uncovered 23 intact retroelements, two of which had accumulated no mutations in their LTRs, indicating very recent insertion. A similar pattern was found in 0.94 Mb of sequence from Phaseolus vulgaris (common bean). Thus, autonomous and nonautonomous retrotransposons appear to be both abundant and active in Glycine and Phaseolus. The impact of nonautonomous retrotransposon replication on genome size appears to be much greater than previously appreciated.  相似文献   

13.
In primates, the tandemly repeated genes encoding U2 small nuclear RNA evolve concertedly, i.e. the sequence of the U2 repeat unit is essentially homogeneous within each species but differs somewhat between species. Using chromosome painting and the NGFR gene as an outside marker, we show that the U2 tandem array (RNU2) has remained at the same chromosomal locus (equivalent to human 17q21) through multiple speciation events over > 35 million years leading to the Old World monkey and hominoid lineages. The data suggest that the U2 tandem repeat, once established in the primate lineage, contained sequence elements favoring perpetuation and concerted evolution of the array in situ, despite a pericentric inversion in chimpanzee, a reciprocal translocation in gorilla and a paracentric inversion in orang utan. Comparison of the 11 kb U2 repeat unit found in baboon and other Old World monkeys with the 6 kb U2 repeat unit in humans and other hominids revealed that an ancestral U2 repeat unit was expanded by insertion of a 5 kb retrovirus bearing 1 kb long terminal repeats (LTRs). Subsequent excision of the provirus by homologous recombination between the LTRs generated a 6 kb U2 repeat unit containing a solo LTR. Remarkably, both junctions between the human U2 tandem array and flanking chromosomal DNA at 17q21 fall within the solo LTR sequence, suggesting a role for the LTR in the origin or maintenance of the primate U2 array.  相似文献   

14.
A retrotransposon from the fungal plant pathogen Fusarium oxysporum f. sp. lycopersici has been isolated and characterized. The element, designated skippy (skp) is 7846 by in length, flanked by identical long terminal repeats (LTR) of 429 by showing structural features characteristic of retroviral and retrotransposon LTRs. Target-site duplications of 5 bp were found. Two long overlapping open reading frames (ORF) were identified. The first ORF, 2562 by in length, shows homology to retroviral gag genes. The second ORF, 3888 bp in length, has homology to the protease, reverse transciptase. RNase H and integrase domains of retroelement pol genes in that order. Sequence comparisons and the order of the predicted proteins from skippy indicate that the element is closely related to the gypsy family of LTR-retrotransposons. The element is present in similar copy numbers in the two races investigated, although RFLP analysis showed differences in banding patterns. The number of LTR sequences present in the genome is higher than the number of copies of complete elements, indicating excision by homologous recombination between LTR sequences.  相似文献   

15.
The yeast retrotransposon Ty5 preferentially integrates into regions of silent chromatin. Ty5 cDNA also recombines with homologous sequences, generating tandem elements or elements that have exchanged markers between cDNA and substrate. In this study, we demonstrate that Ty5 integration depends upon the conserved DD(35)E domain of integrase and cis-acting sequences at the end of the long terminal repeat (LTR) implicated in integrase binding. cDNA recombination requires Rad52p, which is responsible for homologous recombination. Interestingly, Ty5 cDNA recombines at least three times more frequently with substrates in silent chromatin than with a control substrate at an internal chromosomal locus. This preference depends upon the Ty5 targeting domain that is responsible for integration specificity, suggesting that localization of cDNA to silent chromatin results in the enhanced recombination. Recombination with a telomeric substrate occasionally generates highly reiterated Ty5 arrays, and mechanisms for tandem element formation were explored by using a plasmid-based recombination assay. Point mutations were introduced into plasmid targets, and recombination products were characterized to determine recombination initiation sites. Despite our previous observation of the importance of the LTR in forming tandem elements, recombination cannot simply be explained by crossover events between the LTRs of substrate and cDNA. We propose an alternative model based on single-strand annealing, where single-stranded cDNA initiates tandem element formation and the LTR is required for strand displacement to form a looped intermediate. Retrotransposons are increasingly found associated with chromosome ends, and amplification of Ty5 by both integration and recombination exemplifies how retroelements can contribute to telomere dynamics.  相似文献   

16.
Retrovirus-like sequences and their solitary (solo) long terminal repeats (LTRs) are common repetitive elements in eukaryotic genomes. We reported previously that the tandemly arrayed genes encoding U2 snRNA (the RNU2 locus) in humans and apes contain a solo LTR (U2-LTR) which was presumably generated by homologous recombination between the two LTRs of an ancestral provirus that is retained in the orthologous baboon RNU2 locus. We have now sequenced the orthologous U2-LTRs in human, chimpanzee, gorilla, orangutan, and baboon and examined numerous homologs of the U2-LTR that are dispersed throughout the human genome. Although these U2-LTR homologs have been collectively referred to as LTR13 in the literature, they do not display sequence similarity to any known retroviral LTRs; however, the structure of LTR13 closely resembles that of other retroviral LTRs with a putative promoter, polyadenylation signal, and a tandemly repeated 53-bp enhancer-like element. Genomic blotting indicates that LTR13 is primate-specific; based on sequence analysis, we estimate there are about 2,500 LTR13 elements in the human genome. Comparison of the primate U2-LTR sequences suggests that the homologous recombination event that gave rise to the solo U2-LTR occurred soon after insertion of the ancestral provirus into the ancestral U2 tandem array. Phylogenetic analysis of the LTR13 family confirms that it is diverse, but the orthologous U2-LTRs form a coherent group in which chimpanzee is closest to the humans; orangutan is a clear outgroup of human, chimpanzee, and gorilla; and baboon is a distant relative of human, chimpanzee, gorilla, and orangutan. We compare the LTR13 family with other known LTRs and consider whether these LTRs might play a role in concerted evolution of the primate RNU2 locus. Received: 29 September 1997 / Accepted: 16 January 1998  相似文献   

17.
Long terminal repeat (LTR) retrotransposons, mobile genetic elements comprising substantial proportions of many eukaryotic genomes, are so named for the presence of LTRs, direct repeats about 250–600 bp in length flanking the open reading frames that encode the retrotransposon enzymes and structural proteins. LTRs include promotor functions as well as other roles in retrotransposition. LTR retrotransposons, including the Gypsy-like Boudicca and the Pao/BEL-like Sinbad elements, comprise a substantial proportion of the genome of the human blood fluke, Schistosoma mansoni. In order to deduce the capability of specific copies of Boudicca and Sinbad LTRs to function as promotors, these LTRs were investigated analytically and experimentally. Sequence analysis revealed the presence of TATA boxes, canonical polyadenylation signals, and direct inverted repeats within the LTRs of both the Boudicca and Sinbad retrotransposons. Inserted in the reporter plasmid pGL3, the LTR of Sinbad drove firefly luciferase activity in HeLa cells in its forward and inverted orientation. In contrast, the LTR of Boudicca did not drive luciferase activity in HeLa cells. The ability of the Sinbad LTR to transcribe in both its forward and inverted orientation represents one of few documented examples of bidirectional promotor function.  相似文献   

18.
在水稻第四号染色体的长臂上鉴定了一个结构完整的Ty3型逆转录转座子RIRE10。RIRE10两LTR间的中间区域在gag pol的上游还包含另一个开放阅读框。通过RT PCR与Northern印迹杂交检测到来自LTR区的转录产物 ;根据点杂交结果 ,鉴定出包含中间区域的RIRE10成员的个数以及LTR区的拷贝数。除了 6 5个完整的逆转录转座子所具备的两个LTR外 ,水稻基因组还含有近 90 0个RIRE10的solo LTR。LTR区的转录以及导致solo LTR产生的同源重组可能影响了RIRE10成员在水稻基因组中的转座活性  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号